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ГЛАВА 12 
Количественная оценка 

неопределенности 
В данной главе показано, как дол:жен действовать агент в условиях неопреде­
ленности со степенью доверия, представленной в числовом виде. 

12.1. Действия в условиях неопределенности 
Агенты в реальном мире должны справляться с ► неопределенностью, будь то 

по причине частичной наблюдаемости, недетерминизма или действий противников. 
Агент может никогда не знаrь наверняка, в каком состоянии он сейчас находится или 
где он окажется после выполнения некоторой последоваrельности действий. 

Мы уже знакомы с агентами, решающими задачи, и логическими агентами, 
справляющимися с неопределенностью посредством отслеживания цепочки дове­
рительных состояний - представления множества всех возможных состояний 
мира, которые могут в нем проявиться - и формирования условного плана, по­
зволяющего справиться с любой возможной случайной сmуацией, о которой его 
датчики могут сообщить во время его выполнения. Подобный подход работает для 
простых задач, но имеет определенные недостаrки. 

• Агент должен рассмотреть все возможные объяснения для результаrов на­
блюдений своих датчиков, и при этом не важно, насколько эти объяснения 
будут маловероятны. Такой подход приводит к формированию огромного 
доверительного состояния, полного почти невероятных возможностей. 

• Правильный условный план, учитывающий любую возможность, может вы­
растаrь до сколь угодно больших размеров и должен учитывать сколь угод­
но маловероятные непредвиденные обстоятельства. 

• Иногда не существует плана, который гарантированно приводит к цели, но 
агент все равно должен действоваrь. Он должен иметь какой-то способ срав­
нения достоинств различных планов, которые не являются гарантированно 
достигающими цели. 



12 Часть IV. Неопределенные знания и рассуждения в условиях неопределенности 

Например, предположим, что автоматизированному такси поставлена цель -
доставить пассажира в аэропорт к заданному времени. Агент такси формирует 
план, А90, предусматривающий выезд из дома за 90 минут до установленного вре­
мени отправления рейса и движение такси с разумной скоростью. Даже если аэро­
порт находится всего в 5 милях от дома, логический агент не сможет с абсолютной 
уверенностью прийти к заключению, что "План А90 позволяет добраться до аэро­
порта к назначенному времени". Вместо этого он придет к более слабому заключе­
нию: "План А90 позволяет прибыть в аэропорт вовремя, если машина не сломается 
и не попадет в аварию, и дорога не будет закрыта, и в машину не попадает мете­
орит, и ... " Ни по одному из этих условий нельзя вынести гарантированно верное 
суждение, поэтому невозможно сделать вывод, что план обязательно будет успеш­
ным. Это логическая проблема квалификации ( см. раздел 7. 7 .1 ), для к<УГорой до 
сих пор не найдено реального решения. 

Тем не менее в некотором смысле план А90 действительно представляет собой 
правильное руководство к действию. Что имеется в виду под этим утверждением? 
Как уже говорилось в главе 2, под этим подразумевается, что из всех планов, ко­
торые могут быть выполнены, именно план А90, как ожидается, позволит макси­
мизировать показатели производительности агента (здесь это ожидание строится 
на основании знаний агента об окружающей среде). Показагели производительно­
сти включают своевременную доставку пассажира в аэропорт к указанному рей­
су, предотвращение продолжительного, непродуктивного ожидания в аэропорiу и 
исключение штрафов за превышение скорости по пути в аэропорт. Знания аген­
та не позволяют гарантировать достижения любого из этих трех результатов при 
выполнении плана А90, но могут обеспечить некоторую степень уверенности, что 
они будут достигнуты. Другие планы, например А 180, могут повысить степень уве­
ренности агента в том, что он доставит пассажира до аэропорта вовремя, но одно­
временно повысят для него и вероятность продолжительного, скучного ожидания. 
♦ Следовательно, выбор правильного способа действия - рационального решения -
зависит как от относительной важности различных целей, так и от степени уверен­
ности в том, что они могут быть достигнуты. В оставшейся части данного раздела 
эти идеи будут уточнены с целью подготовки к разработке общих теорий проведе­
ния рассуждений в условиях неопределенности и принятия рациональных реше­
ний, которые будут представлены в этой и последующих главах. 

12.1.1. Учет наличия неопределенности 

Рассмотрим простой пример рассуждений при наличии неопределенности: 
диагностика причин зубной боли у пациента. Диагностика - при медицин­
ском обследовании, при ремонте автомобиля или в любых других случаях -
почти всегда связана с неопределенностью. Попробуем записать правила для 
диагностики заболеваний зубов с использованием логики высказываний, что 
явным образом укажет на трудности, возникающие при простом логическом 
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подходе. Рассмотрим следующее простое правило (здесь Toothache - зубная 
боль, а Cavity- полость): 

Toothache * Cavity. 
Проблема состоит в том, что это правило неверно. Не у всех пациентов с зуб­

ной болью обязательно имеется полость, - у некоторых причиной боли может 
быть заболевание десен (GumProhlem), нарыв (Abscess) или одна из нескольких 
иных сложных ситуаций. 

Toothache * Cavity V GumProhlem V Abscess . . .  

К сожалению, чтобы сделать это правило истинным, потребуется ввести в него 
почти бесконечный список возможных причин. Это правило можно попытаться 
преобразовать в причинное правило: 

Cavity =} Toothache. 
Но и это правило нельзя назвать верным; не все зубы, имеющие полость, обяза­

тельно вызывают болевые ощущения. Единственный способ исправить данное пра­
вило состоит в том, чтобы сделагь его логически исчерпывающим: дополнить левую 
сторону описаниями всех обстоятельств, которые должны иметь место для того, что­
бы полость действительно вызывала зубную боль. Следовательно, попытка исполь­
зовать логику для решения задач в проблемной области, подобной медицинской ди­
агностике, оканчивается неудачей по следующим трем основным причинам. 

• ► Экономия усилий. Для формирования полного множества антецедентов 
или консеквентов, необходимого для составления правила, не имеющего ис­
ключений, потребуется слишком много работы, а применение таких правил 
будет слишком сложным. 

• ► Неполнота теоретических знаний. Медицинская наука не имеет полной 
теории для данной проблемной области. 

• ► Неполнота практических знаний. Даже если известны все теоретиче­
ские правила, может иметь место неопределенность в отношении диагно­
за для конкретного пациента, поскольку не все необходимые обследования 
были или вообще могут быть выполнены. 

Связь между зубной болью и наличием полости не является простым логиче­
ским следствием, действующим в обоих направлениях. Такая ситуация типична 
не только для медицинской диагностики, но и для большинства других проблем­
ных областей, связанных с вынесением суждений: юриспруденции, бизнеса и эко­
номики, проектирования, ремонта автомобилей, садоводства, датирования объек­
тов или событий и т.д. Знания агента в лучшем случае позволяют сформулировагь 
релевантные суждения только с определенной ► степенью уверенности (degree 
о/ belieЛ. Нашим основным инструментальным средством для работы со степеня­
ми уверенности будет ► теория вероятностей. В соответствии с терминологией, 
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представленной в разделе 8.1, онтологический вклад логики и теории вероятно­
стей одинаков - мир состоит из фактов, которые имеют либо не имеют места в 
каждом конкретном случае, но их эпистемологический вклад будет разным: ло­
гический агент уверен, что каждое высказывание должно быть истинным или лож­
ным, либо у него нет никакого мнения, в то время как вероятностный агент может 
иметь числовую оценку степени уверенности в диапазоне от О (для высказываний, 
которые точно ложны) до 1 (для высказываний, которые безусловно верны). 

♦ Теория вероятности предоставляет способ суммарного учета неопределенно­
сти, возникающей по причинам :экономии усилий и неполноты знаний, тем самым ре­
шая проблему квалификации. Можно не знать со всей уверенностью, что именно 
вызывает зубную боль у определенного пациента, но можно с уверенностью пола­
гать, что, скажем, в 80% случаев - т.е. с вероятностью 0,8, - если пациент испы­
тывает зубную боль, то ее источником является полость в зубе. Эrо означает, что 
из всех си,уаций, неотличимых от текущей в пределах тех знаний, которыми обла­
дает агент, в 80% этих случаев у пациента должна быть полость в зубе. Подобная 
уверенность может быть основана на статистических данных - у 80% пациентов 
с зубной болью, наблюдавшихся до сих пор, бьmа обнаружена зубная полость, -
на некоторых общих знаниях из области стомаrолоrии или на комбинации различ­
ных источников. 

Один вносящий путаницу момент состоит в том, что при постановке диагноза в 
реальном мире нет никакой неопределенности: в зубе пациента либо есть полость, 
либо нет. Так что же означает наше утверждение, что вероятность наличия поло­
сти равна 0,8? Разве она не должна бьrrь равна О или 1? Ответ состоит в том, что ве­
роятностные высказывания делаются в отношении состояния знаний агента, а не 
в отношении реш,ьного мира. Мы говорим: "Вероятность того, что пациент имеет 
зубную полость, принимая, во внимание то, что он испытывает зубную боль, рав­
на 0,8". Если позднее выяснится, что пациент уже некоторое время страдает заболе­
ванием десен, можно будет прийти к другому заключению: "Вероятность того, что 
пациент имеет зубную полость, принимая во внимание, что он испьrrывает зубную 
боль и страдает заболеванием десен, составляет 0,4". Если будут собраны допол­
нительные убедительные доказательства против наличия зубной полости, появится 
возможность утвержщпь: "Вероятность того, что пациент имеет зубную полость, с 
учетом всего того, что нам теперь известно, почти нулевая". Обрагите внимание, что 
все приведенные выше заключения не противоречат друг другу, - в каждом есть 
собственное утверждение о различном состоянии знаний агента. 

12.1.2. Неопределенность и рациональные решения 

Еще раз вернемся к плану поездки в аэропорт А90 • Предположим, что он обеспе­
чивает 97%-ный шанс успешного вылета назначенным рейсом. Означает ли это, 
что выбор данного плана будет рациональным решением? Вовсе необязательно: 
могут существовать другие планы - например, А 180 - с большей вероятностью 
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успешного вылета. Если жизненно важно н е  пропустить именно этот рейс, то сто­
ит рискнуть подождать в аэропорту подольше. А что можно сказать о плане А 1 440, 

предусматривающем заблаговременный выезд из дома за 24 часа до отправления 
самолета? В большинстве ситуаций это будет не лучший выбор, поскольку, хотя 
он практически гарантирует прибытие в аэропорт вовремя, он предполагает и не­
выносимо долгое ожидание, не говоря уже о возможности малоприятной диеты из 
предлагаемого в аэропорту меню. 

Чтобы сделать подобный выбор, агент прежде всего должен иметь сведения о 
► предпочтениях среди различных возможных ► результатов различных планов. 
Любой результат - это полностью определенное состояние, включая такие фак­
торы, как своевременность прибытия и длительность ожидания в аэропорту. Дr�я 
представления предпочтений и количественных рассуждений о них мы будем ис­
пользовать ► теорию полезности (utility theory). (Термин "полезность" в данном 
контексте обозначает "свойство быть полезным".) Теория полезности утверждает, 
что для агента каждое состояние (или последовательность состояний) имеет опре­
деленную степень полезности (или просто полезность) и что агент всегда должен 
отдавать предпочтение состояниям с более высокой полезностью. 

Дr�я агента полезность состояния является величиной относительной. Напри­
мер, полезность состояния, в котором белые могут поставить мат черным при 
игре в шахматы, очевидно высока для агента, играющего белыми, и очень низ­
ка для агента, играющего черными.  Но мы не можем строго следовать оценкам 
в 1 ,  1 /2 и О баллов, которые диктуются правилами проведения шахматных тур­
ниров, - одни игроки (включая авторов книги) могут быть в восторге от ничьей 
с чемпионом мира, тогда как другие игроки (включая прежнего чемпиона мира), 
едва ли будут ей особенно рады. В любом случае личные вкусы или предпочтения 
не должны учитываться : можно полагать, что агент, отдающий предпочтение мо­
роженому с вкраплениями жевательной резинки "Халапеньо" вместо изюма или 
шоколадных чипсов, - очень странный, но нельзя утверждать, что он очевидно 
нерационален. Функция полезности может учитывать любое множество предпо­
чтений - необычных или типичных, благородных или порочных. Можно даже 
учитывать полезность альтруистического поведения, просто включив оценку бла­
гополучия других как один из факторов. 

Предпочтения, выраженные в виде полезности, комбинируются с вероятностя­
ми в общей теории рациональных решений, называемой ► теорией принятия ре­
шений (decision theory): 

Теория принятия решений = теория вероятностей + теория полезности. 
Фундаментальная идея теории принятия решений состоит в том, что ➔ лю­

бой агент является рациональным тогда и только тогда, когда он выбирает действие, 
позволяющее достичь наибольшей ожидаемой полезности, усредненной по всем возмож­
ным результатам данного действия. Это - принцип ► максимальной ожидае­
мой полезности (Maximum Expected Utility - MEU). Здесь "ожидаемой" означает 
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"средней"; точнее, это "статистическое среднее" значений полезностей, взвешен­
ных по вероятности их получения. Мы наблюдали этот принцип в действии в 
главе 5, когда обсуждали выбор оrnимальных решений при игре в нарды. В дей­
ствительности это совершенно общий принцип принятия решений для агентов, 
действующих в одиночку. 

На рис. 1 2. 1  приведен набросок струК'I)'рЫ агента, использующего теорию при­
нятия решений для выбора действия. На некотором абстрактном уровне этот агент 
идентичен агентам, описанным в главах 4 и 7, которые поддерживают доверитель­
ное состояние, отражающее историю восприятий на текущий момент. Основное 
различие заключается в том, что доверительное состояние агента, действующего в 
соответствии с теорией принятия решений, представляет не только возможности 
для состояний мира, но и их вероятности. Основываясь на доверительном состоя­
нии и некоторых знаниях о результагах действий, агент может сделать вероятност­
ные предсказания о результатах выполнения действия и, следовагельно, выбрать 
действие с наибольшей ожидаемой полезностью. 

function DT-AGENT(percept) returns действие action 
persistent: belief Jtate, доверительное состояние - вероятностные 

убеждения в отношении текущего состояния мира 
action, действие агента 

обновить belief Jtate с учетом действия action и восприятия percept 
вычислить результирующие вероятности для действий actions 

на основании описаний действий action и текущего доверительного 
состояния belief Jtate 

выбрать действие action с наивысшей ожидаемой полезностью, 
исходя из вероятностей результатов и информации о полезности 

return action 

Рис. 12 . 1 .  Агент, действующий на основании теории принятия решений и выбира­
ющий рациональные действия 

В этой и следующей главах изложение в основном сосредоточено на задаче 
представления данных и вычислений с учетом вероятностной информации в це­
лом. Глава 1 4  посвящена методам решения конкретных задач представления и об­
новления доверительного состояния во времени и прогнозированию результатов. 
В главе 1 5  рассмагриваются способы комбинирования теории вероятностей с вы­
разительными формальными языками, такими как логика первого порядка и язы­
ки программирования общего назначения. В главе 1 6  теория полезности рассма­
тривается более подробно, а в главе 1 7  разрабагываются алгоритмы планирования 
последовагельностей действий в стохастических средах. В главе 1 8  все эти идеи 
распространяются на мноrоаrентные проблемные среды. 
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1 2 .2. Вероятность - основная система обозначений 
Чтобы агент мог представлять и использовать вероятностную информацию, 

необходим формальный язык представления неопределенных знаний. Язык тео­
рии вероятностей традиционно является неформальным, разработанным челове­
ком-математиком для других математиков. Стандартное введение в элементарную 
теорию вероятностей вы найдете в приложении А. В этом разделе выбран иной 
подход, более удобны й  для потребностей ИИ, в котором теория вероятностей со­
единяется с понятиями формальной логики. 

1 2.2. 1 . О каких вероятностях идет речь 

Подобно логическим утверждениям, вероятностные утверждения относятся к 
возможным мирам. В то время как логические утверждения говорят, какие из воз­
можных миров являются строго недопустимыми (все те, в которых утверждение 
является ложным), вероятностные утверждения говорят о том, насколько вероят­
ными являются различные миры. В теории вероятностей множество всех возмож­
ных миров называют ► пространством элементарных событий . Возможные 
миры являются взаимоисключающими и исчерпывающими - два возможных мира 
не могут иметь место одновременно, иметь место в реальности допустимо лишь 
для одного возможного мира. Например, если мы собираемся бросить две ( отличи­
мые друг от друга) кости, существует 36 возможных миров, которые следует рас­
смотреть: ( 1 ,  1 ), ( 1 ,2), . . .  , ( 6,6). Для обозначения пространства элементарных собы­
тий используется греческая буква n (прописная буква "омега"), а буква ro 
( строчная буква "омега") используется для ссылок на элементы этого простран­
ства, т.е. на конкретные возможные миры, которые в данном контексте также на­
зывают ► элементарными событиями. 

Полностью определенная ► вероятностная модель связывает числовую веро­
ятность P(ro) с каждым возможным миром . 1 Основные аксиомы теории вероятно­
стей говорят о том, что каждый возможный мир характеризуется вероятностью в 
пределах от О до 1 и что суммарная вероятность всего множества возможных ми­
ров равна 1 .  

o ::s;; P(ro) ::s;; J для каждого rо и  L P(ro) = l  
ro e n  

( 1 2 . 1 )  

Например, если предположить, что каждая кость выполнена без изъянов и при 
броске они не мешают друг другу, то каждый из возможных миров ( 1 ,  1 ), ( 1 ,2), . . .  , 
(6,6) характеризуется вероятностью 1 /3 6 .  Если некоторые грани костей будут 

1 На данный момент мы предполагаем множество возможных миров дискретным и 
счетным. Корректная обработка непрерывных множеств требует учета определенных 
сложных моментов, которые менее актуальны для большинства целей в ИИ. 
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дополнительно утяжелены, то одни миры будут иметь более высокую вероятность, а другие - более низкую, но общая их сумма все равно составит 1 .  Вероятностные утверждения и запросы обычно касаются не конкретных воз­можных миров, а некоторых их множеств. Например, нас может интересовагь ве­роятность того, что при броске двух костей сумма будет равна 1 1 , или вероят­ность того, что выпадут два одинаковых значения, и т.д. В теории вероятностей эти множества называются ► событиями или исходами - этот термин уже ши­роко использовался в главе 1 О для иной концепции. В логике множество миров со­ответствует высказыванию на формальном языке, в частности для каждого вы­сказывания соответствующее множество содержит только те возможные миры, в которых это высказывание истинно. (Таким образом, в этом контексте "событие" и "высказывание" означают примерно одно и то же, за исключением того, что вы­сказывание выражается средствами формального языка.) Вероятность, связанная с высказыванием, определяется как сумма вероятностей тех возможных миров, в которых оно истинно. 
Для любого высказывания <р, Р( <р) = L Р( ro) . 

ro e il  
( 1 2.2) 

Например, при броске симметричных костей вероятность выпадения суммы 1 1  можно определить как P(Total = 1 1 ) = Р((5,6)) + Р((6,5)) = 1 /36 + 1 /36 = 1 / 1 8 . Следу­ет отметить, что теория вероятности не требует полного знания вероятностей для каждого возможного мира. Например, если мы полагаем, что кости были переде­ланы так, чтобы при броске на них чаще выпадали одинаковые значения, то мо­жем утверждать, что P(douhles) = 1 /4, даже не принимая во внимание то, что при броске чаще будут выпадагь, скажем, две шестерки, а не две двойки. Так же, как и в случае логических утверждений, это утверждение ограничивает лежащую в ос­нове вероятностную модель без полного ее определения. Вероятности, такие как P(Total = 1 1 ) и P(douhles), принято называть ► безус­
ловными или ► априорными вероятностями, - они касаются степени доверия к высказываниям при отсутствии какой-либо другой информации. Чаще всего, од­нако, у нас есть некоторая информация, обычно называемая ► свидетельством, которая уже была получена ранее. Например, при броске двух костей первая из них уже может остановиться со значением 5 и мы, затаив дыхание, ждем, когда остановится вторая . В этом случае нас интересует не априорная вероятность ре­зультата броска костей, а ► условная или ► апостериорная вероятность выпа­дения дубля, когда на первой кости (Die 1 ) уже выпала пятерка. Эта вероятность записывается как P(douЬ/eslDie 1 = 5), где символ "1" читается как "при условии".2 Аналогичным образом, если отправиться к стоматологу на регулярное плано­вое обследование, то априорная вероятность P(cavity) = 0,2 может представлять 

2 Оператор I имеет наименьший возможный приоритет, поэтому выражение P( . . . j • • •  ) 
всегда означает Р(( . . . ) 1( . . . )). 
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интерес, но  если отправиться стоматологу потому, что болит зуб, то важнее будет 
апостериорная вероятность P(cavity I toothache) = 0,6. 

Важно понимать, что вероятность P(cavity) = 0,2 по-прежнему остается име­
ющей силу и после появления зубной боли, просто она уже не является особен­
но полезной. Принимая решения, агенrу нужно обусловить все те свидетельства, 
которые он наблюдал . Также важно понимать различие, существующее меж­
ду обусловливанием и логическим следствием. Утверждение, что P(cavity I tooth­
ache) = 0,6, не означает "Всякий раз, когда имеет место зубная боль, можно сде­
лать заключение, что наличие в зубе полости имеет место с вероятностью 0,6". 
В действительности оно означает "Всякий раз, когда имеет место зубная боль и 
у нас нет никакой дополнительной информации, можно сделать заключение, что 
наличие в зубе полости имеет место с вероятностью 0,6". Это дополнительное об­
условливание имеет большое значение. Например, получив дополнительную ин­
формацию о том, что стоматолог так и не обнаружил в зубах пациента никаких по­
лостей, мы, определенно, не захотим прийти к заключению, что наличие в зубе 
полости имеет вероятность 0,6; вместо этого нам нужно будет использовать заклю­
чение P(cavity I toothache Л ,cavity) = О. 

Говоря языком математики, апостериорные вероятности определяются в тер­
минах априорных вероятностей следующим образом . Для любых высказываний 
а и Ь мы имеем 

P(a l b) = Р(а Л Ь) 
Р(Ь) 

что выполняется всякий раз, когда Р(Ь) > О. Например, 

P(douЬ/es I Die 1 = 5) = Р( douЬ/es Л Die1 =5) . 
P(Die1=5) 

( 1 2 .3)  

Это определение обретает смысл, если вспомнить, что наблюдение правил Ь 
исключает все те возможные миры, в которых Ь является ложным, оставляя мно­
жество, суммарная вероятность которого - просто Р(Ь). В пределах этого множе­
ства миры, в которых а является истинным, должны удовлетворять условию а л Ь 
и представляют собой дробь Р(а Л Ь)/Р(Ь). 

Определение апостериорной ( ил и  условной) вероятности - уравнение 
( 1 2.3) - может быть записано в другой форме, называемой ► правилом умноже­
ния вероятностей:  

Р(а Л Ь) = Р(а I Ь)Р(Ь). ( 1 2 .4) 

Правило умножения вероятностей, возможно, легче запомнить: оно построе­
но на основании того факта, что для того, чтобы а Л Ь было истинно, необходимо, 
чтобы Ь было истинно, а также чтобы истинно было а при данном Ь. 
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12.2.2. Язык высказываний в вероятностных утверждениях 

В этой и последующих главах высказывания, описывающие множества воз­
можных миров, как правило, будут записываться с использованием нотации, в 
которой сочетаются элементы логики высказываний, и нотации удовлетворения 
ограничений. Согласно терминологии, предложенной в разделе 2.4.7, это развер­
вуrое представление, в котором возможный мир представлен в виде множества 
пар переменная/значение. Также возможно использование еще более выразитель­
ного структурного представлении, как показано в главе 1 5 .  

В теории вероятностей переменные называются ► случайными переменны­
ми и их имена всегда начинаются с прописной буквы.  Таким образом, в примере с 
бросанием костей переменные Total и Die 1 являются случайными. Каждая случай­
ная переменная является функцией, отображающей проблемную область возмож­
ных миров Q в некоторую ► область определения значений (range) - множе­
ство возможных значений, которые она может принимать. Областью определения 
переменной Total в случае двух костей является множество { 2, . . .  , 1 2 } , а областью 
определения переменной Die 1 - { 1 ,  . . .  , 6 } .  Имена значений всегда записываются 
строчными буквами, поэтому сумму всех значений переменной Х можно записать 
как Ех Р(Х = х). Булева случайная переменная имеет область определения { true, 
false} .  Например, высказывание о том, что были выброшены дубли, можно запи­
сать как DouЬ/es = true. (Альтернативным вариантом области определения для бу­
левых переменных является множество { О, 1 } , и в этом случае говорят, что пере­
менная имеет распределение ► Бернулли .) По соглашению высказывания вида 
А = true сокращаются до просто а, тогда как высказывания вида А = false сокра­
щаются до -,а. (Использованные в предыдущем разделе имена douЬ/es, cavity и 
toothache являются сокращением именно этого типа.) 

Области определения значений переменных могут представлять собой множе­
ство произвольных признаков. Например, для переменной Age (возраст) можно 
выбрать область определения в виде множества Uиvenile, teen, adult } (т.е. ребе­
нок, подросток, взрослый), а для переменной Weather (погода) областью опреде­
ления могут быть значения {swi, rain, cloud, snow} (т.е. солнечно, дождь, облачно, 
снег). Если неоднозначное понимание исключено, то обычно принято использо­
вать само значение в тех высказываниях, где определенная переменная имеет это 
значение; так, значение sun можно непосредственно использовать в высказывании 
Weather = swi.3 

Все предыдущие примеры имеют конечные области определения значений. Пе­
ременные также могут иметь бесконечные области определения - либо 

3 Эти соглашения, взятые вместе, приводят к потенциальной неоднозначности в обо­
значениях при суммировании значений булевых переменных. Например, Р(а) - веро­
ятность того, что переменная А имеет значение true, тогда как в выражении Е0Р(а) это 
просто ссылка на вероятность одного из значений а переменной А. 
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дискретные (например, целые числа), либо непрерывные (например, действитель­
ные числа). Для любой переменной с упорядоченной областью определения также 
допускаются неравенства, такие кaк NumberOfAtomslnUniverse � 1 070 • 

Наконец, можно объединить все эти виды элементарных высказываний (вклю­
чая сокращенные формы для булевых переменных), используя стандартные логи­
ческие связки логики высказываний. Например, высказывание "Вероятность того, 
что в зубах пациентки есть полость, с учетом того, что она является подростком и 
не испытывает зубной боли, составляет О, 1 "  можно записаrь следующим образом. 

P(cavity 1 ,toothache Л teen) = О, 1 

Также в вероятностной нотации для обозначения операции конъюнкции часто ис­
пользуют запяrую, поэтому в приведенном выше высказывании левую часть мож­
но было бы записать просто как P(cavity l ,toothache, teen). 
Иногда в обсуждение требуется включить вероятности всех возможных значений 
случайной величины. Понятно, что в этом случае можно было бы использовать та­
кую запись: 

P(Weather = sun) = 0,6, 
P(Weather = rain) = 0, 1 ,  
Р( Weather = c/oud) = 0,29, 
P(Weather = snow) = 0,0 1 ,  

но для сокращения можно применить следующий вариант записи: 

P(Weather) = (0,6; О, 1 ;  0,29; 0,0 1 ). 

Здесь выделение Р полужирным шрифтом указывает, что результатом является 
вектор чисел, расположенных в некотором предопределенном порядке (sun, rain, 
c/oud, snow) в соответствии с областью определения переменной Weather. Гово­
рят, что высказывание Р задает ► распределение вероятностей для случайной 
переменной Weather, т.е. присвоение вероятности для каждого возможного значе­
ния этой случайной переменной. (В подобном случае при конечной дискретной 
области определения значений такое распределение называется ► катеrориаль­
ным распределением.) Нотация Р также используется для условных распределе­
ний: P(XI У), присваивая значения Р(Х =х; 1 У= yj) для каждой возможной пары i,j. 

Для непрерывных переменных просто невозможно записать все распределе­
ние в виде вектора, поскольку в нем существует бесконечно много значений . 
Вместо этого можно определить вероятность того, что случайная величина при­
нимает некоторое значение х как параметризованную функцию от х, обычно на­
зываемую ► функцией плотности распределения вероятностей. Например, 
высказывание 

P(NoonTemp =x) =  Uniform(x; 1 8С, 26С) 
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выражает уверенность в том, что значение температуры в полдень (переменная 
NoonTemp) будет равномерно распределено между значениями 1 8  и 26 градусов 
по Цельсию. 

Функция ПЛ(УГНОСТИ распределения вероятностей (также часто называемая про­
сто функцией распределения вероятностей) по смыслу (УГЛичается (УГ дискрет­
ных распределений. Утверждение, что ПЛ(УГНОСТЬ вероятности равномерно распре­
делена (УГ 1 8°С до 26°С, означает, что существует 1 00%-ная вероятность того, что 
значение температуры в полдень попадет в этот диапазон шириной в 8°С, и 50%­
ная вероятность того, что оно попадет в любой поддиапазон шириной 4°С это­
го диапазона, и т.д. Принято записывать плотность вероятности для непрерывной 
случайной величины Х в области значения х как Р(Х = х) или просто как Р(х). Ин­
туитивно понятное определение Р(х) - это вероятность того, что значение Х по­
падает в произвольно малую область, начинающуюся (УГ х, деленную на ширину 
этой области: 

Р(х) = l im Р (x � X� x + dx)/dx. 
dx:➔ O 

Для переменной NoonTemp имеем 

P(NoonTemp = х) = Uniform(x; \ 8С, 26С) = { :� 
в Пр(УГИВНОМ случае. 

Здесь С обозначает шкалу температуры в градусах Цельсия (а не является кон­

стантой). В выражении P(NoonTemp = 20, 1 8С) = 
8
� обр1Пите внимание, что 8� -

это не вероятность, а плотность вероятности. Вероятность того, что переменная 
NoonTemp имеет значение точно 20, 1 8°С, равна нулю, потому что диапазон 
20, 1 8°С имеет нулевую ширину. Некоторые авторы используют разные символы 
для дискретных вероятностей и ПЛ(Лностей вероятностей; но мы в этой книге бу­
дем использовать обозначение Р для конкретных значений вероятности и Р - для 
векторов значений в обоих случаях, поскольку в действительности путаница воз­
никает очень редко и уравнения чаще всего идентичны. Обр1Пите внимание, что 
вероятности - это безразмерные числа, тогда как значения функций распределе­
ния вероятностей выражаются в некоторых единицах измерения. В нашем приме­
ре это единица, обр1Пная градусу Цельсия. Если тот же самый интервал темпера­
тур потребуется выразить в градусах по Фаренгейту, он будет иметь ширину 
1 4,4 градуса, а ПЛ(Лность вероятности будет иметь значение 1 / 1 4,4F. 

В дополнение к распределениям по (УГДельным переменным нам потребуются 
обозначения и для распределений по нескольким переменным. Для этой цели бу­
дем использовать запятые. Например, выражение P(Weather, Cavity) определяет 
вероятности всех комбинаций значений переменных Weather и Cavity и представ­
ляет собой таблицу вероятностей размером 4 х 2, называемую ► совместным рас-
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пределеннем вероятностей для переменных Weather и Cavity. Также можно сме­
шиваrь в выражениях переменные и конкретные значения, например P(sun, Cavity) 
является двухэлементным вектором, включающим вероятности наличия в зубе по­
лости в солнечный день и отсутствия полости в зубе в солнечный день. 

Использование обозначения Р делает определение выражений гораздо более 
краrким, чем они могли бы быть в противном случае. Например, правило умноже­
ния вероятностей (см. уравнение ( 1 2 .4)) для всех возможных значений перемен­
ных Weather и Cavity можно записать в виде единственного уравнения: 

P(Weather, Cavity) = P(Weather I Cavity)P(Cavity) 
вместо следующих 4 х 2 = 8 уравнений ( с использованием сокращений W и С): 

P(W = sun /\ С =  true) = P(W = sun I С =  true) Р(С = true) 
P(W = rain /\ С =  true) = P(W = rain I С =  true) Р(С = true) 
P(W= cloud /\ C = true) = P(W= cloиd l C = true) P(C = true) 
P(W= snow /\ C = true) = P(W= snow I C = true) P(C = true) 
P(W= sun /\ C =false) = P(W= sun I C =false) P(C =fa/se) 
P(W = rain /\ С =  fa/se) = P(W = rain I С =  false) Р(С = false) 
P(W = c/oud /\ С = false) = P(W = c/oud l С =  false) Р(С = false) 
P(W = snow /\ С =  false) = P(W = snow I С =  false) Р(С = false). 

Как вырожденный случай выражение P(sun, cavity) не содержит переменных и, 
следовательно, является вектором нулевой размерности, который можно рассма­
тривать как скалярное значение. 

На данный момент мы уже определили синтаксис высказываний и вероятност­
ных утверждений, а также дали часть семантики: уравнение ( 1 2 .2) определяет ве­
роятность высказывания как сумму вероятностей миров, в которых оно выполня­
ется. Для завершения семантики необходимо сказать, чем эти миры являются и 
как определить, выполняется ли высказывание в некотором мире. Мы заимствуем 
эту часть непосредственно из семантики логики высказываний следующим обра­
зом . ♦ Возможный мир определяется как присваивание значений всем рассматривае­
мым случайным переменным. 

Легко показаrь, что это определение удовлетворяет основному требованию, со­
гласно которому возможные миры должны быть взаимно исключающими и исчер­
пывающими ( см. упражнение 1 2 .5) .  Например, если случайными переменными яв­
ляются Cavity, Toothache и Weather, то существует 2 х 2 х 4 = 1 6  возможных миров. 
Более того, истинность любого заданного высказывания легко может быть опреде­
лена в подобных мирах посредством тех же самых рекурсивных вычислений ис­
тинности, которые использовались нами в логике высказываний (см. раздел 7 .4 .2). 

Обратите внимание, что некоторые случайные переменные могут быть из­
быточными в том смысле, что их значения во всех случаях могут быть по­
лучены из значений других переменных. Например, в мире двух играл ьных 
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костей переменная Douhles будет иметь значение true только в тех случаях, когда 
Die 1 = Die2 • Включение переменной Douhles в качестве одной из случайных пере­
менных в дополнение к переменным Die 1 и Die2, как кажется, увеличивает количе­
ство возможных миров с 36 до 72, но, конечно же, ровно половина из этих 72 ми­
ров будет логически невозможной и, следовательно, иметь вероятность О. 

Из приведенного выше определения возможных миров следует, что вероятност­
ная модель полностью определяется совместным распределением вероятностей 
для всех случайных переменных - так называемым ► полным совместным рас­
пределением вероятностей. Например, при наличии случайных переменных Ca­
vity, Toothache и Weather полным совместным распределением вероятностей будет 
P(Cavity, Toothache, Weather). Это совместное распределение может быть пред­
ставлено в виде таблицы размерностью 2 х 2 х 4, содержащей 1 6  значений. По­
скольку вероятность каждого высказывания является суммой по всем возможным 
мирам, полного совместного распределения в принципе достаточно для вычисле­
ния вероятности любого высказывания . Примеры того, как это можно сделать, бу­
дут приведены в разделе 1 2 .3 .  

1 2.2.3. Аксиомы вероятности и их обоснованность 

Основные аксиомы вероятности (уравнения ( 1 2 , 1 )  и ( 1 2,2)) подразумевают 
определенные отношения между степенями доверия, которые могут быть отнесе­
ны к логически связанным высказываниям .  Так, можно вывести знакомые отноше­
ния между вероятностью высказывания и вероятностью его отрицания: 

Р(,а) = Lwe --,0 P (ro) = 
= Lw e --,aP (ro) + Lro e aP (ro) - Lro e a P (ro) = 
= Lw e пP (ro) - Lw e a P (ro) = 
= 1 - Р(а) 

по уравнению ( 1 2.2) 

группируя первые 2 члена 
по ( 1 2 . 1 ) и ( 1 2 .2). 

Также можно вывести известную формулу для вероятности дизъюнкции, кото­
рую иногда называют ► формулой (или принципом) включений-исключений: 

Р(а V Ь) = Р(а) + Р(Ь) - Р(а л Ь). ( 1 2 .5) 

Это правило можно легко запомнить, отметив, что те случаи, когда высказыва­
ние а является истинным, вместе с теми  случаями, когда высказывание Ь являет­
ся истинным, безусловно, охватывают все те случаи, когда истинно высказывание 
а V Ь; но в сумме двух множеств случаи их пересечения будут учтены дважды, по­
этому необходимо вычесть Р(а Л Ь) .  

Уравнения ( 1 2 . 1 )  и ( 1 2 .5)  часто называют ► аксиомами Колмоrорова в честь 
математика Андрея Колмогорова, показавшего, как построить остальную часть те­
ории вероятностей на этом простом фундаменте и как справиться с трудностями, 
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вызванными непрерывными переменными.4 Хотя уравнение ( 1 2 .2) имеет опре­
деленную особенность, уравнение ( 1 2 .5 ) показывает, что аксиомы действитель­
но ограничивают степень уверенности, которую агент может иметь в отношении 
логически связанных высказываний. Эrо аналогично тому фаюу, что логический 
агент не может одновременно быть уверен в высказываниях А, В и ,(А Л В), так 
как не существует возможного мира, в котором они все три одновременно являюr­
ся истинными. Однако при использовании вероятностей высказывания относятся 
не к миру непосредственно, а к собственному состоянию знания агента. Почему 
же тогда агент не может придерживаться следующего множества убеждений (даже 
если они нарушаюr аксиомы Колмогорова)? 

Р(а) = 0,4 Р(Ь) = 0,3 Р(а Л Ь) = 0,0 Р(а V Ь) = 0,8 ( 1 2 .6) 

Такого рода вопрос был предметом яростных дебаrов, продолжавшихся в тече­
ние десятилетий между теми, кто отстаивал допустимость использования вероят­
ностей как единственной обоснованной формы оценки степеней уверенности, и 
теми, кто отстаивал альтернаrивные подходы.  

Один из аргументов в пользу аксиом вероятностей, впервые сформулирован­
ный в 1 93 1  году Бруно де Финетти ([554], 1 983), заключается в следующем. Если 
агент имеет некоторую степень уверенности в истинности высказывания а, то он 
должен быть способен сформулироваrь оценку того, в какой степени он безразли­
чен к ставке за или против высказывания a.s Можно рассмаrривать подобную си­
туацию как игру между двумя агентами:  агент 1 утверждает: "Моя степень уверен­
ности в истинности события а равна 0,4". Заrем агент 2 вправе выбраrь, будет ли 
он делать ставку за или против высказывания а, выбирая ставки, совместимые с 
заявленной степенью уверенности. То есть агент 2 может решить сделаrь ставку 
на то, что событие а произойдет, поставив 6 долл. против 4 долл. агента 1 .  Или же 
агент 2 может сделать ставку на то, что будет иметь место событие ,а, поставив 
4 долл. против 6 агента 1 .  Когда исход события а станет известен, тот, кто оказался 
прав, заберет деньги . Если степень уверенности агента недостаrочно точно отра­
жает состояние мира, можно рассчитывать на то, что в долговременной перспек­
тиве он будет проигрывать деньги агенту-противнику, убеждения которого более 
точно отражаюr его состояние. 

Теорема де Финетти относится не к выбору правильных значений для от­
дельных вероятностей, а к выбору значений вероятностей логически связанных 

4 Эти трудности включают множество Витали, четко определенного измеримого под­
множества в интервале [О, 1 ] с неопределенной неизмеримой дпиной. 

s Можно возразить, что предпочтения агента применительно к балансам разных ста­
вок являются таковыми, что возможность потерять I долл. не уравновешивается равной 
возможностью выиграть I долл. Один из возможных ответов на подобное возражение со­
стоит в том, что суммы ставок должны быть достаточно малыми дпя того, чтобы можно 
было избежать данной проблемы. Анализ, проведенный Сэведжем ([ 1 984), 1954), позво­
ляет полностью исключить из рассмотрения эту проблему. 
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высказываний. • Если агент 1 руководствуется множеством степеней уверенности, 
нарушающим аксиомы теории вероятностей, то всегда существует комбинация ста­
вок агента 2, гарантирующая, что агент 1 будет терять деньги при каждой ставке. На­
пример, предположим, что агент 1 руководствуется множеством степеней уверен­
ности, приведенным в уравнении ( 1 2 .6). На рис. 1 2 .2 показано, что если агент 2 
решит ставить 4 долл. на а, 3 долл. - на Ь и 2 долл. - на -,(а V Ь), то агент 1 всег­
да будет терять деньги, независимо от исходов для а и Ь.  Из теоремы де Финетти 
следует, что ни один рациональный агент не может иметь убеждений, нарушаю-
щих аксиомы вероятности. 

Высказы- Степень уверен- Ставка Ставка Результаты для агента 1 
вание ности агента 1 агента 2 агента 1 а, Ь  а, �ь �а, Ь �а, �ь 

а 0,4 4 на а  6 на -.а -6 -6 4 4 
ь 0,3 З на Ь  7 на -,Ь -7 з -7 з 

a v  Ь 0,8 2 на -,(av Ь) 8 на av Ь 2 2 2 -8 

-1 1 - 1  - 1  - 1  

Рис. 1 2.2. Поскольку агент 1 придерживается несогласованных убеждений, агент 2 
может подобрать множество из трех ставок, гарантирующих постоянный проигрыш 
для агента 1 , независимо от исходов для а и Ь 

Одно общее возражение в отношении теоремы де Финетти состоит в том, что 
эта игра со ставками является довольно надуманной. Например, что будет, если 
один из игроков откажется делать ставку? Закончится ли на этом спор? Ответ на 
данный вопрос состоит в том, что эта игра со ставками представляет собой аб­
страктную модель для си,уации принятия решений, в которую любой агент неиз­
бежно вовлечен в любой момент. Каждое действие (включая бездействие) - это 
своего рода ставка, а каждый исход может рассматриваться как положительное 
или отрицательное вознаграждение за эту ставку. Отказ делать ставку подобен от­
казу позволить времени двигаться. 

В пользу применения вероятностей были выдвинуты и другие весомые фило­
софские аргументы, из которых наиболее заметными можно считать работы Кок­
са ([489], 1 946), Карнапа ([3 74], 1 950) и Джейнса (2003). В каждой из них пред­
лагается множество аксиом для рассуждений со степенями доверия: отсутствие 
противоречий, соответствие положениям обычной логики (например, если степень 
доверия к А возрастает, то степень доверия к -,А должна уменьшаться) и т.д. Един­
ственная спорная аксиома состоит в том, что степени доверия должны быть пред­
ставлены числами или по крайней мере вести себя, как числа, например обладать 
свойством транзитивности ( если степень доверия к А больше, чем степень дове­
рия к В, которая больше, чем степень доверия к С, то степень доверия к А должна 
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быть больше, чем к С) и свойством сравнимости ( степень доверия к А должна 
быть либо равна, либо больше, либо меньше, чем степень доверия к В). Можно до­
казать, что применение вероятностей является единственным подходом, удовлет­
воряющим все эти аксиомы. 

Но мир таков, каков он есть, и практические свидетельства иногда оказываются 
более весомыми, чем доказательства. Успех систем формирования рассуждений, 
основанных на теории вероятностей, оказался гораздо более эффективным аргу­
ментом в пользу пересмотра многих взглядов, чем любая философская аргумента­
ция . В следующем разделе показано, как приведенные выше аксиомы можно при­
менить к логическому выводу. 

12.3. Логический вывод с использованием полных 
совместных распределений 

В этом разделе описывается простой метод ► вероятностного вывода, т.е. вы­
числения апостериорных вероятностей для высказываний, сформулированных как 
► запросы на основании наблюдаемых свидетельств. В качестве "базы знаний", из 
которой можно будет вывести ответы на все запросы, мы будем использовать полное 
совместное распределение. По ходу дела также будет представлено несколько полез­
ных методов манипулирования уравнениями, включающих вероятности. 

Начнем с очень простого примера - проблемной области, состоящей только из 
трех булевых переменных, Toothache, Cavity и Catch (щипцы) (неприятные ощуще­
ния от захвата зуба стальными стоматологическими щипцами все еще свежи в па­
мяти автора). Полное совместное распределение этих переменных представляет 
собой таблицу размером 2 х 2 х 2, представленную на рис. 1 2.3. 

cavity 
-.cavity 

toothache 
catch -.catch 

0, 1 08 
0,0 16  

0,0 1 2 
0,064 

-.1oothache 
catch -.catch 

0,072 
0, 1 44 

0,008 
0,576 

Рис. 12.3. Полное совместное распределение для мира Toothache, Cavity, Catch 

Обратите внимание, что вероятности в этом совместном распределении в сум­
ме составляют 1 ,  что и требуется согласно аксиомам вероятности. Также обрати­
те внимание, что уравнение ( 1 2 .2) предоставляет прямой способ вычисления ве­
роятности любого высказывания, простого или сложного: достаточно определить 
те возможные миры, в которых данное высказывание является истинным, а затем 
сложить их вероятности. Например, имеется шесть возможных миров, в которых 
высказывание cavity V toothache является истинным: 
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P(cavity V toothache) = 0, 1 08 + 0,0 1 2  + 0,072 + 0,008 + 0,0 1 6  + 0,064 = 0,28.  

Одна из задач, которые встречаются особенно часто, состоит в том, чтобы из­
влечь из подобной таблицы распределение вероятностей по некоторому подмно­
жеству переменных или по одной переменной.  Например, складывая элементы 
первой строки на рис. 1 2 .3 ,  получим безусловную или ► маргинальную вероят­
ность 6 события cavity: 

P(cavity) = 0, 1 08 + 0,0 1 2  + 0,072 + 0,008 = 0,2. 

Этот процесс называется ► маргинализацией или исключением из суммы, 
поскольку суммирование вероятностей для каждого возможного значения других 
переменных исключает их из уравнения. Можно записать следующее общее пра­
вило маргинализации для любых множеств переменных У и Z: 

Р(У) = L Р(У, Z = z), 
z 

( 1 2 .7) 

где Lz - сумма по всем возможным комбинациям значений множества перемен­
ных Z. Как обычно, в этом уравнении мы можем сократить Р(У, Z = z) до Р(У, z). 
Например, для переменной Cavity уравнение ( 1 2 . 7) соответствует следующему 
уравнению: 

P(Cavity) = P(Cavity, toothache, catch) + P(Cavity, toothache, ,catch) + 

+ P(Cavity, ,toothache, catch) + P(Cavity, ,toothache, ,catch) = 
= (0, 1 08; 0,0 1 6) + (0,0 1 2 ; 0,064) + (0,072; 0, 1 44) + (0,008; 0,5 76) = 
= (0,2 ; 0,8) . 

Используя правило умножения вероятностей (уравнение ( 1 2 .4)), можно за­
менить Р(У, z) в уравнении ( 1 2 .7)  на P(Ylz)P(z), получив правило, называемое 
► правилом обусловливания :  

Р(У) = L Р(У I z)P(z). z ( 1 2 .8) 

Как оказалось, правила маргинализации и обусловливания являются очень по­
лезными правилами для всех видов логических выводов, включающих вероят­
ностные выражения. 

В большинстве случаев нас будет интересовать задача вычисления условных 
(апостериорных) вероятностей некоторых переменных при наличии свидетельств, 
касающихся других переменных. Условные вероятности можно найти, вначале 
воспользовавшись уравнением ( 1 2 .3 )  для получения выражения в терминах без­
условных вероятностей, а затем рассчитав это выражение на основании полного 

6 Эта вероятность получила такое название, поскольку страховщики имеют общую 
привычку записывать суммы наблюдаемых частот событий на полях (margin) таблиц 
страхования. 
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совместного распределения. Например, ниже показано, как можно вычислить ве­
роятность наличия полости в зубе, получив свидетельство о наличии зубной боли: 

. I h h ) Р( cavity /\ toothache) P(cav1ty toot ас е = 
h 

= 
P(toothac е) 

= 
0, 1 08 + 0,0 1 2  

= 0,6. 
0, 1 08 + 0,0 1 2  + 0,0 1 6 + 0,064 

Просто для проверки можно также рассчитать вероятность того, что у пациента 
нет полости в зубе, если у него наблюдается зубная боль: 

р( . I h h ) P( ,cavity /\ toothache) 
,cav1ty toot ас е = = 

P(toothache) 

= 
0,0 1 6  + 0,064 

= 0,4. 
0, 1 08 + 0,0 1 2 + 0,0 1 6 + 0,064 

Эrи два значения в сумме дают 1 ,0, как и должно быть. Обратите внимание на 
присутствие терма P(toothache) в знаменателе обоих этих вычислений. Если бы 
переменная Cavity имела более двух значений, этот терм присутствовал бы в зна­
менателе для всех них. Фактически для распределения P(Cavity I toothache) его 
можно рассмаrривать как константу нормализации, гарантирующую, что полу­
ченные вероятности в сумме составят 1 .  Во всех главах, в которых речь будет идти 
о вероятностях, для обозначения таких констант мы будем использовать символ а. 
Применив это обозначение, можно записать два предыдущих уравнения как одно: 

P(Cavity I toothache) = а P(Cavity, toothache) = 
= а [P(Cavity, toothache, catch) + P(Cavity, toothache, ,catch)] = 

= а [(О, 1 08; 0,0 1 6) + (0,0 1 2; 0,064)] = а (О, 1 2; 0,08) = (0,6; 0,4). 

Другими словами, мы можем вычислить P(Cavity I toothache), даже не зная зна­
чения P(toothache) ! Забыв на время о множителе 1/P(toothache), мы суммируем 
значения для cavity и ,cavity, получив значения О, 1 2  и 0,08. Это правильная от­
носительная пропорция, но в сумме они не дают 1 ,  поэтому мы нормализуем эти 
значения делением каждого из них на О, 1 2  + 0,08, получив в результаrе истинные 
вероятности 0,6 и 0,4. Нормализация оказывается полезным упрощением во мно­
гих вероятностных расчетах, позволяя как сделать вычисления проще, так и вы­
полнить расчеты, когда некоторые оценки вероятности (например, P(toothache)) 
недос,упны. 

На основании приведенного выше примера можно описать общую процедуру 
вероятностного вывода. Начнем со случая, когда запрос касается только одной пе­
ременной, Х (например, Cavity). Пусть Е будет списком переменных свидетельства 
(в нашем примере это только Toothache), е будет списком наблюдаемых значений 
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этих переменных, а У будет представлять оставшиеся ненаблюдаемые переменные 
(в нашем примере это только Catch). Запрос будет иметь вид P(XI е) и может быть 
вычислен следующим образом: 

P(XI е) = а Р(Х, е) = а :Е Р(Х, е, у), ( 1 2.9) 

где суммирование осуществляется по всем возможным у (т.е. по всем возможным 
комбинациям значений ненаблюдаемых переменных У). Обратите внимание, что 
взятые вместе переменные Х, Е и У образуют полное множество переменных для 
данной проблемной области, поэтому Р(Х, е, у) представляет собой просто подм­
ножество вероятностей из полного совместного распределения. 

При наличии полного совместного распределения, с которым можно рабо­
тать, уравнение ( 1 2.9) позволяет получить ответы на вероятностные запросы в 
отношении дискретных переменных. Однако оно недостаточно хорошо масшта­
бируется, поскольку в проблемной области с n булевыми переменными потре­
буется входная таблица размером 0(2п), обработка которой потребует времени 
0(2п). В реальных задачах вполне могут присутствовать сотни случайных пере­
менных, и тогда оценка 0(2п) для потребности в памяти и времени расчетов да­
леко выходит за пределы возможного: 2 1 00 � 1 030 ! И проблема здесь не только в 
объемах памяти и времени расчетов - еще более серьезная проблема состоит в 
том, что потребуется отдельно оценить на реальных примерах каждую из 1 030 

вероятностей, что делает объем необходимых экспериментальных данных про­
сто астрономическим. 

По этим причинам полное совместное распределение в табличной форме редко 
воспринимается как практический инструмент для построения систем рассужде­
ний. На самом деле его, скорее, следует рассматривать как теоретическую основу, 
на которой можно строить более эффективные подходы, - как таблицы истинно­
сти являются теоретической основой для более практичных алгоритмов, таких как 
алгоритм DPLL, рассмагривавшийся в главе 7. В оставшейся части этой главы бу­
дут представлены некоторые основные идеи, необходимые для подготовки к раз­
работке реально осуществимых систем, описанных в главе 1 3 .  

12.4. Независимость 
Давайте расширим полное совместное распределение, приведенное на 

рис. 1 2.2, добавив в него четвер,ую переменную, Weather. В результате полное со­
вместное распределение будет иметь вид P(Toothache, Catch, Cavity, Weather) и 
представлять собой таблицу из 2 х 2 х 2 х 4 = 32  элементов (переменная Weather 
имеет четыре значения). Эrо распределение содержит четыре "варианта" таблицы, 
представленной на рис. 1 2.3, по одному на каждый вид погоды. Возникает вопрос: 
какую связь эти варианты имеют друг с другом и с первоначальной таблицей, по­
строенной при наличии трех переменных? Как связаны друг с другом значения 
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P(toothache, catch, cavity, c/oud) и значения P(toothache, catch, cavity)? Для получе­
ния ответа можно воспользоваться правилом умножения вероятностей (уравнение 
( 1 2.4)): 

P(toothache, catch, cavity, c/oud) == 
== P(cloшi l toothache, catch, cavity)P(toothache, catch, cavity). 

Но человек, не верящий в возможность вмешательства свыше, едва ли сможет 
представить, что чьи-то проблемы с зубами способны повлиять на погоду. Поэто­
му следующее утверждение кажется вполне разумным: 

P(cloud l toothache, catch, cavity) == P(cloud). (12.10) 

Из этого можно вывести следующее: 

P(toothache, catch, cavity, c/oud) == P(cloud)P(toothache, catch, cavity). 
Аналогичное уравнение существует для каждого элемента в распределении 
P(Toothache, Catch, Cavity, Weather). В действительности можно даже записать та­
кое общее уравнение: 

P(Toothache, Catch, Cavity, Weather) = P(Toothache, Catch, Cavity)P(Weather). 
Следовательно, 32-элементная таблица для четырех переменных может быть об­
разована из одной 8-элементной таблицы и одной 4-элементной. Подобная деком­
позиция схематически показана на рис. 12.4, а. 

декомпонуется 
на 

а) 

декомпонуется 1 
на ♦ 

б) 

Рис. 1 2.4. Два примера разбиения большого совместного распределения на мень­
шие распределения с использованием свойства абсолютной независимости. а) По­
года и проблемы с зубами независимы друг от друга. б) Броски монеты независи­
мы друг от друга 
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Свойство, которое использовалось в уравнении ( 1 2 . 1  О), называется ► неэа­висимостью (а также маргинальной независимостью или абсолютной незави­симостью). В частности, погода независима от чьих-то проблем с зубами. Неза­висимость между высказываниями а и Ь может быть представлена следующим образом :  

Р(а I Ь) = Р(а) или Р(Ь I а) = Р(Ь) или Р(а Л Ь) = Р(а)Р(Ь). ( 1 2 . 1 1 )  
Все эти варианты записи эквивалентны (упражнение 1 2. 1 5). Свойство независимо­сти между переменными Х и У можно сформулировать следующим образом (все эти варианты записи также эквивалентны): 

P(XI У) = Р(Х) или P(YI X) = Р(У) или Р(Х, -У) = Р(Х)Р(У). 

Утверждения о независимости обычно основаны на знаниях о проблемной об­ласти. Как показывает пример с зубной болью и погодой, они позволяют суще­ственно сократить обьем информации, необходимой для построения полного со­вместного распределения . Если все множество переменных может быть разделено на независимые подмножества, то полное совместное распределение может быть 
факторизовано на отдельные совместные распределения, заданные на этих под­множествах. Например, совместное распределение результатов п независимых бросков монеты Р(С1 , • • •  , Сп) включает 2n элементов, но может быть представлено как произведение п распределений Р(С;) с одной переменной. С практической точ­ки зрения независимость стоматологии и метеорологии является благоприятным фактором, поскольку в противном случае стоматологам могли бы потребоваться глубокие знания в области метеорологии, и наоборот. Поэтому любые утверждения о независимости, если они имеются, позволяют сократить размеры представления проблемной области и уменьшить сложность проблемы логического вывода. К сожалению, чистое разделение полных множеств переменных по признаку независимости встречается редко. Если между двумя пе­ременными существует хоть какая-то связь, пусть даже косвенная, свойство не­зависимости уже не соблюдается .  Более того, даже независимые подмножества могут оказаться достаточно большими; например, в области стоматологии могут рассматриваться десятки заболеваний и сотни симптомов, причем все они взаи­мосвязаны друг с другом. Чтобы справиться с такими задачами, потребуются ме­тоды, более тонкие, чем прямолинейная концепция независимости. 
1 2.5. Правило Байеса и его использование 

В разделе 1 2.2. 1 было определено правило умножения вероятностей (уравнение ( 1 2 .4)). На самом деле это правило можно записать в двух формах: 
Р(а Л Ь) = Р(а I Ь)Р(Ь) и Р(а Л Ь) = Р(Ь I а)Р(а). 

Приравняв правые части этих двух уравнений и разделив их на Р(а), получим 
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Р(а /\ Ь) = Р(а I Ь)Р(Ь) . 
Р(а) 

( 1 2 . 1 2) 

Это уравнение известно как ► правило Байеса (закон Байеса, теорема Байеса). 
Это простое уравнение лежит в основе всех современных систем искусственного 
интеллекта для вероятностного вывода. 

Более общий случай правила Байеса для многозначных переменных можно за­
писать в нотации Р следующим образом: 

P(Y I X) = Р(Х I У)Р(У) 
Р(Х) 

Как и прежде, это уравнение также следует рассматривать как представляющее 
множество уравнений, в каждом из которых рассматриваются конкретные значе­
ния переменных. Время от времени нам также придется использовать более об­
щую версию, которая обусловлена некоторым фоновым свидетельством е: 

P(Y I X е) = P(X I Y, e)P(Y l e)
. ' P(X l e) 

1 2.5 . 1 . Применение правила Байеса: простой случай 

( 1 2 . 1 3 ) 

На первый взгляд, правило Байеса не кажется очень полезным. Оно позволя­
ет вычислить единственный терм Р(Ь I а) на основании трех термов, Р(а I Ь), Р(Ь) и 
Р(а). Хотя это и похоже на шаг вперед и два шага назад, тем не менее правило Бай­
еса находит очень широкое практическое применение, поскольку во многих случа­
ях имеются хорошие оценки вероятностей для этих трех элементов и нужно вычис­
лить четвертый. Часто воспринимаемые данные указывают на результат (e.ffect), 
вызываемый какой-то неизвестной причиной ( cause ), и нам необходимо определить 
эту причину. В таких случаях правило Байеса принимает следующий вид: 

р( 1 
,R". 

) 
P(effect I cause)P(cause) cause e»ect = ,и, . 

P(eJJect) 

Условная вероятность P(effect I cause) предоставляет количественную оценку вза­
имосвязи в ► причинном направлении, тогда как вероятность P(cause I effect) 
описывает ► диагностическое направление. В такой задаче, как определение 
медицинского диагноза, мы часто имеем условные вероятности причинно-след­
ственных связей. Врач знает диагностические вероятности P(symptoms I disease) и 
хочет поставить диагноз P(disease I symptoms). 

Например, врач знает, что менингит часто вызывает у пациента снижение по­
движности шеи, - предположим, это наблюдается в 70% случаев . Врач также 
знает некоторые безусловные факты: априорная вероятность того, что у пациента 
менингит, равна 1 /50 ООО, а априорная вероятность того, что у пациента будет сни-
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жена подвижность шеи, равна 1 %. Пусть s - высказывание, утверждающее, что 
у пациента снижена подвижность шеи, а т - высказывание, утверждающее, что у 
пациента менингит. Тогда можно записать следующее: 

P(s l m) = 0,7 
Р(т) = 1/50 ООО 
P(s) = 0,0 1 

P(m l s) =  P
(s l m)P(m) = 0,7 x l /50 000 

= O OO l 4  
P(s) 0,0 1 ' . ( 12. 14) 

Таким образом, можно ожидать, что только у О, 14% пациентов со сниженной 
подвижностью шеи будет менингит. Обрагите внимание, что даже если снижение 
подвижности шеи является весьма надежным свидетельством наличия менинги­
та ( с вероятностью О, 7), сама вероятность наличия менингита у пациента остается 
очень низкой. Эго связано с тем, что априорная вероятность симптома снижения 
подвижности шеи (по любой причине) намного выше в сравнении с вероятностью 
менингита. 

В разделе 12.3 был описан процесс, посредством которого можно избежать не­
обходимости оценки априорной вероятности свидетельства (в данном случае -
P(s)), вычислив вместо этого апостериорную вероятность для каждого значения 
переменной запроса (в данном случае - т и ,т), а затем нормализовав результа­
ты. Аналогичный процесс можно применять и при использовании правила Байе­
са. Итак, мы имеем 

P(MI s) = o.(P(s I т)Р(т), P(s 1 •m)P(,m)) . 
Следовательно, чтобы воспользоваться этим подходом, необходимо вместо P(s) 
вычислить значение P(s l ,m). К сожалению, бесплагных пирожных не бывает, -
иногда это упрощает задачу, а иногда усложняет. Общая форма правила Байеса с 
нормализацией будет следующей: 

P(Y I X) = o. P(XI У)Р(У), ( 12.15) 
где о. - константа нормализации, необходимая для того, чтобы сумма элементов в 
распределении P(Y I X) была равна 1. 

Один из очевидных вопросов, касающихся правила Байеса, состоит в том, по­
чему доС'I)'пной может оказаться условная вероятность, реализуемая только в од­
ном направлении, но не в другом. В проблемной области лечения менингита врач, 
возможно, знает, что при наличии симптома ограничения подвижности шеи ме­
нингит будет причиной в 1 из 5000 случаев. А это означает, что у врача имеется ко­
личественная информация в диаrностическом направлении, от симптома к при­
чине. Такому врачу использовать правило Байеса не требуется. 

К сожалению, ♦ знания в диагностическом направлении на практике встречают­
ся намного реже, чем знания в причинном направлении. В случае внезапной эпидемии 
менингита априорная вероятность этого заболевания, Р(т), повышается. Врач, 
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который вывел диагностическую вероятность Р(т I s) непосредственно из стаги­
стических наблюдений за пациентами перед эпидемией, не будет иметь представ­
ления о том, как обновить это значение после ее начала, тогда как врач, вычисля­
ющий значение Р(т I s) из других трех значений, быстро обнаружит, что значение 
Р(т I s) должно увеличивагься пропорционально Р(т). Еще более важно то, что 
причинная информация Р(т I s) остается незатронутой эпидемией, поскольку она 
просто отражает, в чем выражается воздействие менингита на пациента. Исполь­
зование прямых причинных знаний такого рода или знаний, основанных на моде­
ли, позволяет достичь надежности, которая крайне важна при создании вероят­
ностных систем, применимых в реальном мире. 

1 2.5.2. Использование правила Байеса: 
комбинирование свидетельств 

Выше было показано, что правило Байеса может применяться для получения 
ответов на вероятностные запросы, в которых учтено условие, составляющее одно 
из свидетельств, например ограниченная подвижность шеи. В частности, бьmо по­
казано, что вероятностная информация часто доступна в форме Р( effect I cause ), где 
effect - результаг, а cause - причина. А что произойдет, если свидетельств два 
или больше? Например, какой вывод может сделать стоматолог, если его пугаю­
щие стальные щипцы сомкнулись на больном зубе пациента? Если известно пол­
ное совместное распределение (см. рис . 1 2.2), можно сразу же отысюпь ответ: 

P(Cavity I toothache Л catch) = о. (0, 1 08; 0,0 1 6) � (0,87 1 ;  О, 1 29) . 

Но нам уже известно, что такой подход не масштабируется на большее количество 
переменных. Можно попробовагь воспользоваться правилом Байеса для перефор­
мулировки этой задачи :  

P(Cavity I toothache Л catch) = 
= o. P(toothache Л catch I Cavity) P(Cavity). 

( 1 2 . 1 6) 

Чтобы получить ответ на запрос в такой формулировке, необходимо знать ус­
ловные вероятности конъюнкции toothache Л catch для каждого значения Cavi­
ty. Эrо может быть легко осуществимо, если речь идет только о двух переменных 
свидетельства, но такой подход вновь становится источником загруднений при его 
масштабировании . Если имеется п возможных переменных свидетельства (рент­
геновский снимок, гигиена полости рта и т.д. ), то количество возможных комби­
наций наблюдаемых значений, для которых необходимо будет знать условные ве­
роятности, составит 0(2"). Эrо не лучше, чем использование полного совместного 
распределения . 

Чтобы улучшить ситуацию, необходимо найти некоторые дополнительные 
утверждения о рассматриваемой проблемной области, позволяющие упростить 
применяемые выражения. Понятие независимости, введенное в разделе 1 2.4, дает 
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ключ к этому решению, но требует уточнения .  Было бы прекрасно, если бы пе­
ременные Toothache и Catch был и  независимыми, но они таковыми не являются: 
если зубной врач захмrывает зуб щипцами, то он делает это, вероятно, потому, что 
в этом зубе есть пwюсть, и именно наличие этой полости вызывает боль. Однако 
эти переменные действительно являются независимыми, когда речь идет о нш�и­
чии ши отсутствии палости. Причиной в каждом случае действительно являет­
ся наличие полости в зубе, но ни одна из этих переменных не оказывает непосред­
ственного влияния на другую: зубную боль определяет состояние нервов в зубе, 
тогда как точность наложения инструмента зависит прежде всего от навыков сто­
маrолога, к кmорым зубная боль не имеет никакого отношения. 7 Математически 
это свойство записывается следующим образом: 

P(toothache Л catch I Cavity) = P(toothache I Cavity)P(catch I Cavity). ( 1 2 . 1 7) 

В этом уравнении выражена ► условная независимость переменных toothache 
и catch, если дана вероятность Cavity. Соответствующее выражение можно вста­
вить в уравнение ( 1 2 . 1 6) с целью определения вероятности наличия полости : 

P(Cavity I toothache Л catch) = 
= о: P(toothache I Cavity) P(catch I Cavity) P(Cavity). 

( 1 2 . 1 8) 

Теперь требования к наличию информации становятся такими же, как и при ве­
роятностном выводе с использованием каждого свидетельства в отдельности : не­
обходимо знаrь априорную вероятность P(Cavity) для переменной запроса и ус­
ловную (апостериорную) вероятность каждого результата, если дана его причина. 

Общее определение условной независимости двух переменных, Х и У, если 
дана третья переменная, Z, выражается следующей формулой: 

Р(Х, Y I  Z) = P(XI Z) P(YI Z). 

Например, в проблемной области стомаrологии кажется вполне резонным при­
менить утверждение об условной независимости переменных Toothache и Catch, 
если дана вероятность Cavity: 

P(Toothache, Catch I Cavity) = 
= P(Toothache I Cavity) P(Catch I Cavity). ( 1 2 . 1 9) 

Обраrите внимание, что это утверждение несколько строже по сравнению с 
уравнением ( 1 2. 1 7), в котором утверждается независимость только для конкрет­
ных значений Toothache и Catch. Если же воспользовагься свойством абсолютной 
независимости (уравнение ( 1 2 . 1 1  )), то получим следующие эквивалентные формы, 
кmорыми также можно пользовагься (упражнение 1 2 .2 1  ) :  

P(XI У, Z) = P(XI Z) и P(YI X, Z) = P(Y I Z). 

7 Предполагается, что пациеm и стоматолог - разные люди. 
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В разделе 1 2.4 было показано, что утверждения при наличии абсолютной не­
зависимости позволяют выполнять декомпозицию полного совместного распре­
деления на гораздо более мелкие распределения. Как оказалось, аналогичную де­
композицию допускают и утверждения при наличии условной независимости. 
Например, для утверждения в уравнении ( 1 2. 1 9) декомпозицию можно вывести 
следующим образом: 

P(Toothache, Catch, Cavity) = 
= P(Toothache, Catch I Cavity) P(Cavity) = = P(Toothache I Cavity) P(Catch I Cavity) P(Cavity) 

(по правилу умножения) 
(по уравнению ( 1 2. 1 9)). 

(То, что это уравнение действительно выполняется, читатель легко может про­
верить, обрагившись к рис. 1 2.3.) Таким образом, большая исходная таблица теперь 
декомпонована на три меньшие таблицы. В исходной таблице было семь незави­
симых значений. (Эrа таблица включает 23 = 8 значений, но их сумма должна бьrrь 
равна 1 ,  поэтому только 7 из них являются независимыми). Меньшие таблицы со­
держаг в общей сложности 2 + 2 + 1 = 5 независимых значений. (Распределение ус­
ловных вероятностей, такое как P(Toothache I Cavity), включает две строки из двух 
значений, и в каждой строке их сумма равна 1 ,  поэтому в данном случае есть талько 
два независимых значения, а для априорного распределения, такого как P(Cavity), 
существует только одно независимое значение.) Переход от 7 к 5 независимым зна­
чениям может показагься не таким уж большим достижением, но выигрыш может 
оказагься намного больше при увеличении количества симптомов. 

В общем случае для п симптомов, все из которых являются условно независи­
мыми при заданной вероятности Cavity, размер представления растет как О(п), а не 
0(2п). Эrо означает, что ♦ утверждения об условной независимости могут обеспечи­
вать масштабирование вероятностных систем; более того, такие утверждения могут 
быть подкреплены данными намного проще по сравнению с утверждениями об абсолют­
ной независимости. С концешуальной точки зрения переменная Cavity ► ра:щет11ет 
переменные Toothache и Catch, поскольку наличие полости в зубе является прямой 
причиной и зубной боли, и наложения щипцов на больной зуб. Разработка методов 
декомпозиции крупных вероятностных областей определения на слабо связанные 
подмножества с помощью свойства условной независимости стало одним из наибо­
лее важных достижений в новейшей истории искусственного инrеллекта. 

12.6. Наивные байесовские модели 
Приведенный выше пример из области стоматологии иллюстрирует часто 

встречающуюся ситуацию, в которой одна причина непосредственно влияет на 
целый ряд результагов, причем все эти результаты являются условно независимы­
ми, когда дана эта причина. Полное совместное распределение может бьrrь запи­
сано следующим образом: 
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P(Cause, Effect 1 , • • •  , Effectп) = P(Cause) П P(Effect; 1 Саше). 
/ 

( 1 2.20) 

Такое распределение вероятностей называется ► наивной байесовской моде­
лью, "наивной" - потому что часто используется (как упрощающее допущение) 
в тех случаях, когда переменные "результата" не являются строго независимыми 
при данной переменной причины. (Наивную байесовскую модель иногда называ­
ют ► байесовским классификатором, и это не совсем корректное употребление 
термина побудило настоящих специалистов в области байесовских моделей на­
зывать ее не наивной, а идиотской байесовской моделью.) На практике наивные 
байесовские системы часто могут работать очень успешно, даже если предположе­
ние о независимости не является строго истинным. 

Для использования наивной байесовской модели можно применить уравнение 
( 12.20), чтобы получить вероятность причины с учетом некоторых наблюдаемых 
результатов. Обозначим наблюдаемые результаты как Е = е, тогда как остальные 
переменные результата У являются ненаблюдаемыми. Далее можно применить 
стандартный метод логического вывода из совместного распределения (уравне­
ние ( 12.9)): 

P(Cause I е) = а L P(Cause, е, у). 
у 

Из уравнения (12.20) получаем 

P(Cause I е) = a f P(Cause)P(y l Cause) (I} P(e1 1 Саше) ) = 
= a P(Cause) (I} P(e1 1 Cause) )  f P(y I Cause) = 
= а Р(Саиsе) П Р(е1 1 Саше) 

J 

( 12.21) 

Здесь последняя строка может быть выведена потому, что сумма по у равна 1. Сло­
вами это уравнение можно интерпретировать так: для каждой возможной причины 
умножьте априорную вероятность причины на произведение условных вероятно­
стей наблюдаемых результатов на данную причину, а затем нормализуйте резуль­
тат. Время выполнения этих расчетов изменяется линейно по отношению к ко­
личеству наблюдаемых результатов и не зависит от количества ненаблюдаемых 
результатов (которое может быть очень большим в таких предметных областях, 
как медицина). В следующей главе будет показано, что это обычное явление в ве­
роятностном выводе: переменные свидетельства, значения которых ненаблюдае­
мы, обычно "исчезают" из вычислений в полном составе. 
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1 2.6. 1 . Классификация текста с помощью 
наивной байесовской модели 

Давайте посмотрим, как наивную байесовскую модель можно применить в за­
даче ► классификации текстов: дан некоторый текст, и необходимо установить, 
к какому из заранее определенного набора классов или категорий он относится. 
Здесь в качестве "причины" выступает переменная Category, а наличие или отсут­
ствие в тексте определенных ключевых слов представлено переменными "резуль­
тата" Has Word;. Рассмотрим следующие два примера предложений, взятых из га­
зетных статей. 

1 .  В понедельник стоимость акций возросла - основные индексы прибави­
ли 1 %, поскольку сохраняется оптимизм в отношении сезона отчетности за 
первый квартал. 

2 . В понедельник проливные дожди по-прежнему охватывают большую часть 
восточного побережья, из-за чего в городе Нью-Йорк и других местах были 
сделаны предупреждения о возможности наводнения. 

Наша задача заключается в том, чтобы отнести каждое предложение к неко­
торой Category - основному разделу газет: новости (news), спорт (sports), биз­
нес (business), погода (weather) или развлечения (entertainment). Наивная бай­
есовская модель включает априорные вероятности P(Category) и условные 
вероятности P(HasWord; 1 Category). Для каждой категории с вероятность P(Cate­
gory = с) оценивается как доля документов, относящихся к этой категории, из чис­
ла всех ранее просмотренных документов. Например, если в 9% статей идет речь 
о погоде, то P(Category = weather) = 0,09. Аналогичным образом, вероятности 
P(Has Word; 1 Category) оцениваются как доля документов каждой категории, в ко­
торых присутствует слово i. Так, если примерно 3 7% статей о бизнесе содержат 
слово № 6, "акции", то вероятности P(HasWord6 = true I Category = business) мож­
но присвоить значение 0,37.8 

Чтобы классифицировать новый документ, необходимо проверить, какие клю­
чевые слова в нем присутствуют, а затем применить уравнение ( 1 2.2 1 ), чтобы 
получить распределение апостериорных вероятностей по категориям. Если не­
обходимо указать только одну категорию, выбирается та, у которой будет наиболь­
шая апостериорная вероятность. Обратите внимание, что в этой задаче каждая 

8 Нужно проявлять осторожность, чтобы не присвоить нулевую вероятность словам, 
которые ранее не встречались в данной категории документов, поскольку нулевое значе­
ние уничтожит все остальные свидетельства в уравнении ( 1 2.2 1 ). То, что слово пока не 
встречалось, еще не означает, что оно никогда не встретится . Вместо этого следует заре­
зервировать небольшую часть распределения вероятностей для представления слов, "ра­
нее не наблюдавшихся". Читайте главу 20 для получения более подробной информации 
по этому вопросу в целом и раздел 23 . 1 .4, в котором представлены конкретные примеры 
словесных моделей. 



40 Часть IV. Неопределенные знания и рассуждения в условиях неопределенности 

переменная результата является наблюдаемой, поскольку всегда можно с уверен­
ностью сказать, присутствует данное слово в документе или нет. 

В наивной байесовской модели предполагается, что слова в документах появ­
ляются независимо друг от друга с частотой, определяемой юпеrорией документа. 
Это предположение о независимости, очевидно, нарушается на практике. Напри­
мер, фраза "первый квартал" встречается в статьях о бизнесе (или спорте) чаще, 
чем можно было бы предположить путем умножения вероятностей для отдельных 
слов "первый" и "квартал". Нарушение независимости обычно означает, что ко­
нечные апостериорные вероятности будут намного ближе к 1 или О, чем они долж­
ны быть, - другими словами, такая модель будет проявлять излишнюю самоу­
веренность в своих предсказаниях. С другой стороны, даже с такими ошибками 
рейтинг возможных категорий часто оказывается весьма точным.  

Наивные байесовские модели широко используются для определения языка и 
поиска документов, фильтрации спама и других задач классификации. Для реше­
ния таких задач, как медицинская диагностика, в которой фактические значения 
апостериорных вероятностей действительно имеют значение - например, при 
принятии решения, следует ли удалить аппендикс, - предпочтение отдают более 
сложным моделям, описываемым в следующей главе. 

12.7. Очередное возвращение в мир вампуса 
Комбинацию идей, изложенных в этой главе, можно применить для решения 

задачи выполнения вероятностных рассуждений в мире вампуса (полное описание 
мира вампуса приведено в главе 7). Неопределенность в мире вампуса возника­
ет из-за того, что датчики агента предоставляют ему только частичную информа­
цию о состоянии этого мира. Например, на рис. 1 2 .5  показана ситуация, в которой 
каждый из трех не посещенных, но достижимых квадратов, [ 1 ,3] ,  [2,2] и [3, 1 ], мо­
жет содержать яму. Чисто логический вывод не позволяет прийти к каким-либо за­
ключениям о том, какой квадрат с наибольшей вероятностью окажется безопас­
ным, поэтому логический агент может быть вынужден сделать случайный выбор. 
В этом разделе будет показано, что в подобной ситуации вероятностный агент мо­
жет действовать гораздо успешнее, чем логический агент. 

Наша цель - вычислить вероятность наличия ямы в каждом из этих трех ква­
дратов. (В данном конкретном примере присутствие в них вампуса и золота игно­
рируется .) Относящиеся к этой задаче свойства мира вампуса включают, во-пер­
вых, то, что наличие ямы вызывает ощущение ветерка во всех соседних квадратах, 
и во-вторых то, что в каждом квадрате, отличном от [ 1 , 1 ] , вероятность наличия в 
нем ямы равна 0,2 . На первом этапе определяем множество необходимых случай­
ных переменных, как показано ниже. 
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• Как и в случае логики высказываний, нам потребуется по одной булевой пе­
ременной Р iJ для каждого квадраrа; она будет принимаrь значение true тогда 
и только тогда, когда квадраr [i,11 действительно содержит яму. 

• Также нам потребуются булевы переменные BiJ, принимающие значение true 
тогда и только тогда, когда в квадраrе [iJ] ощущается ветерок. Из общего чис­
ла этих переменных нам достаrочно будет рассмотреть только те, которые от­
носятся к наблюдаемым квадраrам, в данном случае - [ 1, 1 ] ,  [ 1,2) и [2, 1 ] .  

1 ,2 
в 
ок 

1 , 1  2, 1 в 
ок ок 

а) 

1 
1 
1 "'----

Other 

б) 

Рис. 12.5. а) После обнаружения ветерка как в квадрате ( 1 ,2), так и в квадрате (2, 1 )  
агент заходит в тупик - нет такого квадрата, который о н  мог б ы  обследовать без 
опасений. б) Распределение квадратов по категориям Known (известные), Frontier 
(периферийные) и Other (прочие) для формирования запроса (Que,y) в отношении 
квадрата ( 1 ,3) 

На следующем этапе определяем полное совместное распределение Р(Р 1 , 1 , . . .  , 
Р4,4, В 1 , 1 , В 1 ,2, В2, 1 ). Применив правило умножения вероятностей, получаем следу­
ющее: 

Эта декомпозиция позволяет очень легко определить, какими должны быть зна­
чения совместной вероятности. Первый терм представляет собой условную веро­
ятность некоторой конфигурации данных о наличии ветерка, если дана конфигу­
рация расположения ям; он принимает значение 1, если в квадраrах, соседних с 
ямами, чувствуется ветерок, в противном случае принимает значение О. Вторым 
термом является априорная вероятность конфигурации расположения ям. Каждый 
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квадрат может содержать яму с вероятностью 0,2, независимо от других квадра­
тов, поэтому имеет место следующее: 

4,4 
Р(Р 1 , 1 , • • •  , Р4,4) = i ,Ц, 1 P(P;j) . ( 1 2 .22) 

Для конкретной конфигурации с точно п ямами эта вероятность равна 0,2n х 
0,8 16-п_ 

В ситуации, показанной на рис. 1 2 .2, а, свидетельство состоит из наблюдаемо­
го ветерка (или его отсутствия) в каждом посещенном квадрате в сочетании с тем 
фактом, что каждый такой квадрат не содержит ямы. Эти факгы можно сокращен­
но представить как Ь = ,Ь 1 , 1 Л Ь 1 ,2 Л Ь2, 1  и known = ,р1 , 1 Л ,Р1 ,2 Л ---р2, 1 . Нас интере­
суют ответы на такие запросы, как Р(Р I з I known, Ь ): насколько велика вероятность 
того, что квадр1П [ 1 ,3 ]  содержит яму, учитывая результаты всех наблюдений, сде­
ланных до сих пор? 

Чтобы получить ответ на этот запрос, можно использоВIПь стандартный подход, 
основанный на уравнении ( 1 2.9), а именно - просто просуммиров1rrь элементы та­
блицы полного совместного распределения. Пусть Unknown (неизвестное) - это 
множество переменных P;j для квадратов, отличных от уже проверенных квадратов 
и квадр1rrа запроса [ 1 ,3 ] .  В таком случае, следуя уравнению ( 1 2 .9), получим : 

Р(Р 1 з I known, Ь) = а L Р(Р 1 3, known, Ь, unknown). 
' unknown , 

( 1 2 .23) 

Полное совместное распределение вероятностей уже было определено, поэ­
тому можно считать, что задача решена; точнее, осталось только выполнить вы­
числения. Количество неизвестных квадратов равно 1 2, следовательно, требуемая 
сумма состоит из 2 1 2  = 4096 термов. В общем случае количество термов в этой сум­
ме растет экспоненциально в зависимости от количества квадратов.  

Безусловно, напрашивается вопрос, а не являются ли другие квадр1rrы не отно­
сящимися к делу? Как содержимое квадрата [4,4] может повлиять на наличие ямы 
в квадр1rrе [ 1 ,3 ]?  И действительно, эта догадка является приблизительно правиль­
ной, но ее необходимо уточнить. На самом деле здесь мы имеем в виду, что если 
бы мы знали  значения переменных Р для всех смежных квадратов, которые нас 
интересуют, то наличие (или отсутствие) ямы в других, более отдаленных, квадра­
тах, уже не могло бы оказать влияния на нашу уверенность. 

Пусть Frontier будет множеством переменных Р (отличных от переменной 
запроса) всех тех квадратов, которые являются смежными с посещенными ква­
дратами, - в нашем случае это квадраты [2,2] и [3 , 1 ] .  Кроме того, пусть Other 
будет множеством переменных Р для всех остальных неизвестных квадратов, -
в нашем случае их имеется 1 0, как показано на рис. 1 2 .5 ,  б. С учетом этих опреде­
лений Unknown = Frontier U Other. Ключевая догадка, приведенная выше, теперь 
может быть сформулирована следующим образом : наблюдения ветерка условно 
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независимы от других переменных, если даны известные переменные, перемен­
ные множества Frontier и переменная запроса. Чтобы воспользоваться этой иде­
ей, необходимо преобразовагь формулу запроса в такую форму, в которой данные 
о наличии ветерка становятся условно зависимыми от всех других переменных, 
а затем упростить полученное выражение с использованием утверждения об ус­
ловной независимости: 

Р(Р 1 з I known, Ь) = = � L Р(Р 1 3, known, Ь, unknown) = (из уравнения ( 1 2.23)) 
unknown = о. иL Р(Ь I Р 1 ,з, known, unknown)P(P 1 ,3, known, unknown) = 

(правило умножения вероятностей) 

= о. L_ L Р(Ь I known, Р 1 3,jrontier, other)P(P 1 3, known,jrontier, other) = 
/ront1er other ' , 

= о. L. L Р(Ь I known, Р 1 3,jrontier)P(P 1 3, known,frontier, other), 
.fronl1er other ' ' 

где на конечном этапе используется утверждение об условной независимости: пе­
ременная Ь не зависит от других переменных, если даны известные переменные, 
переменные множества Frontier и переменная запроса Р 1 ,3 • Теперь первый терм в 
выражении не зависит от переменных множества Other, поэтому операцию сумми­
рования можно переместить внутрь выражения: 

Р(Р 1 ,з l known, Ь) = 

= o.
fi

L. Р(Ь I known, Р 1 3,jrontier) L Р(Р 1 3, known,jrontier, other). 
юnller , other , 

Согласно утверждению о независимости, соответствующему приведенному 
в уравнении ( 1 2 .22), терм априорной вероятности может быть факторизован, по­
сле чего все эти термы могут быть переупорядочены следующим образом: 

Р(Р 1 ,з I known, Ь) = 

= о. fro;ier Р(Ь I known, P 1 ,з,frontier) 
0

�
, 
P(P 1 ,з)P(known)P(frontier)P(other) = 

= o. P(known)P(P1 ,3) fr�ier Р(Ь I known, P 1 ,3,jrontier)P(frontier) 
0

�
, 
P(other) = 

= о.' Р(Р 1 3) L_ Р(Ь I known, Р 1 3,jrontier)P(frontier), 
, .front1er ' 

где на последнем этапе постоянный терм P(known) вводится в нормализующую 
констан,у на основании того факта, что выражение L P(other) равно 1 .  

other 

Теперь в сумме по переменным множества Frontier Р2,2 и Р3 , 1 осталось только 
четыре терма. Использование свойств независимости и условной независимости 
позволило полностью исключить из рассмотрения все остальные квадраты. 

Обратите внимание на то, что сумма вероятностей в выражении Р(Ь I known, 
P 1 ,3,jrontier) равна 1 ,  если данные наблюдений о наличии ветерка совместимы с 
другими переменными, - в противном случае она равна О. Следовательно, для 
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каждого значения Р 1 3 выполняется суммирование по логическим моделям для пе­
ременных в множестве Frontier, согласующимся с известными фактами (это мож­
но сравнить с тем, как осуществлялся перебор моделей на рис. 7.5 в разделе 7.3). 
Эrи модели и связанные с ними априорные вероятности, P(frontier), показаны на 
рис. 12.6. Итак, мы получаем следующие значения: 

Р(Р 1 ,з I known, Ь) = а' (О,2(0,04 + 0, 1 6 + 0, 16), 0,8(0,04 + 0, 16)) � (0,31, 0,69) . 

- - -
1 ,3 1 ,3 

1 ,2 в -
1 ,2 В 
-

1 ,2 В 2,2 1 ,2 В 8 1 ,2 8 -ок ок ок ок ок 

1 , 1  2, 1 В 
-

1 , 1 2, 1 В 3, 1 1 , 1  2, 1 В 
-

1 , 1 2, 1 В 
34t 

1 , 1 2, 1 В 3, 1 

ок ок ок ок ок ок ок ок ок ок 

0,2 х 0,2 = 0,04 0,2 х 0,8 = 0, 1 6  0,8 х 0,2 = 0, 1 6  0,2 х 0,2 = 0,04 0,2 х 0,8 = 0, 1 6  
а) б) 

Рис. 1 2.6. Согласованные модели для переменных множества Frontier Р2;1. и Р3, 1 , 
показывающие значение P(frontier) для каждой модели. а) Три модели с Р1 3 = true, 
где показаны две или три ямы. б) Две модели с Р 1 ,3 = false, где показаны одна или 
две ямы 

Таким образом, ква.драг [ 1,3] (и ква.драг [3, 1] по симметрии) содержит яму с веро­
ятностью приблизительно 31  %. Аналогичные вычисления, которые читагель впол­
не может выполнить самостоятельно, показывают, что ква.драг [2,2] содержит яму с 
вероятностью приблизительно 86%. Агент в мире вампуса, определенно, должен из­
бегагь квадрага [2,2] ! Обрагите внимание, что логический агент из главы 7 ничего 
не знает о том, что выбор ква.драга [2,2] может иметь намного худшие последствия, 
чем выбор любого другого из числа доступных. Логика может лишь сказагь нам, что 
остается неизвестным, есть ли яма в ква.драге [2,2], поэтому, чтобы получить больше 
информации по этому вопросу, необходимо обрагиться к вероятностям. 

В данном разделе было показано, что даже такие задачи, которые кажутся очень 
сложными, могут быть точно сформулированы в терминах теории вероятностей и 
решены с использованием простых алгоритмов. Дтiя получения эффективных ре­
шений могут применяться соотношения, определяющие свойства независимости и 
условной независимости, что позволит упростить необходимые в расчетах опера­
ции суммирования. Эrи соотношения часто соответствуют нашему инrуитивному 
пониманию того, как следует выполнять декомпозицию задачи. В следующей гла­
ве будут разработаны формальные представления для таких соотношений, а так­
же алгоритмы, оперирующие соответствующими представлениями и позволяю­
щие эффективно осуществлять вероятностный логический вывод. 



Резюме 

Глава 12. Количественная оценка неопределенности 45 

В данной главе было предложено использовать теорию вероятности в качестве 
подходящей основы для рассуждений о неопределенности и дано самое общее 
представление о возможнь1х способах ее использования. 

• Неопределенность возникает как по причине экономии усилий, так и из-за 
отсутствия знаний. Ее невозможно избежать в сложной, недетерминирован­
ной или частично наблюдаемой проблемной среде. 

• В оценках вероятности выражается неспособность агента прийти к опре­
деленному решению в отношении истинности высказывания. Вероятности 
обобщают степень уверенности агента в отношении свидетельств. 

• Теория принятия решений объединяет убеждения и намерения агента за 
счет определения наилучшего действия как максимизирующего ожидаемую 
полезность. 

• К основным типам вероятностных высказываний относятся априорные или 
безусловные вероятности и апостериорные или условные вероятности в 
отношении простых и сложных высказываний. 

• Аксиомы вероятностей ограничивают допустимые значения вероятностей 
логически связанных высказываний.  Агент, игнорирующий в своих действи­
ях эти аксиомы, в некоторых обстоятельствах неизбежно будет вести себя 
нерационально. 

• Полное совместное распределение вероятностей определяет вероятность 
каждого полного присваивания значений случайным переменным. Эrо рас­
пределение обычно слишком велико для того, чтобы его можно было соз­
давать или использовать в явной форме, но если оно доступно, то может 
использоваться для получения ответа на любые запросы простым суммиро­
ванием значений вероятностей для возможных миров, соответствующих вы­
сказываниям запроса. 

• Абсолютная независимость между подмножествами случайных перемен­
ных позволяет выполнить декомпозицию полного совместного распределе­
ния на меньшие совместные распределения, что значительно уменьшает его 
сложность. 

• Правило Байеса позволяет вычислять неизвестные вероятности из извест­
ных условных вероятностей, обычно в причинном направлении. При нали­
чии многочисленных свидетельств применение правила Байеса приводит 
к возникновению таких же проблем масштабирования, которые возникают 
при использовании полного совместного распределения. 

• Свойство условной независимости, вызванное нал ичием прямых при­
чинных связей в проблемной области, позволяет провести декомпозицию 
полного совместного распределения на меньшие условные распределения . 
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В наивной байесовской модели предполагается наличие условной незави­
симости всех переменных действия, если задана одна переменная причины; 
размеры этой модели увеличиваются линейно в зависимости от количества 
результатов. 

• Агент в мире вампуса может вычислять вероятности ненаблюдаемых объ­
ектов мира и использовать их для принятия лучших решений в сравнении с 
простым логическим агентом. Условная независимость делает эти вычисле­
ния легко реализуемыми. 

Библиографические и исторические заметки 
Теория вероятностей появилась как средство анализа азартных игр. Примерно в 

850 году н.э. индийский магематик Махавирачарья описал, как подобрать набор ста­
вок, исключающий возможность проигрыша (то, что мы сейчас называем голланд­
ской книгой). Первый значимый систематический анализ был проведен Джироламо 
Кардано примерно в 1565 году, но его работы были опубликованы только после его 
смерти ( 1663). К этому времени вероятность уже сформировалась как магематиче­
ская дисциплина благодаря серии достижений, о которых Блез Паскаль сообщал в 
переписке с Пьером Ферма в 1654 году. Первым опубликованным учебником по те­
ории вероятностей была книга Гюйгенса De Ratiociniis in Ludo Aleae ([1 1 06], 1 657). 
Взmяд на "лень и невежество" как источник неопределенности был предложен Джо­
ном Арбетнотом в предисловии к его переводу этой книги Гюйгенса ([65], 1692). 

Связь между вероятностью и рассуждением восходит по крайней мере к 
XIX веку: в 1819 году Пьер Лаплас сказал: "Теория вероятностей - это ни что 
иное, как здравый смысл, сведенный к расчетам". В 1 850 году Джеймс Максвелл 
сказал : "Истинная логика для этого мира - исчисление вероятностей, которое 
учитывает величину вероятности, которая есть или должна быть в сознании раз­
умного человека". 

Долгие годы шли бесконечные дебаты по поводу источника и статуса значе­
ний вероятности. Сторонники ► эмпирического (частотного) подхода к вероят­
ности настаивали на том, что эти значения могут быть получены только из экспе­
риментов: если после тестирования 100 человек будет установлено, что десять из 
них имеют зубную полость, то можно будет утверждать, что вероятность образо­
вания такой полости равна приблизительно О, 1. Для сторонников этой точки зре­
ния утверждение "вероятность образования зубной полости равна О, 1" означает, 
что значение О, 1 представляет собой долю случаев наличия полости, наблюдае­
мую в пределе бесконечного числа испытаний. Исходя из любой конечной выбор­
ки, можно оценить истинную долю, а также вычислить, насколько точной, скорее 
всего, является эта оценка. 

Сторонники ► объективистского подхода полагают, что вероятности являют­
ся реальными аспектами Вселенной - склонностью самих объектов вести себя 
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определенным образом, а не просто описанием степени уверенности наблюдателя. 
Например, тот факт, что для обычной монеты (без жульнических подделок) вероят­
ность выпадения орла составляет 0,5, является склонностью самой монеты. С этой 
точки зрения любые измерения эмпириков являюrся просто попытками наблюдать 
эти склонности. Большинство физиков согласны с тем, что квантовые явления объ­
ективно вероятностны, а неопределенность в макроскопическом масштабе - на­
пример, при подбрасывании монет - обычно возникает из-за незнания начальных 
условий и, по-видимому, не согласуется с представлением о склонности. 

Сторонники ► субъективистского подхода описывают вероятность как спо­
соб охарактеризовать убеждения агента, а не как что-то, имеющее некое внешнее 
физическое значение. Субъективный байесовский подход допускает любое само­
согласованное приписывание априорных вероятностей высказываниям, однако за­
тем настаивает на их надлежащем байесовском обновлении по мере посrупления 
свидетельств. 

Даже строгая эмпирическая позиция предполагает субъективность из-за про­
блемы ► эталонного класса: пытаясь определить вероятность исхода конкрет­
ного эксперимента, эмпирик должен отнести его к эталонному классу "похожих" 
экспериментов с известными частотами исхода. Но как выбрать для него правиль­
ный класс? И.Дж. Гуд писал: "Каждое событие в жизни уникально, и каждая ве­
роятность в реальной жизни, которую мы оцениваем на практике, - это событие, 
которое никогда не происходило ранее" (Гуд [894], 1 983). 

Например, в случае конкретного пациента эмпирик, желающий оценить вероят­
ность наличия у него зубной полости, должен рассмотреть эталонный класс дру­
гих пациентов, схожих с ним по некоторым важным аспектам - возрасrу, сим­
птомам, особенностям питания - и выяснить, какую часть из них составляли те, 
у кого имелась зубная полость. Если стоматолог примет во внимание все, что ему 
известно о пациенте, включая цвет волос, вес с точностью до грамма, девичью фа­
милию матери и так далее, эталонный класс в конечном счете окажется пустым. 
Эта сиrуация была серьезной проблемой в философии науки. 

Паскаль использовал вероятность в таких вычислениях, которые требовали не 
только ее объективной интерпретации как свойства мира, основанного на симме­
трии или относительных частотах событий, но и субъективной интерпретации, ос­
нованной на оценке степени уверенности. Первая интерпретация обнаруживается 
в проведенном Паскалем анализе вероятностей в играх с элементами случайности, 
а последняя - в знаменитых доводах "Спора с Паскалем", касающихся возмож­
ного существования Бога. Однако Паскаль недостаточно четко учитывал различие 
между этими двумя интерпретациями. Указанное различие было впервые нагляд­
но подчеркнуто Джеймсом Бернулли ( 1 654--1 705). 

Лейбниц ввел "классическое" понятие вероятности как доли перечислимых, рав­
новероятных случаев, которое использовалось также Бернулли, но бьmо полностью 
проанализировано Лапласом ([ 1 3 53], 1 8 1 6). Это понятие является противоречивым 
из-за наличия эмпирической (частотной) и субъективной интерпретации. События 
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могут рассматривmъся как равновероятные либо из-за наличия естественной, физи­
ческой симметрии мехщу ними, либо просто из-за того, что мы не обладаем доста­
точными знаниями, которые позволили бы считпь одно собьrrие более вероятным, 
чем другое. Подход, предусматривающий использование последних, субъектив­
ных соображений, оправдывающих допустимость присваивания равных вероятно­
стей, известен под названием ► принцип безразличии [792] . Эrот принцип часто 
приписывают Лапласу ( [ 1 353] ,  1 8 1 6), но он никогда не использовал это название 
явно, - впервые это сделал Кейнс ( [ 1 220] , 1 92 1 ). Джордж Буль и Джон Вени, оба 
ссылались на него как на ► принцип недостаточной причины. 

Споры мехщу сторонниками объективного и субъективного подходов еще более 
обострились в ХХ столетии. Колмогоров ([ 1 272], 1 963), Р.А. Фишер ([745], 1 922) и 
Ричард фон Мизес ([745] ,  1 922) были сторонниками относительной эмпирической 
(частотной) интерпретации.  Приведенная в работе Карла Поппера [ 1 8 1 2] ( 1 959) 
(впервые опубликована на немецком языке в 1 934 году) интерпретация "проявле­
ний закономерностей" позволяет проследить истоки формирования относитель­
ных частот вплоть до основополагающих законов физической симметрии. Франк 
Рамсей ( [ 1 848], 1 93 l ), Бруно де Финетти ([553] ,  1 937), Р.Т. Кокс ([ 489], 1 946), Ле­
онард Сэведж ( [ 1 984], 1954), Ричард Джеффри ([ l 1 29] , 1 983) и И.Т. Джейнс (2003 ) 
интерпретировали вероятности как степени уверенности конкретных лиц. Их ана­
лиз степени уверенности был тесно связан с полезностями и с поведением, а имен­
но - с готовностью субъекта делать те или иные ставки. 

Рудольф Карнап предложил иную интерпретацию вероятности - не как опре­
деленной степени уверенности конкретного лица, а как степень уверенности, ко­
торую идеализированное рассуждающее лицо должно иметь в отношении истин­
ности конкретного высказывания а, при заданном конкретном ряде свидетельств е. 
Карнап попытался сделать это понятие степени подтверждении математически 
точным, как логическое отношение мехщу а и е. В настоящее время считается, что 
уникальной логики подобного типа не существует; скорее, любая подобная логика 
опирается на субъективное априорное распределение вероятностей, эффект кото­
рого уменьшается по мере сбора большего количества наблюдений. 

Изучение этого отношения имело целью создание математической дисципли­
ны, названной индуктивной логикой по аналогии с обычной дедуктивной ло­
гикой (Карнап [3 73], 1 948; [374] , 1 950) .  Карнап не смог в достаточной степени 
расширить свою индуктивную логику за пределы пропозиционального случая, 
а Ппнем ([ 1 829], 1 963) на состязm-ельных аргументах показала, что ей присущи 
некоторые фундаментальные сложности. В более поздней работе Бакхуса, Гроува, 
Гальперна и Коллера ([99], 1 992) метод Карнапа был расширен на теории перво­
го порядка. 

Первая строго аксиомпическая основа для теории вероятностей была пред­
ложена Колмогоровым ( [ 1 27 1 ] , 1 95 0) (впервые опубликована в Германии в 
1 93 3  году). Позднее Рени ( [ 1 873], 1 970) дал аксиомпическое представление, ис­
пользующее в качестве примитивов условные, а не абсолютные вероятности. 
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В дополнение к аргументам де Финетги в отношении обоснованности аксиом 
Кокс ([489], 1946) показал, что любая система неопределенных рассуждений, соот­
ветствующая его набору допущений, эквивалентна теории вероятностей. Это при­
дало поклонникам вероятности новую уверенность, но остальные так и не были 
убеждены, возражая против допущения, что уверенность должна быть представ­
лена единственным числом. Гальперн ([952], 1 999) проанализировал допущения 
и'указал на некоторые пробелы в первоначальной формулировке Кокса. Позднее 
Хорн ([ 1062], 2003) показал, как исправить эти трудности, а Джейнс (2003) привел 
аналогичный аргумент, который легче воспринимается. 

Преподобный Томас Байес (1702- 176 1 )  сформулировал правило формиро­
вания рассуждений об условных вероятностях, которое позднее было названо 
в его честь (Байес [ 148], 1763). Но Байес рассматривал только случай равно­
мерных априорных распределений, тогда как Лаплас независимо от него разра­
ботал теорию для общего случая. Байесовские вероятностные рассуждения ис­
пользовались в приложениях ИИ уже с 1 960-х годов, особенно в медицинской 
диагностике. Они использовались не только для постановки диагноза на основе 
имеющихся данных, но также для выбора необходимых дополнительных вопро­
сов и тестов с использованием теории значения информации (раздел 1 6 .6), ког­
да имеющиеся доказательства были неубедительны (Горри [909], 1968 ;  Горри и 
др. [9 1 О], 1 973 ). Одна система даже превзошла людей-экспертов в диагностике 
острых брюшных заболеваний (де Домба и др. [5 50], 1974). В своей статье Лукас 
и соавт. ( [ 1 462], 2004) дали соответствующий обзор. 

Однако эти ранние байесовские системы имели множество недостатков. По­
скольку в них отсутствовали какие-либо теоретические модели диагностируемых 
ими условий, они были чувствительны к нерепрезентативным данным, встречаю­
щимся в тех сиrуациях, когда бьmи дОС'I)'ПНЫ лишь небольшие выборки (де Домба 
и др. [5 5 1 ] , 1981). Еще более фундаментальным недостатком было то, что в этих 
системах не применялись лаконичные формальные средства (подобные тем, кото­
рые будут описаны в главе 13) для представления и использования информации об 
условной независимости информации. Поэтому успешная эксплуатация этих си­
стем зависела от накопления, хранения и обработки громадных таблиц с вероят­
ностными данными. Из-за этих сложностей в период с середины 1 970-х до конца 
1 980-х годов интерес исследователей в области искусственного интеллекта к ве­
роятностным методам решения задач в условиях неопределенности значительно 
снизился. Новые разработки в этой области, появившиеся лишь в конце 1 980-х го­
дов, будут рассмотрены в следующей главе. 

Наивная байесовская модель для совместных распределений широко иссле­
довалось в литера'I)'ре по распознаванию образов уже с 1950-х годов (Дуда и 
Харт [659], 1 973). Кроме того, такой способ представления использовался, ча­
сто непреднамеренно, в области выборки информации, начиная с работы Маро­
на ([ 1 496], 196 1 ). Вероятностные основы этого метода, дополнительно рассматри­
ваемые в упражнении 12.28, были исследованы Робертсоном и Спарком Джонсом 
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( [  1 897], 1 976). Доминrос и Паццани ( [  63 1 ] ,  1 997) объяснили причины поразитель­
ного успеха наивных байесовских рассуждений даже в тех проблемных областях, 
в которых они явно нарушали предположения о независимости. 

По теории вероятностей есть много хороших вводных учебников, включая кни­
ги Бертсекаса и Цициклиса ( [202], 2008), Росса ( [ 1 9 1 8] ,  20 1 5) и Гринстеда и Снел­
ла ( [924], 1 997). Де Грот и Шервиш ([593 ] ,  200 1 )  выпустили объединенное вве­
дение в теорию вероятностей и стаrистику с байесовской точки зрения, а Уолпол 
и др. ( [2289], 20 1 6) предложили вводный курс для ученых и инженеров. Джейнс 
(2003) дал очень убедительное изложение байесовского подхода. Биллингсли 
( [2 1 5] ,  20 1 2) и Венкатеш ( [2268], 20 1 2) придерживаются более математических 
методов изложения, включая обсуждение всех осложнений, связанных с непре­
рывными переменными, которое мы здесь опустили. Хакинг ( [94 1 ], 1 975) и Хелд 
( [946] , 1 990) рассмаrривают также раннюю историю концепции вероятности, а в 
статье Бенштейна ( [ 1 92], 1 996) приведен популярный обзор. 

Упражнения 
12.1. Исходя из основных принципов докажите, что Р(аЬ Л а) = 1 .  
12.2. Воспользовавшись аксиомами вероятности, докажите, что любое распределение 

вероятностей дискретной случайной переменной должно в сумме составлять 1 .  
12.3. Для каждого из следующих высказываний либо докажите, что оно истинно, 

либо приведите контрпример. 
а) Если Р(аЬ, с) = Р(Ьа, с), то Р(ас) = Р(Ьс) 
б) Если Р(аЬ, с) = Р(а), то Р(Ьс) = Р(Ь) 
в) Если Р(аЬ) = Р(а), то Р(аЬ, с) =  Р(ас) 

12.4. Будет ли для агента рационально придерживаться трех убеждений: Р(А) = 0,4; 
Р(В) = 0,3 и Р(А V В) =  0,5? Если это так, то какой диапазон вероятностей будет 
в этом случае рациональным для агента применительно к А Л В? Составьте та­
блицу, подобную приведенной на рис. 1 2.2, и покажите, подтверждает ли она 
ваши доводы в отношении рациональности . Затем составьте еще одну версию 
этой таблицы, в которой P(A V В) = О,7. Объясните, почему рационально будет 
принять именно это значение вероятности, несмотря даже на то, что в данной 
таблице присутствует один случай, соответствующий проигрышу, и три случая 
с ничейным результатом. (Подсказка. Что агент 1 полагает относительно веро­
ятности каждого из этих четырех случаев, в особенности того, когда имеет ме­
сто проигрыш?) 

12.S. Этот вопрос касается свойств возможных миров, определенных в разделе 1 2 .2.2 
как присваивание значений всем рассматриваемым случайным переменным. 
Мы будем работать с высказываниями, которые соответствуют точно одному 
возможному миру, поскольку они включают значения для всех переменных. 
В теории вероятностей такие высказывания называют атомарными события­
ми. Например, для булевых переменных Х1 , Х2, Х3 высказывание х 1 л -,х2 л ---,,х-3 
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определяет присваивание значений всех переменных, - на языке логики выска­
зываний можно было бы сказэ:rь, что у него есть ровно одна модель. 
а) Для случая п булевых переменных докажите, что любые два различных ато­

марных события ямяются взаимоисключающими, т.е. их конъюнкция экви­
валентна значению false. 

б) Докажите, что дизъюнкция всех возможных э:rомарных событий логически 
эквивалентна значению true. 

в) Докажите, что любое высказывание логически эквивалентно дизъюнкции 
атомарных событий, которые мекут за собой его истинность. 

12.6. Докажите уравнение (1 2.5) на основании уравнений (1 2 .2) и (1 2.3) .  
12.7. Рассмотрим множество из всех возможных раздач по 5 карт при игре в покер со 

стандартной колодой в 52 карты, полагая, что раздача проводится честно. 
а) Сколько э:rомарных событий будет в совместном распределении вероятно­

стей (т.е. сколько существует различных раздач по пять карт)? 
б) Какова вероятность каждого атомарного события? 
в) Какова вероятность получения королевского флеш-стрита? А любого каре из 

всех возможных? 
12.8. Исходя из полного совместного распределения, приведенного на рис. 1 2 .3, рас­

считайте следующее. 
а) P(toothache) 
б) P(Cavity) 
в) P(Toothache I cavity) 
r) P(Cavity I toothache V catch) 

12.9. Исходя из полного совместного распределения, приведенного на рис. 1 2 .3, рас­
считайте следующее. 
а) P(toothache) 
б) P(Catch) 
в) Р( Cavity I catch) 
г) P(Cavity I toothache V catch) 

12.10. В своем письме от 24 августа 1 654 года Паскаль попытался показать, как сле­
дует распределять денежные ставки, когда азартная игра должна закончить­
ся преждевременно. Представьте себе игру, в которой каждый ход состоит из 
броска игральной кости. Игрок Е получает очко, если выпадает четное число, 
а игрок О получает очко, если выпавшее число нечетное. Первый из игроков, 
набравший 7 очков, выигрывает банк. Предположим, что игра прерывается, ког­
да игрок Е ведет со счетом 4:2 .  Как в этом случае справедливо разделить деньги 
в банке между игроками? Какова будет общая формула? (Ферма и Паскаль сде­
лали несколько ошибок, прежде чем решить проблему, но вы должны быть в со­
стоянии сделать это правильно с первого раза.) 

12.11. Решив использовэ:rь теорию вероятностей на практике, мы выбрали игровой ав­
томэ:r с тремя независимыми колесами, каждое из которых с равной вероятно­
стью может отображэ:rь один из четырех символов: золотой слиток, колоколь­
чик, лимон или вишню. Игровой автомат имеет следующую схему выплат для 
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ставки в одну моне-rу (здесь "?'' означает, что не имеет значения, что отобража­
ется на данном колесе): 
- золотой слиток/золотой слиток/золотой слиток - выпшпа 20 монет 

- колокольчик/колокольчик/колокольчик - выплата 1 5  монет 
- лимон/лимон/лимон - выплата 5 монет 
- вишня/вишня/вишня - выплата 3 монет 
- вишня/вишня/? - выплата 2 монет 
- вишня/?/? - выплата 1 монеты 

а) Рассчитайте ожидаемый процент "окупаемости" автомата. Другими словами, 
какова ожидаемая выдача монет для каждой монеты, заплаченной за игру? 

б) Вычислите вероятность того, что игра на этом игровом авгомате приведет к 
выигрышу. 

в) Оцените среднее и медианное количество игр, которое, как можно ожидать, 
будет сыграно до проигрыша всей имеющейся суммы, если начать с 1 О мо­
нет. Можете запустить симуляцию, чтобы просто оценить эти значения, вме­
сто того чтобы пьпаться вычислить точный ответ. 

12.12. Решив использовать теорию вероятностей на практике, мы выбрали игровой ав­
томат с тремя независимыми колесами, каждое из которых с равной вероятно­
стью может отображать один из четь1рех символов: золотой слиток, колоколь­
чик, лимон или вишню. Игровой авгомат имеет следующую схему выплат для 
ставки в одну моне-rу (здесь "?'' означает, что не имеет значения, что отобража­
ется на данном колесе): 
- золотой слиток/золотой слиток/золотой слиток - выплата 2 1  монеты 

- колокольчик/колокольчик/колокольчик - выплата 1 6  монет 
- лимон/лимон/лимон - выплата 5 монет 
- вишня/вишня/вишня - выплата 3 монет 
- вишня/вишня/? - выплата 2 монет 
- вишня/?/? - выплата 1 монеты 

а) Рассчитайте ожидаемый процент "окупаемости" авгомата. Другими словами, 
какова ожидаемая выдача монет для каждой монеты, заплаченной за игру? 

б) Вычислите вероятность того, что игра на этом игровом авгомате приведет к 
выигрышу. 

в) Оцените среднее и медианное количество игр, которое, как можно ожидать, 
будет сыграно до проигрыша всей имеющейся суммы, если начать с 8 монет. 
Можете запустить симуляцию, чтобы просто оценить эти значения, вместо 
того чтобы пытаться вычислить точный ответ. 

12.13. Необходимо передать п-битное сообщение агенту-получателю. В процессе пе­
редачи биты в сообщении независимо повреждаются (меняют значение на про­
тивоположное) с вероятностью t: для каждого. Используя дополнительный бит 
четности, отправляемый вместе с исходной информацией, получатель сможет 
восстановить сообщение, если повреждено не более одного бита во всем сооб­
щении (включая бит четности). Предположим, нужно убедиться, что правиль­
ное сообщение будет получено с вероятностью не менее 1 - б. Каким в этом 
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случае будет максимально допустимое значение n? Рассчитайте это значение 
для случая f = 0,00 1 и б = О,0 1 .  

12.14. Необходимо передать n-битное сообщение агенту-получателю. В процессе пе­
редачи биты в сообщении независимо повреждаюrся (меняют значение на про­
тивоположное) с вероятностью f для каждого. Используя дополнительный бит 
четности, отправляемый вместе с исходной информацией, получатель сможет 
восстановить сообщение, если повреждено не более одного бита во всем сооб­
щении (включая бит четности). Предположим, нужно убедиться, что правиль­
ное сообщение будет получено с вероятностью не менее 1 - о. Каким в этом слу­
чае будет максимально допустимое значение n? Рассчитайте это значение для 
случая f = 0,002 и о = 0,0 1 .  

12. 15. Покажите, что три формы описания свойства независимости, приведенные в 
уравнении ( 1 2 . 1 1 ), являются эквивалентными. 

12. 16. Рассмотрим два медицинских теста на некоторый вирус, А и В. Тест А облада­
ет эффективностью 95% при обнаружении вируса, когда он действительно при­
сутствует, но дает 1 0% ложных положительных результатов (указывает, что ви­
рус присутствует, когда на самом деле его нет). Тест В обладает эффективно­
стью 90% при обнаружении вируса и дает 5% ложных положительных результа­
тов. В этих двух тестах используются независимые методы идентификации ви­
руса. Вирус присутствует у l % всех людей. Пусть каждого человека проверяют 
на наличие вируса, используя только один из тестов, и для переносчиков виру­
са он дает положительный результат. Для какого из двух тестов получение поло­
жительного результата будет более показательным, если человек действительно 
является переносчиком вируса? Обоснуйте свой ответ математически. 

12.17. Предположим, дана монета, которая падает орлом вверх с вероятностью х и 
решкой вверх - с вероятностью 1 - х. Являются ли результаты последователь­
ных бросков монеты независимыми друг от друга, если вы знаете значение х? 
Являются ли результаты последовательных бросков монеты независимыми друг 
от друга, если вы не знаете значение х? Обоснуйте свой ответ. 

12.18. После ежегодного медицинского осмотра пациента у врача есть плохая новость 
и хорошая новость. Плохая новость состоит в том, что проверка на наличие се­
рьезного заболевания оказалась положительной и что точность результатов этой 
проверки составляет 99% (т.е. вероятность получения положительного результа­
та проверки, если пациент имеет это заболевание, равна 0,99, и такова же веро­
ятность получения отрицательных результатов проверки, если пациент не имеет 
этого заболевания). Хорошая новость состоит в том, что это заболевание - ред­
кое и поражает только одного из I О тысяч людей того возраста, в котором нахо­
дится пациент. Почему новость, что это заболевание редкое, следует считать хо­
рошей? Каковы шансы на то, что пациент действительно имеет данное заболе­
вание? 

12.19. После ежегодного медицинского осмотра пациента у врача есть плохая новость и 
хорошая новость. Плохая новость состоит в том, что проверка на наличие серьезно­
го заболевания оказалась положительной и что точность резульmrов этой проверки 
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составляет 99% (т.е. вероятность получения положительноrо результз:га проверки, 
если пациент имеет это заболевание, равна 0,99, и такова же вероятность получения 
отрицаrельных результаrов проверки, если пациент не имеет этоrо заболевания). 
Хорошая новость сосrоит в rом, чrо это заболевание - редкое и поражает rолько 
одноrо из 100 тысяч ШQЦей roro возраста, в котором находится пациент. Почему но­
вость, чrо это заболевание редкое, следует считз:гь хорошей? Каковы шансы на ro, 
что пациент действительно имеет данное заболевание? 

12.20. Довольно часrо полезно рассмотреть результаrы некоrорых конкретных выска­
зываний в контексте некотороrо общеrо фоновоrо свидетельства, коrорое оста­
ется неизменным, а не действоваrь в условиях полноrо отсутствия информации. 
В приведенных ниже вопросах предлагается доказаrь более общие версии пра­
вила умножения вероятностей и правила Байеса применительно к некоторому 
фоновому свидетельству е. 
а) Докажите версию общеrо правила умножения вероятностей для условных 

вероятностей: 
Р(Х, Уе) = Р(ХУ, е)Р(Уе). 

б) Докажите версию правила Байеса с условными вероятностями из уравне­
ния ( 1 2. 1 3). 

12.21. Покажите, что утверждение условной независимости 
Р(Х, YI Z) = P(XI  Z)P(Y I  Z) 

эквивалентно любому из следующих утверждений: 
P(XI  Y, Z) = P(XI Z)  и P(Y I X, Z) = P(YI Z). 

12.22. Предположим, вам вручили мешок, содержащий п подлинных монет, и сообщи­
ли, что п - 1 из этих монет являются нормальными, т.е. такими, что с одной сто­
роны у них орел, с друrой - решка, а одна монета - фальшивая: на обеих ее 
сторонах изображен орел. 
а) Допустим, вы открыли мешок, случайным образом выбрали монеrу и под­

бросили ее, в результаrе чего выпал орел. Какова (условная) вероятность 
тоrо, чrо выбранная вами монета является фальшивой? 

б) Теперь предположим, чrо вы продолжаете подбрасываrь эrу монеrу в общей 
сложности k раз после тоrо, как она была выбрана, и наблюдаете k выпаде­
ний орла. Какова теперь условная вероятность roro, что вы выбрали фальши­
вую монеrу? 

в) Наконец, предположим, что вы хотите принять решение, является ли вы­
бранная монета фальшивой, подбросив ее k раз. Процедура принятия реше­
ния возвращает fake (фальшивая), если все k бросков приводят к выпадению 
орла, а в противном случае она возвращает значение normal (нормальная). 
Какова (безусловная) вероятность того, что эта процедура сделает ошибку? 

12.23. В этом упражнении требуется вычислить коэффициент нормализации для при­
мера с заболеванием менингитом. Вначале выберите подходящее значение для 
P(s 1 -,т) и примените ero для вычисления ненормализованных значений Р(т I s) 
и Р(-,т I s) (т.е. игнорируя терм P(s) в выражении правила Байеса). Теперь нор­
мализуйте эти значения таким образом, чrобы они в сумме составляли 1 .  
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12.24. В этом упражнении исследуется то, как соотношения, касающиеся условной не­
зависимости, мияют на количество информации, требуемой для вероятностных 
вычислений. 
а) Предположим, что необходимо рассчитать значение P(h I е 1 , е2), а информа­

ция об условной независимости отсутствует. Какие из следующих множеств 
чисел ямяются достаrочными для такого вычисления? 
1 .  Р(Е1 , Е2), Р(Н), Р(Е1 1  Н), P(E2 I Н) 
2. Р(Е1 , Е2), Р(Н), Р(Е1 , E2 I Н) 
3. Р(Н), Р(Е1 1 Н), P(E2 I Н) 

б) Предположим, известно, что Р(Е 1 1 Н, Е2) = Р(Е 1 1 Н) для всех значений Н, Е 1 , 

Е2• Какое из этих трех множеств значений теперь будет достаточным? 
12.25. Пусть Х, У, Z - случайные булевы переменные. Обозначьте восемь элементов 

совместного распределения Р(Х, У, Z) буквами алфавита от а до h. Выразите 
утверждение, что Х и У ямяются условно независимыми при заданном Z в виде 
множества уравнений, связывающих элементы от а до h. Сколько среди них не­
избыточных уравнений? 

12.26. Предположим, что вы - свидетель ночного наезда на пешехода в Афинах с уча­
стием такси, которое скрылось с места происшествия. Все такси в Афинах по­
крашены в синий или зеленый цвет. Вы поклялись под присягой, что такси бьmо 
синим, при этом результаты широких экспериментов показывают, что в услови­
ях плохого освещения надежность распознавания синего и зеленого цветов со­
стамяет 75%. 
а) Возможно ли рассчитать наиболее вероятный цвет этого такси? (Подсказка. 

Тщательно проведите различие между высказыванием, что такси - синего 
цвета, и высказыванием, что оно показалось вам синим.) 

а) Что изменится после получения информации о том, что в Афинах 9 из 1 0  
такси зеленого цвета? 

12.27. Запишите общий алгоритм получения ответов на запросы в форме P(Cause I е), 
используя наивное байесовское распределение. Исходите из предположения, 
что свидетельство е может присваивать значения любому подмножеству пере­
менных результата. 

12.28. Категоризацией текста называется задача присваивания данному конкретному 
документу одной из фиксированного множества категорий на основе анализа 
его текста. Для решения этой задачи часто используются наивные байесовские 
модели, в которых переменной запроса ямяется категория документа. а в каче­
стве переменных "результата" рассматривается наличие или отсутствие каждого 
слова в "языке" категории. Основное предположение состоит в том, что слова в 
документах встречаются независимо друг от друга. а их частоты определяются 
категорией документа. 
а) Дайте точное обьяснение, как можно сформировать такую модель, получив в 

качестве "обучающих данных" множество документов, уже распределенных 
по категориям. 
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б) Дайте точное объяснение, как следует определять категорию нового доку­
мента. 

в) Является ли указанное предположение о независимости обоснованным? Об­
судите этот вопрос. 

12.29. В проведенном в этой главе анализе мира вампуса использовался тот факт, что 
каждый квадрат содержит яму с вероятностью 0,2, независимо от содержимого 
других квадратов. Вместо этого примем предположение, что точно N/5 ям рав­
номерно разбросаны случайным образом среди N квадратов, отличных от [ 1 ,  1 ] .  
Останутся л и  переменные P;J и Pk,1 все еще независимыми? Каково теперь со­
вместное распределение Р(Р1 , 1 , • • •  , Р4,4)? Заново выполните вычисление вероят­
ностей наличия ям в квадратах [ 1 ,3 ]  и [2,2] . 

12.30. Повторите расчет вероятности наличия ям в квадратах [ 1 ,3]  и [2,2], полагая, что 
каждый квадрат содержит яму с вероятностью 0,0 1 ,  независимо от других ква­
дратов. Что в этом случае можно будет сказать об относительной эффективно­
сти логического и вероятностного агента? 

12.31 .  Реализуйте гибридного вероятностного агента для мира вампуса, основываясь 
на гибридном агенте, представленном на рис. 7 .20, и процедуре вероятностного 
вывода, рассмотренной в этой главе. 



ГЛАВА 1 3  
Вероятностные рассуждения 

В этой главе объясняется, как строить эффективные сетевые модели для 
проведения рассу.ждений в условиях неопределенности в соответствии с зако­
нами теории вероятности и 1<ак отличить корреляцию от причинности. 

В главе 1 2  рассмаrривались основные элементы теории вероятностей и отме­
чалась важность отношений независимости и условной независимости для упро­
щения вероятностных представлений о мире. В этой главе будет представлен си­
стематический способ явного представления таких связей в форме байесовскнх 
сетей . В ней определены синтаксис и семантика этих сетей и показано, как они 
могут использоваться для представления неопределенных знаний естественным 
и эффективным способом. Далее будет продемонстрировано, что вероятностный 
вывод, хотя и не осуществимый в наихудшем случае с помощью вычислительных 
методов, может эффективно выполняться во многих практических сmуациях. Кро­
ме того, будет описан целый ряд алгоритмов приближенного вероятностного выво­
да, которые часто могут применяться в тех случаях, когда точный вероятностный 
вывод неосуществим. В главе 1 5  с целью эффективного определения вероятност­
ных моделей основные идеи байесовских сетей распространяются на более выра­
зительные формальные языки. 

13.1. Представление знаний в неопределенной 
проблемной области 

В главе 1 2  было показано, что полное совместное распределение вероятно­
стей позволяет получать ответы на любые вопросы о рассмаrриваемой проблем­
ной области, но по мере увеличения количества переменных оно может приобре­
тать столь большие размеры, что вычисления становятся невозможными.  Более 
того, определение вероятностей для возможных миров по отдельности, одного за 
другим, является довольно неестественным и может оказаться весьма затрудни­
тельным. 

Также в предыдущей главе было показано, что связи, определяющие независи­
мость и условную независимость между переменными, позволяют существенно 
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сокрагить количество вероятностей, которые должны быть известны для опреде­
ления полного совместного распределения . В этом разделе рассматривается струк­
тура данных, позволяющая представить подобные зависимости между перемен­
ными, которую называют ► байесовской сетью. 1 Байесовские сети позволяют 
представить практически любое полное совместное распределение вероятностей 
и во многих случаях позволяют сделать это очень кратко. 

Байесовская сеть - это ориентированный граф, в котором каждая вершина по­
мечена количественной вероятностной информацией. Полная спецификация такой 
сети описана ниже.  

1 .  Каждой вершине графа соответствует случайная переменная, К(Л'Орая может 
быть дискретной или непрерывной. 

2 .  Направленные ребра или стрелки соединяют пары вершин. Если стрелка на­
правлена от вершины Х к вершине У, то вершина Х называется родительской 
вершиной вершины У. Граф не имеет направленных циклов и, следователь­
но, является ориентированным ациклическим графом (или DAG - Directed 
Acyclic Graph). 

3 .  Каждая вершина Х; характеризуется связанной с ней вероятностной инфор­
мацией 0(Х; 1 Parents(X;)), количественно оценивающей влияние родитель­
ских вершин на эту вершину с использованием конечного числа ► параме­
тров. 

Топология сети (множество ее вершин и ребер) определяет условную незави­
симость связей, присутствующих в данной проблемной области, - некоторым об­
разом, который вскоре будет точно сформулирован. Интуитивно смысл стрелки 
обычно состоит в том, что вершина Х оказывает прямое влияние на вершину У -
на основании предположения, что вершины причин должны быть родительскими 
по отношению к вершинам следствий.  Специалисту в некоторой проблемной об­
ласти обычно несложно установить, какие непосредственные влияния в ней су­
ществуют, - как правило, это намного проще действительного определения са­
мих вероятностей. Когда топология байесовской сети будет составлена, останется 
лишь указать локальную вероятностную информацию для каждой переменной в 
форме распределения условных вероятностей с учетом ее родительских перемен­
ных. Полное совместное распределение для всех переменных определяется топо­
логией и локальной вероятностной информацией. 

Вернемся к простому миру, описанному в главе 1 2  и состоящему из пере­
менных Toothache, Cavity, Catch и Weather. В этой главе было показано, что 

1 В настоящее время это название (иногда сокращаемое до байесова сеть) приме­
няется наиболее часто, но в 1 980- и 1 990-х годах их называли сетями доверия (belief 
networks). Название причинно-следственная сеть (causa/ network) относится к байесов­
ским сетям с дополнительными ограничениями на смысл стрелок (см. раздел 1 3 .5) .  Тер­
мин графическая модель относится к более широкому классу структур, включающему и 
байесовские сети. 
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переменная Weather не зависит от других переменных; более того, было доказа­
но, что переменные Toothache и Catch являются условно независимыми, если за­
дана переменная Cavity. На рис. 1 3  . 1  эти отношения представлены в виде струкrу­
ры байесовской сети. Формально условная независимость переменных Toothache 
и Catch, если задана переменная Cavity, обозначается отсутствием связи между 
вершинами Toothache и Catch. Интуитивно понятно, что в этой сети представлен 
тот факт, что переменная Cavity является непосредственной причиной Toothache 
и Catch, тогда как между переменными Toothache и Catch нет прямой причинной 
связи. 

Рис. 13. 1 .  Простая байесовская сеть, в которой переменная Weather независима от 
трех других переменных, а переменные Toothache и Catch являются условно неза­
висимыми, если задана переменная Cavity 

Теперь рассмотрим следующий, немного более сложный пример. Предполо­
жим, что в доме была установлена новая система охранной сигнализации .  Она 
достаточно надежно обнаруживает попытку взлома, но иногда срабатывает и на 
небольшие землетрясения. (Этим примером мы обязаны Джуди Перлу, проживаю­
щему в Лос-Анджелесе - на территории, подверженной частым землетрясениям.) 
У владельца дома есть два соседа, Джон и Мэри, которые обещали звонить ему на 
рабоrу, услышав сигнал тревоги. Джон почти всегда звонит, услышав сигнал тре­
воги, но иногда путает с ним телефонный звонок в доме соседа и в таких случаях 
также звонит владельцу. С другой стороны, Мэри любит довольно громкую музы­
ку и поэтому зачастую вообще пропускает сигнал тревоги соседской сигнализа­
ции .  Принимая во внимание, кто из этих соседей звонил или не звонил, желатель­
но в каждом случае правильно оценить вероятность взлома. 

Байесовская сеть для этой проблемной области приведена на рис. 1 3 .2 .  Струк­
тура сети говорит о том, что взлом и землетрясение непосредственно влияют на 
вероятность появления тревожного сигнала, в то время как звонки Джона и Мэри 
зависят только от тревожного сигнала. Поэтому сеть подтверЖдает наши предпо­
ложения, что эти соседи самостоятельно не обнаруживают какие-либо попытки 
взлома, не замечают незначительных землетрясений и не совещаются друг с дру­
гом перед звонками.  
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А P(J= truelA) t 0,90 
0,05 

Earthquake I P(E�true) 1 О 002 

В Е P A = trиelB, E) 
0,70 
0,0 1 
0,70 
0,01 

А P(M= truelA) 
t 0,70 f 0,0 1 

Рис. 13.2. Типичная байесовская сеть, для которой приведены и топология, и таб­
лицы условных вероятностей (СРТ). В таблицах СРТ буквами В, Е, А ,  J и М обозна­
чены следующие переменные: Burglary (взлом), Earthquake (землетрясение), Alarm 
(сигнал тревоги), JohnCalls (звонки Джона) и MaryCalls (звонки Мэри) 

Информация о локальной вероятности, приведенная для каждой вершины на 
рис. 1 3 .2, представлена в виде ► таблицы условной вероятности (Conditional 
Probahility ТаЬ/е - ► СРТ). (Таблицы СРТ могут использоваться только для дис­
кретных переменных; другие представления, включая те, которые подходят для 
непрерывных переменных, описаны в разделе 1 3 .2 . )  Каждая строка в таблице СРТ 
содержит условную вероятность каждого значения вершины для ► обусловли­
вающего случая (conditioning case). Обусловливающий случай является просто 
одной из возможных комбинаций значений родительских вершин - его можно 
рассматривать как миниатюрное атомарное событие. Сумма элементов в каждой 
строке должна быть равна 1 ,  поскольку элементы этой строки представляют со­
бой исчерпывающее множество случаев для данной переменной. Для булевых пе­
ременных, если известно, что вероятность значения true равна р, вероятность зна­
чения /а/sе должна быть 1 - р, поэтому второе число часто просто опускается, как 
это сделано на рис. 1 3 .2 .  В общем случае любая таблица для булевой переменной 
с k булевыми родительскими переменными содержит 2k независимо определяемых 
вероятностей. Таблица для вершины без родительских вершин имеет только одну 
строку, представляющую априорные вероятности каждого возможного значения 
соответствующей переменной. 

Обратите внимание, что в этой сети нет вершин, соответствующих ситуаци­
ям, когда Мэри в данный момент слушала бы громкую музыку или звонил бы со­
седский телефон, сбивая с толку Джона. Эти факторы подытожены в показате­
лях неопределенности, связанных с ребрами, направленными от вершины Alarm 
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к вершинам JohnCalls и MaryCalls. Такой подход является примером проявления 
в действии как экономии усилий, так и недостатка знаний ( см. раздел 1 2 . 1 . 1  ), по­
скольку потребовалось бы слишком много работы, чтобы узнать, по какой причине 
эти факторы могут оказаться более или менее вероятными в каждом конкретном 
случае; к тому же все равно отсутствует приемлемый способ получения релевант­
ной информации. 

Вероятности, показанные на рисунке, фактически подытоживают потенцишь­
но бесконечное множество обстоятельств, которые либо могут привести к нару­
шениям при выдаче сигнала тревоги (высокая влажность, отсутствие напряжения 
в сети электропитания, разряд аккумулятора, обрыв проводов, дохлая мышь, за­
стрявшая внутри звонка, и т.д.), либо станут причиной того, что Джон или Мэри 
не смогут о нем сообщить (выйдут на обед, отправятся в отпуск, на время оглох­
нут, не расслышат сигнал тревоги из-за шума пролетающего вертолета и т.д. ). Дей­
ствуя таким образом, маленький агент получает возможность справиться со всем, 
что происходит в очень большом мире, по крайней мере приблизительно. 

13.2. Семантика байесовских сетей 
Синтаксис байесовской сети состоит из ориентированного ациклического гра­

фа с некоторой локальной вероятностной информацией, связанной с каждой вер­
шиной . Семантика байесовской сети определяет, как синтаксис соответствует со­
вместному распределению по переменным сети. 

Предположим, что байесовская сеть включает п переменных, Х1 , . . . 

Хп. Тогда типичная запись в совместном распределении будет иметь вид 
Р(Х1 = х 1 Л .. .  Л Хп = Хп) или Р(х 1 , • • •  , Хп) для краткости. Семантика байесовских се­
тей определяет каждую запись в совместном распределении следующим образом: 

Р(х 1 , • • •  , Хп) = Ц 0(х; lparents(X;)), 
1=\  

( 1 3 . 1 )  

где parents(X;) обозначает конкретные значения переменных Parents(X;), которые 
появляются в х 1 , • • • , Хп. Следовательно, каждый элемент в совместном распределе­
нии представлен в виде произведения соответствующих элементов локальных ус­
ловных распределений в байесовской сети. 

Чтобы проиллюстрировать введенные выше понятия, рассчитаем вероятность 
того, что прозвучал сигнал тревоги, но не было ни взлома, ни землетрясения, 
а Мэри и Джон оба позвонили хозяину дома. Для этого просто перемножим соот­
ветствующие значения локальных условных распределений (и для краткости со­
кратим имена этих переменных до одной буквы): 

PU, т, а, ,Ь, ,e) = PU I  а)Р(т I a)P(a l ,Ь л ,е)Р(,Ь)Р(,е) = 
= 0,90 х о, 70 х 0,0 1 х 0,999 х 0,998 = 0,00628. 



62 Часть IV. Неопределенные знания и рассуждения в условиях неопределенности 

В разделе 1 2.3 бьmо показано, что полное совместное распределение может ис­
пользоваться для получения ответа на любой запрос о данной проблемной обла­
сти. Если байесовская сеть является представлением совместного распределения, 
то и она может использоваться для получения ответа на любой запрос посред­
ством суммирования всех соответствующих значений вероятности совместного 
распределения, каждое из которых рассчитывается путем умножения вероятно­
стей из локальных условных распределений. В разделе 1 3  .3 этот вопрос рассма­
тривается более подробно, а также описываются методы, которые являются гораз­
до более эффективными. 

На данный момент необходимо дать дополнительные разъяснения по одному 
важному вопросу: каков смысл чисел, входящих в локальные условные распреде­
ления 0(х; 1 parents(X;))? Оказывается, исходя из уравнения ( 1 3 .  1 ), можно доказать, 
что параметры 0(х; / parents(X;)) в точности являются условными вероятностями 
Р(х; / parents(X;)), следующими из совместного распределения . Вспомните, что ус­
ловные вероятности могут быть вычислены из совместного распределения следу­
ющим образом : 

р( 1 (х )) _ P(x; , parents(X; )) _ 
х; parents ; =---=-----'-----'--'- -P(parents( Х; )) 

_ L.y P(x; , parents(X; ), у) 
- "'i:.x; , y P(x; , parents(X; ), y) 

Здесь у представляет значения всех переменных, отличных от Х; и его родитель­
ских вершин. Исходя из этой последней строки, можно доказать, что Р(х; 1 pa­
rents(X;)) = 0(х; / parents(X;)) (см . упражнение 1 3 .3 ) .  Следовательно, мы можем пе­
реписать уравнение ( 1 3  . 1 )  как 

Р(х 1 , . . . , Хп) = Ц Р(х; /parents(X;)). 1=\ ( 1 3 .2) 

А это означает, что когда оцениваются значения для локальных условных рас­
пределений, они должны представлять собой фактические условные вероятно­
сти для переменной при заданных родительских переменных. Например, когда 
мы определяем 0(JohnCalls = true I Alarm = true) = 0,90, это должно означать, что 
примерно в 90% случаев, когда звучит сигнал тревоги, Джон позвонит владельцу 
дома. Тот факт, что каждый параметр в байесовской сети имеет точный смысл в 
терминах лишь небольшого множества переменных, является критически важным 
для надежности и простоты определения моделей. 

Метод построения байесовских сетей 

Уравнение ( 1 3 .2) определяет, что означает данная байесовская сеть. На сле­
дующем этапе необходимо выяснить, как построить байесовскую сеть таким 
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образом, чтобы результирующее совместное распределение являлось адекватным представлением данной проблемной области. Прежде всего покажем, что из урав­нения ( 1 3 .2) следуют определенные отношения условной независимости, которые могут использоваться инженером по знаниям как руководящие указания при опре­делении топологии сети. Сначала перезапишем это совместное распределение в терминах условных вероятностей с использованием правила умножения вероят­ностей (см. раздел 1 2 .2 . 1 ): 
Р(х1 , • • · , Хп) = Р(хп l Хn -\ , • • ·  , Х 1 )Р(хп -\ , • • ·  , х1 ) , Затем повторим этот процесс, приводя каждую совместную вероятность к ус­ловной вероятности и совместной вероятности для меньшего множества перемен­ных. В конечном итоге будет получено одно большое произведение: 

Р(х1 , • • · , Хп) = Р(хп l хп -1 , - - - , X i )P(xn - \  l хп -2, - - • , Х1 )) . . .  Р(х2 l x1 )P(x1 ) = 
= J] P(x; j x; _ 1 , . . .  , х 1 ). 

Это тождество называется ► цепным правилом (chain ru/e). Оно справедли­во для любого множества случайных переменных. Сравнивая его с уравнением ( 1 3 .2), можно обнаружить, что эта спецификация совместного распределения эк­вивалентна общему утверждению, что для каждой переменной Х; в байесовской сети 
Р(Х; 1 )(;_ 1 , • • •  , Х1 ) = Р(Х; 1 Parents(X;)), ( 1 3 .3) 

при условии, что Parents(X;) � { Х;_ 1 , . . .  , Х1 } • Это последнее условие можно легко вьшолнить, просто пронумеровав вершины графа в ► топологическом порядке, т.е. в любом порядке, соответствующем структуре ориентированного графа. На­пример, узлы на рис. 1 3  .2 могут быть упорядочены в порядке В, Е, А, J, М или Е, 
В, А, М, J и  т.д. Таким образом, уравнение ( 1 3  .3 ) свидетельствует о том, что байесовская сеть будет правильным представлением проблемной области, только если каждая вер­шина в ней условно независима от ее предшественниц в конкретном упорядоче­нии вершин при заданных ее родительских вершинах. Удовлетворить это условие можно, придерживаясь следующей методологии. 

1 .  Вершины. Сначала определите множество переменных, необходимых для моделирования проблемной области, а затем тем или иным образом упоря­дочьте их: {Х1 , . . .  , Хп } ,  Подойдет любой порядок, но результирующая сеть будет более компакrной, если переменные упорядочить так, чтобы причины предшествовали следствиям .  2. Ребра. Для всех i, от 1 до п, выполните следующее. Дпя каждого Х; выберите из Х1 , . . .  , Хн минимальное множество роди­тельских вершин, - такое, что уравнение ( 1 3 .3) будет выполняться . 
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Для каждой родительской вершины добавьте ребро со стрелкой в направ­
лении от родителя к .Х;. 
Таблицы СРТ. Для всех вершин укажите таблицы условных вероятно­
стей, Р(.Х; 1 Parents(X;)). 

Иmуитивно понятно, что множество родительских. вершин вершины .Х; должно 
включать все те вершины в Х1 , . . .  , .Х;_ 1 , которые ♦ непосредственно влияют на .Х;. 
Например, предположим, что сеть, представленная на рис. 13 .2, уже полностью 
построена и осталось лишь выбрать родительские вершины для узла MaryCalls. 
Безусловно, на вершину MaryCalls влияет, произошло ли событие Burglary или 
Earthquake, но это - не непосредственное влияние. Наши знания в данной про­
блемной области говорят о том, что эти события могут влиять на поведение Мэри 
в отношении звонков хозяину дома только через их воздействие на сигнал трево­
ги. Кроме того, при наличии сигнала тревоги звонок Джона никак не может по­
влиять на звонок Мэри. Говоря формально, при построении этой сети у нас есть 
полная уверенность в том, что справедливо следующее утверждение об условной 
независимости: 

P(MaryCalls I JohnCalls, Alarm, Earthquake, Burglary) == P(MaryCalls I Alarm). 
Следоваrельно, Alarm будет единственным родительским узлом для узла MaryCalls. 

Поскольку каждый узел в создаваемой сети соединяется только с узлами-пред­
шественниками в общем упорядочении, этот метод построения гарантированно 
исключает возможность появления в ней циклов. Другим важным свойством бай­
есовских сетей является то, что они не содержат избыточных значений вероятно­
стей. А там, где нет избыточности, нет и шансов для появления несовместимости: 
♦ у инженера по знаниям или специалиста по проблемной области нет возможности 
построить байесовскую сеть, в которой будут нарушаться аксиомы вероятности. 

Компактность сети и упорядочение вершин 

Помимо того, что байесовская сеть является полным и неизбыточным пред­
ставлением проблемной области, она часто оказывается намного более компакт­
ной по сравнению с полным совместным распределением. Именно благодаря это­
му свойству байесовские сети оказываются применимыми для представления 
проблемных областей со многими переменными. Компактность байесовских се­
тей является примером общего свойства ► локально структурированных (или, 
иначе, ► разреженных) систем. В локально струкrурированной системе каждый 
субкомпонент непосредственно взаимодействует только с ограниченным количе­
ством других компонентов, независимо от их общего количества в системе. Ло­
кальная струкrура обычно ассоциируется с линейным, а не с экспоненциальным 
ростом сложности. 

В случае байесовских сетей резонно предположить, что в большинстве про­
блемных областей на каждую случайную переменную оказывают непосредствен-
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ное влияние самое большее k других переменных, где k - некоторая константа. 
Если для простоты предположить, что в такой сети представлено п булевых пере­
менных, то количество информации, необходимое для задания каждой таблицы 
условных вероятностей, будет составлять не больше 2k чисел, а всю сеть можно 
будет определить с помощью 2k ,п  числовых значений. В сравнении с этим соответ­
ствующее совместное распределение будет включать 2n значений. В качестве кон­
кретного примера предположим, что имеется п = 30 вершин и каждая из них имеет 
пять родительских вершин (k = 5). В этом случае для представления соответствую­
щей байесовской сети потребуется 960 числовых значений, тогда как для полного 
совместного распределения - больше миллиарда. 

Однако если на каждую переменную будут оказывать непосредственное влия­
ние все другие переменные, т.е. эта сеть будет полносвязной, то для задания таблиц 
условных вероятностей потребуется такое же количество информации, как и для 
задания совместного распределения в табличной форме. По этой причине на прак­
тике часто пропускаются такие ребра, для которых существует лишь небольшая 
зависимость, - небольшой выигрыш в точности не стоит внесения дополнитель­
ной сложности в сеть. Например, можно критиковать предложенную выше струк­
туру сети отслеживания взлома на том основании, что если бы имело место силь­
ное землетрясение, то Джон и Мэри не позвонили бы хозяину дома, даже услышав 
сигнал тревоги, поскольку сочли бы, что его причиной стало землетрясение. До­
бавление ребер от вершины Earthquake к вершинам JohnCalls и MaryCalls ( с соот­
ветствующим увеличением размеров таблиц СРТ) зависит от важности получения 
более точных значений вероятностей в сравнении с издержками на обработку до­
полнительной информации. 

Даже в локально структурированной проблемной области компактную байесов­
скую сеть можно будет получить только в том случае, если будет выбран правиль­
ный порядок узлов. А что произойдет, если выбранный порядок окажется непра­
вильным? Еще раз вернемся к примеру со взломом. Предположим, что мы решили 
вводить в сеть вершины в порядке MaryCalls, JohnCal/s, Alarm, Burglary, Earth­
quake. В таком случае будет получена немного более сложная сеть, показанная на 
рис. 1 3 .3, а. При этом процесс введения вершин будет проходить следующим об­
разом. 

• Добавляем вершину MaryCal/s - родительские вершины отсутствуют. 
• Добавляем вершину JohnCalls. Если звонит Мэри, это, вероятно, означает, 

что раздался сигнал тревоги, а вероятность этого события, очевидно, будет 
выше, если позвонит также и Джон. Поэтому для вершины JohnCalls в каче­
стве родительской следует использовать вершину MaryCalls. 

• Добавляем вершину Alarm. Очевидно, что если позвонили оба соседа, веро­
ятность того, что раздался сигнал тревоги, будет больше, чем только при од­
ном звонке или вообще без звонков. Следовательно, для вершины Alarm в 
качестве родительских следует указать обе вершины, MaryCalls и JohnCalls. 
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• Добавляем вершину Burg/ary. Если известно состояние сигнала тревоги, то 
звонок от Джона или Мэри может дать владельцу дома лишь информацию 
о том, что звонил его телефон или Мэри слушала музыку, но не о взломе: 

P(Burglary I Alarm, JohnCalls, MaryCa/ls) = P(Burglary I Alarm). 
Следовательно, использовать в качестве родительской следует только вер­
шину Alarm. 

• Добавляем вершину Earthquake. Если раздался сигнал тревоги, то, скорее 
всего, произошло землетрясение. (Эrот тип охранной сигнализации мож­
но считать своего рода детектором землетрясений.) Но если известно, что 
имел место взлом, то это объясняет появление сигнала тревоги, а вероят­
ность землетрясения должна быть лишь немного выше нормальной. Зна­
чит, родительскими вершинами для этой вершины следует выбрать и Alarm, 
и Burg/ary. 

2 
JohnCa/ls 

4 

а) б) 

Рис. 13.3. Структура сети и количество параметров зависят от порядка введения 
вершин. а) Эта структура была получена при упорядочении вершин М, J, А, В, Е. 
б) Данная структура была получена при упорядочении вершин М, J, Е, В, А. Также 
на рисунке для каждой вершины указано количество требуемых параметров: в сум­
ме их требуется 1 3  для варианта а и 3 1  - для варианта 6. Для сети, представленной 
на рис. 1 3 .2 необходимо только 1 0  параметров 

Полученная сеть содержит на два ребра больше по сравнению с исходным ва­
риантом сети, представленным на рис. 1 3  .2, а также требует указания трех допол­
нительных вероятностей. Но что еще хуже, некоторые из ее ребер представляют 
надуманные отношения, требующие формирования сложных и неестественных 
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суждений о вероятностях, таких как оценки вероятности Earthquake, если даны 
Burglary и Alarm. Такой феномен является достаточно общим и связан с различи­
ем между прнчннно-следственнымн и днаrностнческнмн моделями, представ­
ленными в разделе 12.5 .1 (см. также упражнение 13.5) .  ♦ Если придерживаться 
причинно-следственной модели, то в конечном итоге потребуется задать меньше чис­
ловых значений, а сами эти значения определить, скорее всего, будет проще. Например, 
для проблемной области медицинской диагностики Тверски и Канеман ([2239], 
1 982) показали, что опытные врачи предпочитаюr составлять вероятностные су­
ждения для причинных, а не диагностических правил. В разделе 13.5 понятие при­
чинно-следственных моделей исследуется более подробно. 

На рис. 13 .3 ,  б показан совсем плохой вариант упорядочения вершин: Mary­
Calls, JohnCalls, Earthquake, Burglary, Alarm. Для этой сети требуется задать 31 от­
дельную вероятность - точно такое же количество, как и при использовании пол­
ного совместного распределения. Однако очень важно понимать, что любая из 
этих трех сетей может представлять в точности одно и то же совместное рас­
пределение. Просто в двух вариантах, приведенных на рис. 13.3,  не удалось пред­
ставить все отношения условной независимости и поэтому вместо них потребова­
лось ввести мноrо ненужных числовых значений. 

1 3.2. 1 . Отношения условной независимости 
в байесовских сетях 

Из семантики байесовских сетей, как она была определена в уравнении (13.2), 
можно вывести ряд свойств условной независимости. Нам уже знакомо свойство, 
что переменная является условно независимой от своих предшественников при за­
данных родительских переменных. Также можно доказать более общее свойство 
"не потомков", которое формулируется следующим образом: 

каждая переменная является условно независимой от переменных, не являю­
щихся ее ► потомками, при заданных родительских переменных. 

Например, на рис. 13.2 переменная JohnCalls независима от переменных Burglary 
и Earthquake и MaryCalls, если дано значение Alarm. Приведенное выше опреде­
ление проиллюстрировано на рис. 13.4, а. 

Оказывается, что свойства не-потомков в сочетании с интерпретацией сете­
вых параметров 0(Х; 1 Parents(X;)) как условных вероятностей Р(Х; 1 Parents(X;)) 
вполне достаточно для восстановления полного совместного распределения, 
данного в уравнении (13.2). Другими словами, можно понимать семантику байе­
совских сетей иначе: вместо представления полного совместноrо распределения 
как произведения условных распределений сеть определяет множество условно 
независимых свойств. Полное совместное распределение может быть получено 
из этих свойств. 
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а) 6) 

Рис. 13.4. а) Вершина Х является условно независимой от вершин, не являющихся 
ее потомками (например, от вершин ZiJ), если даны ее родительские вершины (вер­
шины U;, находящиеся на сером фоне). б) Вершина Х является условно независи­
мой от всех других вершин в сети, если дано ее марковское покрытие (область с се­
рым фоном) 

Другое важное свойство независимости подразумевается из свойства не-по-
томков: 

переменная является условно независимой от всех других вершин в сети, если 
даны ее родительские переменные, дочерние переменные и родительские пере­
менные дочерних переменных, т.е. дано ее ►марковское покрытие (Markov 
Ыanket). 

(В упражнении l З  .8 предлагается это доказать.) Например, переменная Burg/ary 
независима от nеременных JоhпСа//s и MaryCalls, если даны Alarm и Earthquake. 
Эrо свойство проиллюстрировано на рис. 1 3 .4, б. Свойство марковского покрытия 
делает возможным построение алгоритмов вероятностного вывода, использующих 
полностью локальные и распределенные стохастические процессы выборки, как 
обьясняется в разделе 13 .4.2 . 

Наиболее общий вопрос в отношении условной независимости, на который 
можно получить ответ в байесовской сети, следующий: является ли множество уз­
лов Х условно независимым от другого множества У при заданном третьем мно­
жестве Z. Оrвет можно достаточно просто найти за счет анализа байесовской сети 
с целью определения, обеспечивает ли Z ►d-разделенне для Х и У. Процедура 
выполняется следующим образом. 

1 .  В общем графе рассмотрим только ► подграф предшествования, включа­
ющий вершины из Х, У, Z и их предков. 
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2. Добавим ребра между любой парой несвязанных узлов, имеющих общий 
дочерний узел, и в результаrе получим так называемый ► моральный rраф. 

3. Заменим все направленные ребра ненаправленными ребрами. 
4. Если в полученном графе вершины Z блокируют все пути между Х и У, то Z 

d-разделяет множества Х и У. В этом случае Х условно не зависит от У при 
заданном Z. В противном случае исходная байесовская сеть не требует ус­
ловной независимости. 

Если говорить кратко, то d-разделение означает разделение вершин в неориен­
тированном, морализованном подграфе предшествования. Применяя это опреде­
ление к байесовской сети. представленной на рис. 1 3.2, можно сделаrь вывод, что 
переменные Burg/ary и Earthquake являются независимыми при пустом заданном 
множестве (т.е. они абсолютно независимы), что они необязательно являются ус­
ловно независимыми при заданном значении переменной Alarm и что перемен­
ные JohnCal/s и MaryCalls являются условно независимыми при заданном значе­
нии Alarm. Также обраrите внимание, что свойство марковского покрьпия следует 
непосредственно из свойства d-разделения. поскольку марковское покрьпие пере­
менной d-отделяет ее от всех других переменных. 

1 3.2.2. Эффективное представление условных распределений 

Даже если максимальное количество родительских вершин k будет невелико. 
для заполнения таблицы СРТ любой вершины потребуется задать вплоть до 0(2� 
числовых значений, а также, возможно, потребуется значительный объем опытных 
данных оценки всех возможных обусловливающих случаев. К тому же на практи­
ке иногда встречается наихудшая сmуация, в которой связь между родительскими 
вершинами и дочерней вершиной является полностью произвольной. Обычно та­
кие отношения можно описаrь с помощью ► кавоввческоm распределении, ко­
торое соответствует некоторому стандартному образцу. В таких случаях полную 
таблицу можно определить. указав тип распределения и. возможно, введя несколь­
ко параметров. 

Простейшим примером является наличие ► детерминированных вершив. 
Детерминированная вершина имеет значение. точно определяемое значениями 
ее родительских вершин. без какой-либо неопределенности. Оrношение между 
вершинами может быть логическим. например отношение между родительски­
ми вершинами Canadian, US, Mexican и дочерней вершиной NorthAmerican, где 
значение дочерней вершины представляет собой дизъюнкцию значений роди­
тельских вершин. Отношение также может быть числовым. например перемен­
ная BestPrice для автомобиля может представлять ее минимальную цену у каж­
дого дилера в регионе. тогда как значением переменной WaterStored для водоема 
на конец года будет разность между всеми поступлениями в него воды (включая 
исходное значение на начало года и приток от впадающих рек. береговых стоков, 
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осадков) и всего расхода (включая сток через вытекающие реки, испарение, про­
сачивание в почву). 

Многие системы реализации байесовских сетей предоставляют пользователю 
возможность задать детерминированные функции, воспользовавшись языком про­
граммирования общего назначения. Такой подход позволяет включать в вероят­
ностную модель сложные элементы, например модель глобального климата или 
эмулятор силовых электросетей. 

Другой важный случай, который часто встречается на практике, - это ► кон­
текстно специфическая независимость (CSI - context-specific independence). 
Условное распределение проявляет контекстно специфическую независимость, 
если некоторая переменная оказывается условно независимой от некоторых из 
своих родительских переменных при определенных значениях других. Например, 
предположим, что для автомобиля переменная Damage (повреждение) зависит от 
переменной Ruggedness (прочность) этого автомобиля и наличия случаев Acci­
dent (авария). Понятно, что если переменная Accident имеет значение/а/sе, то пе­
ременная Damage, отмечающая повреждения, если таковые имеются, не зависит 
от переменной Ruggedness. (Может иметь место повреждение лакокрасочного по­
крытия или окон автомобиля по причине вандализма, но мы полагаем, что все ав­
томобили в одинаковой степени страдают от повреждений такого рода.) Можно 
сказать, что переменная Damage является контекстно специфически независимой 
от переменной Ruggedness при значении переменной Accidenl = false. В системах 
построения байесовских сетей отношения CSI обычно реализуются с использова­
нием синтаксиса if-then-else для определения условных распределений, напри­
мер можно написать следующее: 

P(Damage I Ruggedness, Accidenl) = 
= if (Accident = false) then d 1 else d2(Ruggedness ), 

где d1 и d2 представляют произвольные распределения. Как и в случае детерминиз­
ма, присутствие в сети отношений CSI может способствовать повышению эффек­
тивности вероятностного вывода. Все точные алгоритмы вывода, упоминаемые в 
разделе 13.3 ,  легко могут быть изменены с целью использования преимуществ от­
ношений CSI для ускорения вычислений. 

Неопределенные отношения можно также часто охарактеризовать с исполь­
зованием так называемых зашумленных логических отношений. Стандартным 
примером является отношение ► заmумленноrо OR, представляющего собой 
обобщение логического отношения OR. В логике высказываний можно сделать 
утверждение, что высказывание Fever (жар, лихорадка) является истинным тог­
да и только тогда, когда истинны высказывания Cold (простуда), Flu (грипп) и 
Malaria (малярия). Модель зашумленного OR позволяет учитывать неопределен­
ность знаний в отношении способности каждой из родительских вершин вызывать 
присваивание истинного значения дочерней вершине, поскольку причинная связь 
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между родительской и дочерней вершинами может быть заблокирована и поэтому 
иногда пациент бывает просrужен, но жар у него отсутствует. 

В этой модели приняты два допущения. Во-первых, предполагается, что учте­
ны все возможные причины. (Если некоторые пропущены, всегда можно добавить 
так называемую ► вершину утечки (leak node), покрывающую все "прочие при­
чины".) Во-вторых, предполагается, что блокирование каждой родительской вер­
шины не зависит от блокирования любых других родительских вершин, например 
та причина, которая блокирует появление жара под действием вершины Ma/aria, 
не зависит от причин, блокирующих появление жара под действием вершины Flu. 
С учетом этих предположений вершина Fever будет иметь значение/а/sе тогда и 
только тогда, когда будут заблокированы все ее родительские вершины, имеющие 
значение true. Вероятность такой сиrуации представляет собой произведение веро­
ятностей блокирования каждой родительской вершины. Предположим, что такие 
отдельные вероятности блокирования выражаются следующим образом: 

qcold = P( ,jever I co/d, ,jlu, --,тalaria) = 0,6; 
{/J1и = P(,jever 1 --,cold,jlu, --,тalaria) = 0,2; 
qmalaria = Р( ,Jever 1 --,cold, ,jlu, malaria) = О, 1 .  

Затем, исходя из этой информации и допущений зашумленного OR, можно будет 
построить всю таблицу условных вероятностей (СРТ). Общее правило таково, что 

Р(х; lparents(Xi)) = 1- 1 . П q1, 1:Xj = true} 

где перемножаются те родительские вершины, которые принимают значение true 
для данной строки СРТ. Пример подобных вычислений приведен на рис. 1 3 .5. 

Cold Flu Malaria P(fever l · ) P(-fever l · ) 
f f f 0,0 1 ,0 
f f 0,9 0,1 
f f 0,8 0,2 
f 0,98 0,02 = 0,2 х 0, 1 

f f 0,4 0,6 
f 0,94 0,06 = 0,6 х 0, 1 

f 0,88 0, 1 2  = 0,6 х 0,2 
0,988 0,0 1 2  = 0,6 х 0,2 х 0, 1  

Рис. 1 3.5. Полная таблица условных вероятностей для P(Fever I Cold, Flu, Ma­
/aria) при условии, что модель включает отношения зашумленного OR для трех 
q-значений, выделенных полужирным шрифтом 
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В общем случае зашумленные логические отношения, в которых некоторая пе­
ременная зависит от k родительских переменных, могут быть описаны с использо­
ванием O(_k) параметров вместо 0(_2k) параметров, необходимых для определения 
полной таблицы условных вероятностей. В результате задача присваивания зна­
чений или обучения намного упрощается. Например, в сети CPCS (Прадхан и др. 
[ 1 81 9], 1994) распределения зашумленного OR и зашумленного МАХ успешно ис­
пользовались для моделирования отношений между заболеваниями и симптомами 
в диагностике внутренних органов. При наличии 448 вершин и 906 ребер в этой 
сети потребовалось определить всего лишь 8254 значения вместо 1 33 93 1 430 зна­
чений для случая с полными таблицами СРТ. 

1 3 .2.3. Байесовские сети с непрерывными переменными 

Многие реальные задачи включают непрерывные величины, такие как высота, 
масса, темпераrура или денежная сумма. По определению непрерывные величины 
имеют бесконечное количество возможных значений, поэтому невозможно явно 
задать условные вероятности для каждого значения. Один из возможных спосо­
бов обработки непрерывных переменных состоит в избавлении от них с помощью 
► дискретизации, т.е. распределения всех возможных значений в фиксированное 
множество интервалов. Например, значения темпераrуры могут быть разделены 
на три интервала: ( < 0°С), (0°С - 1 00°С) и (> 1 00°С). Выбор количества категорий 
предполагает компромисс между потерей точности и использованием больших та­
блиц СРТ, что ведет к увеличению времени выполнения расчетов. 

Другой подход заключается в определении непрерывной переменной с исполь­
зованием одного из стандартных семейств функций распределения плотности 
вероятности (см. приложение А). Например, гауссово (или нормальное) распре­
деление N(x, µ,, cr2) задается только двумя параметрами: средним значением µ, и 
дисперсией cr2. Еще одно возможное решение - иногда его также называют ► не­
параметрическим представлением - заключается в определении условного рас­
пределения неявным образом, с использованием набора экземпляров, каждый из 
которых включает конкретные значения родительских и дочерних переменных. 
Подробнее этот подход будет рассмотрен позже, в главе 1 9. 

Сеть, в которой имеются и дискретные, и непрерывные переменные, называ­
ется ► гибридной байесовской сетью. Для описания гибридной сети необходи­
мо определить два новых типа распределений: условное распределение для непре­
рывной переменной, при заданных дискретных или непрерывных родительских 
переменных, и условное распределение для дискретной переменной, при задан­
ных непрерывных родительских переменных. Рассмотрим простой пример, приве­
денный на рис. 1 3  .6, в котором клиент покупает те или иные фрукты в зависимости 
от их стоимости, которая, в свою очередь, зависит от размера урожая (переменная 
Harvest) и от того, применяется ли правительственная программа субсидий (пе­
ременная Subsidy). Переменная Cost (стоимость) является непрерывной и имеет 
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непрерывные и дискретные родительские переменные; переменная Buys (покупа­
ет) является дискретной и имеет непрерывную родительскую переменную. 

Рис. 13.6. Простая сеть с дискретными переменными (Subsidy и Buys) и непрерыв­
ными переменными (Harvest и Cost) 

Для переменной Cost необходимо задать распределение P(Cost I Harvest, Sub­
sidy). Эrо дискретное родительское значение учитывается с помощью явного пе­речисления, т.е. определения как значения P(Cost I Harvest, subsidy), так и значе­ния P(Cost I Harvest, -,subsidy). Чтобы работать с переменной Harvest, необходимо определить, как распределение по стоимости с зависит от значения h непрерыв­ной переменной Harvest. Иными словами, требуется определить параметры, рас­пределения стоимости как функции от h. Чаще всего применяемым вариантом является ► линейное гауссово условное распределение, в котором дочерняя пе­ременная имеет гауссово распределение со средним µ, изменяющимся линейно в зависимости от значения родительской переменной, и с постоянным среднеква­дратичным отклонением а. Необходимо иметь два распределения: одно - для значения subsidy и одно - для значения -,subsidy, с разными параметрами: 

2 1 _1(с-(щh+Ь, ) ) 
Р(с I h, subsidy) = N(c; а1 h + Ь1 , а; ) =  

.[i; е
 2 01 

, cr1 27i 
1 _1(c-(arh+b1))2 

Р(с I h, -,subsidy) = N(c; a1h + ь1, а} ) = г;::- е 2 01 crгv27i 
Таким образом, в данном примере условное распределение для переменной 

Cost было задано посредством обозначения его как линейного гауссова распре­деления и предоставления параметров а1, Ь1, а1 и at, bt, а1. На рис. 1 3 .7, а и 6 пред­ставлены оба эти отношения; обраrите внимание, что в каждом случае наклон кри­вой с относительно h является отрицаrельным, поскольку цена уменьшается по мере увеличения урожая. (Безусловно, из предположения о линейности следует, что цена в некоторый момент станет отрицаrельной; линейная модель является приемлемой, только если размер урожая ограничен каким-то узким диапазоном.) 
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На рис. 1 3 .7, в показано распределение Р(с I h), усредненное по двум возможным 
значениям переменной Subsidy в предположении, что каждое из двух ее возмож­
ных значений имеет априорную вероятность 0,5 . Этот пример показывает, что с 
помощью даже очень простых моделей вполне возможно представить довольно 
интересные распределения. 

0,4 
0,3 
0,2 
0,1 
о о 3 

Cost c 6 

а) 

0,4 
0,3 
0,2 
0,1 

о ..._.-"/0'7Г""1 

о 3 
Cost c 6 

б) 

P(c l h) 
0,4 
0,3 
0,2 
0, 1 
о 

h о 3 
Cost c 6 

в) 

Рис. 13.7. а) и б) На графиках показаны распределения вероятностей для значения 
стоимости Cost как функции от размера урожая Harvest при условии, что перемен­
ная Subsidy имеет соответственно истинное и ложное значения. в) На графике пока­
зано распределение Р( Cost I Harvest), полученное путем суммирования по двум слу­
чаям, связанным с предоставлением и не предоставлением субсидии 

Линейное гауссово условное распределение обладает некоторыми особыми 
свойствами .  Сеть, содержащая только непрерывные переменные с линейными га­
уссовыми распределениями, имеет совместное распределение, представляющее 
собой многомерное гауссово распределение (см. приложение А) по всем перемен­
ным (упражнение 1 3 . 1 1  ) .  Более того, апостериорное распределение при любом 
свидетельстве также обладает этим свойством.2 Когда дискретные переменные до­
бавляются в сеть в качестве родительских (но не дочерних) для непрерывных пе­
ременных, то сеть определяет ► условное гауссово распределение, или распре­
деление CG (conditional Gaussian) : если дано любое присваивание дискретным 
переменным, то распределение по непрерывным переменным является многомер­
ным гауссовым распределением. 

Теперь обратимся к распределениям для дискретных переменных с непре­
рывными родительскими переменными.  Например, рассмотрим вершину Buys 
на рис. 1 3 .6 .  Представляется обоснованным предположение, что клиент сдела­
ет покупку, если цена низкая, и не сделает покупку, если она высокая, а также, 
что вероятность покупки плавно изменяется в некоторой промежуточной области. 

2 Из этого следует, что вероятностный вывод в линейных гауссовых сетях в наихуд­
шем случае требует О(п3) времени независимо от топологии сети. В разделе 1 3 .3 бу­
дет показано, что вероятностный вывод в сетях с дискретными переменными является 
NР-трудным. 
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Другими словами, условное распределение будет напоминать "мягкую" пороговую 
функцию. Один из способов определения мягких пороговых функций состоит в 
использовании интегрш,а стандартного нормального распределения: 

Ф (х) = J:N{s; O, l )ш. 

Здесь Ф(х) является возрастающей функцией от х, тогда как вероятность покупки 
уменьшается с увеличением цены, т.е. Э1)' функцию нужно перевернуть: 

P(buys I Cost = с) = 1 - Ф((с - µ)/а), 

а это означает, что пороговое значение цены находится в районе µ и ширина этой 
области пропорциональна а, а вероятность покупки уменьшается по мере возрас­
тания цены. Такое распределение вероятностей называется ► пробит-распреде­
лением (problt - сокращение от probabllity unit) и показано на рис. 1 3 .8,  а. При­
менение распределения с такой формой можно обосновать тем, что положенный в 
основу процесс принятия решения предполагает наличие четкого порога, но точ­
ное местонахождение этого порогового значения подвержено воздействию случай­
ного гауссова шума. 
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Рис. 13.8. а )  Нормальное (гауссово) распределение для порога цены с центром в 
µ = 6,0 и стандартным отклонением cr = 1 ,0. б) Экспит- и пробит-модели для вероят­
ности покупок buys при заданной цене cost и значениях параметров µ = 6,0 и cr = 1 ,0 

Альтернативным по отношению к пробит-распределению является ► экс­
пит-распределение (expit distribution) или ► инверсное логит-распределение 
(inverse /ogit distribution ), в котором для формирования мягкого порога использу­

ется логистическая (сигмоидальная) функция 1 /( 1  + е-.ж), - она отображает любое 
значение х на некоторое значение между О и 1 .  И вновь, для нашего примера ее не­
обходимо перевернуть, чтобы получить убывающую, а не возрастающую 
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функцию. Также дополнительно масштабируем показатель степени на 4 1.fi; , 
чтобы обеспечить соответствие наклону кривой пробит-модели в среднем значе­
нии: 

4 с-µ 
P(buys l Cost = c) = 1 - ( ) '  

1 + ехр - Jh ' �  

Эrо распределение показано на рис. 1 3 .8, 6. Два распределения внешне выгля­
дят одинаковыми, но в действительности экспит-распределение имеет гораздо бо­
лее длинные "хвосты". Пробит-распределения часто лучше подходят в реальных 
сиrуациях, а экспит-распределения иногда проще поддаются матемагической об­
работке. В настоящее время последние очень широко используются в машинном 
обучении. Обе модели могут быть обобщены для учета многих непрерывных ро­
дительских значений посредством линейной комбинации этих родительских зна­
чений. Такой подход также работает для дискретных родительских переменных, 
если их значения целочисленные. Например, при k булевых родительских пере­
менных, каждая из которых рассматривается как имеющая значение О или 1 ,  вход­
ным значением для экспит- или пробит-распределения может быть взвешенная ли­
нейная комбинация с k параметрами, что дает модель, очень похожую на модель 
зашумленного OR, обсуждавшуюся выше. 

13 .2.4. Конкретный пример: страхование автомобиля 

Компания по страхованию автомобилей получает заявку от владельца машины 
с просьбой застраховать конкретный автомобиль и должна принять решение о со­
ответствующем случаю размере годового страхового взноса, исходя из ожидаемых 
претензий, которые в течение этого срока могут быть предъявлены данным канди­
дагом к оплате. Суть задачи заключается в построении байесовской сети, отража­
ющей причинно-следственную структуру проблемной области и дающей точное, 
тщательно выверенное распределение по выходным переменным с учетом свиде­
тельств, досrупных из заполненной формы заявки .3 Сеть Байеса будет включать 
► скрытые переменные, которые не являются ни входными, ни выходными, но 
необходимы для структурирования сети, обеспечивая ее разумную разреженность 
с управляемым количеством параметров. На рис. 1 3 .9 скрытые переменные выде­
лены темно-серым цветом. 

3 Сеть, показанная на рис. 1 3 .9, не предназначена для практического использования, 
но ее общая структура была одобрена страховыми экспертами. На практике информация, 
запрашиваемая в формах заявки, варьирует в зависимости от компании и юридических 
особенностей локации - например, иногда имеет место вопрос о поле клиента, - и эта 
модель, безусловно, может быть сделана более подробной и сложной. 
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Рис. 13.9. Байесовская сеть для оценки заявок на страхование автомобиля 

Требования, которые могут быть предъявлены к оплате, бывают трех видов 
(нижняя строка на рис. 1 3 .9): Medica/Cost (медицинские издержки) в случае лю­
бых травм, которые мог получить заявитель; LiabllityCost (стоимость претензий) 
для покрытия исков, предъявленных другими сторонами к заявителю и самой ком­
пании; и PropertyCost (стоимость имущества) для компенсации ущерба, нанесен­
ного транспортному средству любой из сторон, или его утраты в результате хи­
щения . В форму заявки требуется внести следующую входную информацию (на 
рис. 1 3 .9 эти узлы выделены светло-серым цветом). 

• Информация о эаявителе. Вершины Age (возраст); YearsLicensed (дата вы­
дачи прав) - сколько времени прошло с момента получения водительских 
прав; DrivingRecord (сведения о вождении) - краткое изложение истории 
вождения, возможно, построенной на "очках" за недавние аварии и наруше­
ния правил дорожного движения; и (для студентов) GoodStudent (хороший 
студент) - показатель среднего балла 3,0 (В) по 4-балльной шкале. 

• Информация об автомобиле. Вершины MakeModel (модель) и VehicleYear 
(год выпуска); имеется ли Airbag (подушка безопасности); а также некото­
рые общие сведения SafetyFeatures (функции беэопасности), такие как на­
личие антиблокировочной системы экстренного торможения или системы 
предупреждения о столкновении. 
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• Показатели эксплуатации. Вершины Mileage (пробег) - годовой пробег, 
Garaged (гараж) - степень защищенности места постоянной стоянки, если 
таковое имеется. 

Теперь необходимо подумать о том, как организовать все эти сведения в при­
чинно-следственную струК'l)'ру. Ключевыми скрытыми переменными являются 
Theft (угон) и Accident (авария) - оценка того, будет ли автомобиль украден или 
попадет в аварию в следующий период времени. Очевидно, что нельзя попросить 
заявителя предоставить эти оценки; следовательно, они должны быть выведены из 
имеющейся информации и предыдущего onьrra страховщика. 

Какие причинные факторы могут привести к краже? Безусловно, значение пе­
ременной MakeModel имеет важное значение: некоторые модели воруют гораздо 
чаще, чем остальные, поскольку для них существует обширный рынок перепро­
дажи автомобилей и запасных частей. Переменная Car Va/ue (стоимость машины) 
также имеет значение, поскольку старый, потрепанный или с высоким пробегом 
автомобиль будет иметь гораздо более низкую цену при перепродаже. Кроме того, 
автомобиль, который стоит в гараже ( Garaged) и имеет противоугонное устрой­
ство (AntiТheft) значительно труднее украсть. В свою очередь, скрытая переменная 
Car Va/ue зависит от вершин MakeMode/, VehicleYear и Mileage. Переменная Car­
Value также определяет размер убытков при краже (Theft), поэтому она является 
одной из родительских вершин переменной OwnCarCost ( собственная стоимость 
машины) (при возникновении иных сИ1уаций, о которых вскоре пойдет речь). 

Обычно в моделях такого типа вводится еще одна иная скрытая переменная, 
SocioEcon (общественная категория), определяющая социально-экономическую 
категорию заявителя. Считается, что это значение оказывает влияние на широ­
кий спектр особенностей его поведения и других характеристик. В нашей моде­
ли нет никаких прямых свидетельств в виде переменных с данными о заявленных 
доходах или занимаемой должности;4 но вершина SocioEcon является родитель­
ской для переменных MakeMode/ и Vehic/e Jear, а также влияет на переменные Ex­
traCar и GoodStudent, но при этом в нашей модели зависит только от переменной 
Age (возраст). 

Для любой страховой компании наиболее важной скрытой переменной, веро­
ятно, является RiskAversion (неприятие риска): люди, не склонные к риску, очень 
привлекательны с точки зрения страховых рисков ! Для переменной RiskAversion 
родительскими являются вершины Age и SocioEcon и их "симптомы" включают 

4 Некоторые страховые компании также приобретают кредитную историю заявите­
ля, полагая, что это может помочь в оценке риска, поскольку дает значительно больше 
информации о его социально-экономической категории. Всякий раз при использовании 
скрытых переменных подобного рода нужно проявлять осторожность в отношении того, 
чтобы они случайно не оказались скрытыми проводниками для таких характеристик, как 
раса, которые не могут использоваться при принятии страховых решений. Методы пре­
дотвращения подобных ошибок описаны в главе 1 9. 
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выбор заявителя в отношении того, будет ли автомобиль Garaged и будут ли на 
нем установлены cpeдcтвa AntiТheft и SafetyFeatures. 

В прогнозировании будущих аварий ключевым фактором является оценка бу­
дущих значений переменной DrivingBehavior (особенности вождения), для кото­
рой родительскими вершинами являются RiskAversion и DrivingSkill (водительские 
навыки), а последняя, в свою очередь, зависит от вершин Age и YearsLicensed. Ха­
рактеристики прежних особенностей вождения заявителя находят свое отражение 
в переменной DrivingRecord, которая также зависит от переменных RiskAversion 
и DrivingSkill, а также YearsLicensed (поскольку у того, кто начал водить машину 
лишь недавно, пока не бьmо достаточно времени, чтобы накопить показательный 
перечень аварий и нарушений). В этом же смысле вершина DrivingRecord предо­
ставляет свидетельства для переменных RiskAversion и DrivingSki/1, что, в свою 
очередь, помогает сделать предположения о будущих значениях переменной Driv­
ingBehavior. 

Можно рассматривать переменную DrivingBehavior как оцениваемую в милях 
склонность заявителя к вождению в стиле, способствующем возникновению ава­
рий. Действительно ли произойдет Accident за установленный промежуток вре­
мени, зависит также от годового пробега Mileage и характеристик SafetyFeatures 
транспортного средства. Если Accident будет иметь место, то страховая компания 
может оказаться вынужденной сделать три вида выплат. Первая, Medica/Cost в 
пользу заявителя, в зависимости от переменных Age и Cushioning (амортизация), 
значение которых, в свою очередь, зависит от вершины Ruggedness (прочность) 
для данной машины, а также наличия в ней средства безопасности Airbag. Вторая 
выплата, LiabllityCost делается в пользу другого водителя как компенсация за боль 
и страдания и возмещение расходов на лечение, потерь от сокращения доходов и 
т.п .  Третья выплата, PropertyCost делается в пользу заявителя и другого водите­
ля, причем для каждого из них размер ее (различным образом) зависит от вершин 
Ruggedness и CarValue автомобиля заявителя. 

Выше был проиллюстрирован тот тип рассуждений, который связан с разработ­
кой топологии и выбором скрытых переменных в байесовской сети. Далее также 
потребуется указать диапазоны и условные распределения для каждой перемен­
ной. Для диапазонов основное решение часто состоит в том, какой сделать эту пе­
ременную, - дискретной или непрерывной. Например, для автомобиля перемен­
ная Ruggedness может быть непрерывной и изменяться в пределах от О до 1 ,  но 
может быть и дискретной с возможными значениями { TinCan, Normal, Tank} (кон­
сервная банка, норма, танк). 

Непрерывные переменные обеспечивают большую точность, но при этом де­
лают невозможным точный вывод за исключением нескольких особых случаев. 
Дискретная переменная с множеством возможных значений может сделать весьма 
утомительной задачу заполнения значениями обширных таблиц условной вероят­
ности, а также способствовать тому, что точный вероятностный вывод будет бо­
лее затратным за исключением случая, когда значение этой переменной постоянно 
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наблюдается. Например, переменная MakeModel в реальной системе будет иметь 
тысячи возможных значений и это приведет к тому, что ее дочерняя вершина Car­
Value будет иметь огромную СРТ, которую потребуется заполнить значениями, 
взятыми из баз данных отрасли. Однако тот факт, что значение переменной Make­
Model всегда наблюдаемо, исключает возможность усложнения вывода: в дей­
ствительности всегда наблюдаемые значения всех трех родительских вершин по­
зволяют сразу выбрать единственную, соответствующую случаю строку в СРТ 
вершины Car Value. 

Условные распределения для данной модели приведены в репозитории кода для 
этой книги, - читагелю предоставляется версия только с дискретными перемен­
ными, обеспечивая возможность выполнения точного вывода. На практике многие 
из переменных модели будут непрерывными, а их условные распределения потре­
буется определять на основании исторических данных по заявителям и их страхо­
вым претензиям. Как обучагь модели на основе байесовской сети с использовани­
ем реальных данных, обсуждается в главе 20. 

И последний вопрос, конечно же, состоит в том, как выполнять вероятностный 
вывод в сети, чтобы получагь прогнозы. Именно его рассмотрением мы и займем­
ся в следующем разделе. Для каждого метода вероятностного вывода, который бу­
дет обсуждагься ниже, пример сети страховой компании будет использован для 
оценки этого метода с точки зрения затраг времени и требований к обьему памяти. 

13.3 . Точный вывод в байесовских сетях 
Основной задачей для любой системы вероятностного вывода является вычис­

ление распределения апостериорных вероятностей для множества переменных 
запроса, если дано некоторое наблюдаемое ► событие; обычно это связано с вы­
полнением некоторого присваивания значений множеству переменных свиде­
тельства.s Для упрощения представления здесь мы будем рассмагривагь запросы 
только с единственной переменной, - все обсуждаемые алгоритмы можно легко 
расширить для обработки запросов со многими переменными. (Например, мож­
но получить ответ на запрос P(U, V I  е) путем перемножения P( V I  е) и P(U I  V, е).) 
Мы будем использовагь систему обозначений, введенную в главе 1 2: Х обозначает 
переменную запроса; Е - множество переменных свидетельства Е 1 , • • •  , Ет; е -
конкретное наблюдаемое событие; У - скрытые ( отличные от переменных сви­
детельства и запроса) переменные У1 , • • •  , Ус .  Таким образом, полным множеством 
переменных является {Х} U Е U У. Типичный запрос предполагает определение 
распределения апостериорных вероятностей P(XI е). 

s Другой широко изучаемой задачей является нахождение наиболее вероятного объ­
яснения для некоторого наблюдаемого свидетельства. Эта и другие задачи обсуждаются 
в разделе "Библиографические и исторические заметки" в конце mавы. 
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В байесовской сети системы защиты от взлома может наблюдаться событие, 
в котором переменные JohnCalls = true и MaryCalls = true. В таком случае можно 
ввести запрос, скажем, для определения вероятности того, что произошел взлом : 

P(Burglary I JohnCalls = true, MaryCalls = true) = (0,284; 0,7 1 6) .  

В этом разделе рассматриваются точные алгоритмы вычисления апостериор­
ных вероятностей, а также оценивается сложность такой задачи. Как оказалось, в 
общем случае подобные задачи являются неразрешимыми, поэтому в разделе 1 3  .4 
рассматриваются методы приближенного вероятностного вывода. 

1 3.3 . 1 . Вероятностный вывод посредством перебора 

В главе 1 2  было показано, что любую условную вероятность можно вычислить, 
суммируя элементы из полного совместного распределения. Говоря более конкрет­
но, ответ на запрос P(XI е) можно получить с использованием уравнения ( 1 2.9), ко­
торое еще раз приводится здесь для удобства: 

P(XI е) = а Р(Х, е) = а L Р(Х, е, у) . 
у 

Нам уже известно, что любая байесовская сеть дает исчерпывающее представ­
ление полного совместного распределения . Если говорить конкретнее, в уравне­
нии ( 1 3 .2) (см . раздел 1 3 .2) показано, что термы Р(х, е, у) в совместном распре­
делении можно записать в виде произведений условных вероятностей, взятых из 
сети . Поэтому • ответ на любой запрос можно найти с помощью байесовской сети, 
вычисляя суммы произведений условных вероятностей из этой сети. 

Рассмотрим запрос P(Burglary I JohnCalls = true, MaryCalls = true ). Для этого за­
проса скрытыми переменными являются Earthquake и Alarm. Из уравнения ( 1 2 . 9), 
используя начальные символы имен переменных для сокращения длины выраже­
ний, можно получить 

Р(В I j, т) = а Р(В, j, т) = а L L P(B, j, т, е, а) .  
е а 

Семантика байесовских сетей (уравнение ( 1 3 .2)) предоставляет возможность 
записать выражение в терминах значений СРТ. Для простоты здесь это сделано 
только для переменной Burglary = true: 

Р(Ь I j, т) = а L LP(b)P(e)P(a I Ь, e)P(j I а)Р(т I а) .  
е а 

( 1 3 .4) 

Для вычисления этого выражения необходимо сложить четыре терма, каждый из 
которых вычисляется путем умножения пяти чисел.  В наихудшем случае, когда тре­
буется суммировать почти все переменные, в сумме будет 0(2") слагаемых, каждое 
из которых будет представлять собой произведение О(п) значений вероятности. По­
этому простая реализация этого алгоритма будет иметь сложность О(п2"). 
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Здесь можно достигнуть упрощения до 0(2п), воспользовавшись преимуще­ствами вложенной струюуры вычислений. В символическом представлении для выражений, таких как уравнение ( 1 3 .4), это означает перемещение сумм как мож­но дальше внутрь. Посrупить так можно потому, что не все множители в произве­дении вероятностей зависят от всех переменных. Таким образом, мы имеем 
P(b l  j, т) = o. P(b)L P(e)LP(a I Ь, e)P(j l  а)Р(т I а) . 

е а 
( 13.5) 

Это выражение можно вычислить, последовательно обрабатывая в цикле его переменные и перемножая по ходу элементы СРТ. При каждом суммировании не­обходимо также выполнить цикл по возможным значениям переменной. Струкrу­ра этих вычислений представлена в виде дерева на рис. 1 3 . 1 0. Используя числовые значения, приведенные на рис. 1 3 .2, получим выражение Р(Ь lj, т) = о.хО,00059224. Соответствующие вычисления для ,Ь приводят к выражению о.хО,00 1 49 1 9, сле­довательно: 
P(B lj, т) = о. (0,00059224; 0,00 1 49 1 9) � (0,284; 0,7 1 6) . 

Таким образом, вероятность взлома, учитывая, что посrупили звонки обоих сосе­дей, составляет около 28%. 

PUla) 
0,90 

P(m la) 
0,70 

Р(е) 
0,002 

Рис. 13.10. Струюура выражения, приведенного в уравнении ( 1 3 .5). Процесс вычис­
ления осуществляется сверху вниз; при этом значения вдоль каждого пути умножа­
ются и суммируются в узлах, отмеченных знаком "+". Обратите внимание на то, что 
пути дляj и т повторяются 
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Алгоритм ENUMERATION-Asк, представленный на рис. 1 3 . 1 1 , вычисляет эти де­ревья выражений с использованием рекурсии в глубину, слева направо. По сво­ей струк,уре этот алгоритм очень похож на алгоритм поиска с возвратами для решения задач УО (рис. 6 .5) и на алгоритм DPLL для проверки выполнимости (рис. 7 . 1 7). Его пространственная сложность зависит от количества переменных только линейно: по сути, этот алгоритм вычисляет суммы по полному совместно­му распределению, даже не формируя его явно. К сожалению, временная слож­ность этого алгоритма для сети с п булевыми переменными (не считая перемен­ных свидетельств) всегда составляет 0(2"), - она лучше по сравнению с оценкой О(п2") для простого подхода, описанного выше, но все еще довольно велика. Для сети страховой компании, представленной на рис. 1 3 .9, которую следует считать относительно небольшой, точный вероятностный вывод по методу перебора по­требует выполнения около 227 млн арифметических операций при обработке ти­пичного запроса в отношении переменных стоимости. 

function ENUMERATION-Asк(X, е, Ьп) returns распределение по Х 
inputs: Х, переменная запроса е, наблюдаемые значения переменных Е 

Ьп, байесовская сеть с переменными vars 

Q(X) - распределение по Х, первоначально пустое 
for each значение Х; переменной Х do Q(x;) - ENUMERATE-ALL(vars, ех,) где е .. , есть е, дополненное значением Х = х; 
return NoRМALIZE(Q(X)) 

function ENUMERATE-ALL(vars, е) returns действительное число 
if EMPТY?(vars) then return 1 ,0 
V - FIRST(vars) 
if V является переменной свидетельства со значением v в е 

then return P(v I parents( V)) х ENUMERATE-ALL(REsт(vars), е) 
else return Lv P(v l parents( V)) х ENUMERAТE-ALL(REST(vars), ev) где е. есть е, дополненное значением V = v 

Рис. 13. 1 1 .  Алгоритм с перебором для точного вероятностного вывода в байесов­ских сетях 
Однако если внимательно присмотреться к дереву, приведенному на рис. 1 3  . 1  О, то можно заметить, что оно содержит повторяющиеся подвыражения. Произве­дения PU I а)Р(т I а) и PU \ ,а)Р(т 1 •а) вычисляются дважды, по одному разу для каждого значения Е. Ключ к эффективному вероятностному выводу в байесовских сетях кроется в исключении подобных избыточных вычислений. В следующем разделе описан общий метод, позволяющий этого добиться . 
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1 3.3.2. Алгоритм устранения переменной 

Алгоритм перебора можно существенно улучшить, исключив повторные вы­
числения такого типа, как показано на рис. 1 3. 1 0. Сама идея очень проста: вы­
полнить расчет один раз и сохранить результаrы для дальнейшего использования. 
Это одна из форм динамического программирования. Существует несколько вер­
сий подобного подхода; в данной rnaвe будет представлен алгоритм ► устранения 
переменной (variahle elimination), который является самым простым. Устране­
ние переменной осуществляется посредством вычисления выражений, подобных 
представленному в уравнении ( 1 3 .5), в порядке справа налево (т.е. сверху вниз; см . 
рис. 1 3 . 1 0). Промежуточные результаrы сохраняются, и операции суммирования 
по каждой переменной выполняются только для тех частей выражения, которые 
зависят от этой переменной. 

Проиллюстрируем этот процесс на примере сети системы защиты от взлома. 
В этом случае необходимо вычислить выражение 

Р(В l j, m) = а  Р(В) L P(e)L P(a l В, e) P(j l a) P(m l a) . 
.__,,_.. е ..........., а '------v---' .._,,,........, '-----v---' 
f1 (B) fz(E)  fз (А ,В,Е) f4 ( A) fs (A )  

Обраrите внимание, что каждая часть этого выражения была помечена име­
нем соответствующего ► фактора. Каждый фактор представляет собой матрицу, 
проиндексированную значениями ее переменных-аргументов. Например, факто­
ры fiA) и f5(A), соответствующие распределениям PU I а) и Р(т I а), зависят толь­
ко от А, поскольку J и М фиксированы по запросу. Поэтому эти факторы являются 
двухэлементными векторами 

( 
P(j I а) 

) (
0, 90

) f4
(A) = 

P(j l -,a) 
= 

0, 05 � (А) = = ( 
P(m l a)

) (
0, 70

) P(m l -,a) 0, 0 1 · 

Фактор f3(A, В, Е) представляет собой трехмерную матрицу 2 х 2 х 2, которую 
сложно представить на странице книги. (Здесь "первый" элемент задается распре­
делением P(a l Ь, е) = О,95, а "последний" - распределением Р(,а l ·b, ,е) = О,999.) 
В терминах факторов выражение запроса можно переписаrь в виде 

P(B I j, т) = а  f1 (B) x  L f2 (E) x Lfз (A, В, E) x f4 (A) x fs (A) . 
е а 

Здесь oneparop " х  " - это не обычное магричное умножение, а операция ► точеч­
ноrо произведения (pointwise product), которая будет кратко описана ниже. 

В процессе вычислений из точечных произведений факторов устраняются пе­
ременные ( справа налево) с целью получения новых факторов и в конечном сче­
те получения фактора, образующего решение, т.е. апостериорного распределения 
по переменной запроса. Поставленная цель достигается выполнением следующих 
этапов. 
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• На первом этапе устраняем переменную А из произведения f3, f4 и f5 • В ре­
зультате получаем новый фактор размерностью 2 х 2 '6(В, Е), индексы кого­
рого пробегают только по В и Е: 

fб (В, Е) = �)з (А, В, E) x f4 (A) x fs (A) = 
а 

Теперь у нас осталось лишь выражение 

Р(В I j, т) = а f1 (B) x Lf2 (E) x fб (B, Е) . 
е 

• На втором этапе аналогичным образом устраняем переменную Е из произ­
ведения f2 и f6: 

f1 (B) = Lf2 (E) x f6 (B, Е) = 
е 

В результате у нас остается выражение 

которое можно вычислить, получив точечное произведение и нормализовав 
результат. 

Анализируя приведенную выше последоваrельность этапов, можно убедиться, 
что здесь требуется выполнение только двух основных вычислительных операций: 
получение точечного произведения пары факторов и исключение некоторой пере­
менной из произведения факторов путем суммирования. В следующем подразделе 
каждая из этих операций описывается подробнее. 

Операции над факторами 

Результатом точечного перемножения двух факторов, f и g, является новый фак­
тор Ь, переменные которого представляют собой объединение переменных из f и 
g, а элементы задаются произведением сооrветствующих элементов в двух исход­
ных факторах. Предположим, что два фактора имеют общие переменные У1 , • • •  , 

Yk. В таком случае получим 

f(X1 , · · ·  Х;, У1 , · · ·  Yk) x g(Y1 , · · ·  Yk, Z1 , · · ·  Zt) = b(X1 , · · ·  Х;, У1, · · ·  Yk, Z1 , · · ·  ц). 

Если все переменные являются бинарными, то факторы f и g имеют 'Jt'k и 2/rt/ 

элементов соответственно, а их точечное произведение будет иметь 'Jt'k+f элемен­
тов. Например, при заданных двух факторах f(X, У) и g(Y, Z) точечное произведе­
ние fx g = b(X, У, Z) имеет 2 1 + t + t = 8 записей, как показано на рис. 1 3 . 1 2 . Обратите 
внимание, что фактор, полученный в результате точечного произведения, может 
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содержать больше переменных, чем любой из перемножаемых факторов, и что 
размер фактора растет по экспоненциальному закону в зависимости от числа пере-
менных. Именно это является причиной быстрого роста пространственной и вре-
менной сложности в алгоритме устранения переменной. 

х у f(X, У) у z g(Y, Z) х у z h(X, Y, Z) 

0,3 0,2 0,3 х 0,2 = 0,06 
f 0,7 f 0,8 f 0,3 х 0,8 = 0,24 

f 0,9 f 0,6 f 0,7 х 0,6 = 0,42 
f f 0, 1 f f 0,4 f f 0,7 х 0,4 = 0,28 

f 0,9 х 0,2 = 0, 1 8  
f f 0,9 х 0,8 = 0,72 
f f 0, 1 х 0,6 = 0,06 
f f f 0, 1 х 0,4 = 0,04 

Рис. 1 3. 12. Пример точечного произведения факторов: f(X, У) х g(Y, 2) = h(X, У, 2) 

Операция устранения некоторой переменной из произведения факторов выпол­
няется посредством устранения подматриц, образованных путем фиксации пере­
менной к каждому из ее значений по очереди. Например, для устранения перемен­
ной Х из фактора Ь(Х, У, Z) запишем 

h2 (Y, Z) = I)(X, Y, Z) = h(x, Y, Z) +  h(-,x, Y, Z) = 

= (
0, 06 0, 24

) + (
0, 1 8  0, 72

) = (
0, 24 0, 96

) · 
0, 42 0, 28 0, 06 0, 04 0, 48 0, 32 

Единственная хитрость состоит в том, что в этой операции следует учитывать, 
что любой фаК"IОр, не зависящий от переменной, подлежащей устранению, может 
быть вынесен за пределы выражения суммирования. Например, для устранения 
суммированием переменной Х из точечного произведения фаК"IОров f и g можно 
вынести фаК"IОр g за пределы выражения суммирования: 

�)(X, Y) x g(Y, Z) = g(Y, Z) x  �)(Х, У) . 
х х 

Потенциально это намного более эффективно, чем вычисление большего точечно­
го произведения h, а затем устранения из него переменной Х 

Обратите внимание на то, что матрицы не умножаются до тех пор, пока не 
потребуется устранить суммированием некоторую переменную из накопленного 
произведения. В этот момент умножаются только те матрицы, которые включают 
переменную, подлежащую устранению. Если даны функции получения точечного 
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произведения и устранения суммированием, то алгоритм устранения переменной 
может быть записан весьма просто, как показано на рис. 13 . 13. 

function ELIMINATION-Asк(X, е, Ьп) returns распределение по Х 
inputs :  Х, переменная запроса 

е, наблюдаемые значения переменных Е 
Ьп, байесовская сеть с переменными vars 

factors +- [ ]  
for each V i n  ORDER( vars) do 

factors +- [МAKE-FACТOR( V, е)] + factors 
if V является скрытой переменной thenfactors +- Suм-Ouт(V, factors) 

return NoRMALIZE(P0INTWISE-PR0DUCT(/actors)) 

Рис. 13.13 .  Алгоритм устранения переменной, предназначенный для выполнения 
точного вероятностного вывода в байесовских сетях 

Упорядочение переменных и реnевантность переменной 
Алгоритм, представленный на рис. 13. 13, включает некоторую неуточненную 

функцию ORDER, предназначенную для выбора упорядоченности переменных. Вы­
бор любой упорядоченности приводит к допустимому алгоритму, но разная упо­
рядоченность приводит к тому, что в процессе вычислений генерируются разные 
промежуточные факторы. Например, в приведенном выше расчете переменная А 
устраняется раньше переменной Е; но если поступить наоборот, выполняемые вы­
числения изменятся на 

P(B I J, m) = a f1 (B) x l)4(A) x fs (A) x L/2(E) x fз(A, B, E), 
а е 

при выполнении которых будет сгенерирован другой фактор f6(A, В). 
В общем случае временная и пространственная сложность процедуры устра­

нения переменной определяется в основном размером наибольшего фактора, соз­
даваемого в процессе работы алгоритма. А это, в свою очередь, определяется 
выбранным порядком устранения переменных и структурой сети. Оказывается, 
очень трудно определить оптимальный порядок, но есть несколько хороших эв­
ристических методов. Один довольно эффективный метод можно характеризовагь 
как "жадный": устраняется та переменная, для которой размер следующего созда­
ваемого фактора будет минимальным. 

Рассмотрим еще один запрос :  P(JohnCalls I Burglary = true). Как обычно 
(см. уравнение ( 13.5)), на первом этапе необходимо записагь вложенное выраже­
ние суммирования: 
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P(J I Ь) = a P(b)L P(e)L P(a I b, e)P(J I a)L P(m I а) .  
е а т 

Если вычислять это выражение справа налево, то можно заметить нечто инте­
ресное: терм "f.J(m I а) равен 1 по определению !  А значит, необходимость учи­
тывать это выражение просто отпадает: переменная М не имеет отношения к 
данному запросу. Эту мысль можно выразить и иным образом: результат запроса 
P(JohnCalls I Burglary = true) не изменится, если из сети вообще исключить пере­
менную MaryCalls. Вообще говоря, из сети может быть удалена любая листовая 
вершина, если она не является переменной запроса или переменной свидетель­
ства. После ее удаления в сети могут оставаться еще некоторые листовые вер­
шины, которые также могут не иметь отношения к данному запросу. Продолжая 
указанный процесс, мы в конечном итоге обнаружим, что ♦ любая переменная, 
не являющаяся потомком переменной запроса или переменной свидетельства, не име­

ет отношения к запросу. Поэтому алгоритм устранения переменной позволяет сра­
зу удалить из рассмотрения все эти переменные, прежде чем приступить к вычис­
лению ответа на запрос. 

Если применить сказанное к примеру сети страховой компании, представлен­
ной на рис. 1 3 .9, то метод устранения переменной дает значительное улучшение 
в сравнении с показ�пелями алгоритма простого перебора. При выборе обратного 
топологического порядка для переменных точный вероятностный вывод с исполь­
зованием устранения переменной работает примерно в 1 ООО раз быстрее, чем ал­
горитм перебора. 

13.3.3. Сложность точного вероятностного вывода 

Сложность точного вероятностного вывода в байесовских сетях сильно зави­
сит от структуры сети. Сеть системы защиты от взлома, приведенная на рис. 1 3.2, 
принадлежит к семейству сетей, в которых существует не более одного ненаправ­
ленного (т.е. игнорирующего направление стрелок) пути между любыми двумя уз­
лами в сети. Такие сети называют ► односвязными или ► полидеревьями, они 
обладают особенно хорошим свойством: ♦ временная и пространственная слож­
ность точного вывода в полидеревьях линейно зависит от размера сети. В нашем 
случае размер определяется как количество записей в СРТ; если количество ро­
дительских вершин каждой вершины ограничено некоторой константой, то слож­
ность также будет линейно зависеть от количества вершин. Эrи результаты верны 
для любого упорядочивания, совместимого с топологическим порядком сети (см. 
упражнение 1 3. 1 8). 

Для ► многосвязных сетей, таких как сеть страховой компании, представлен­
ная на рис. 1 3 .9, метод устранения переменной в худшем случае может иметь экс­
поненциальную временную и пространственную сложность, даже если количество 
родительских вершин для любой вершины ограниченно. И это не удивительно, 
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если учесть тот факт, что ♦ вероятностный вывод в байесовских сетях - поскольку 
вывод в логике высказываний можно рассматривать как его частный случай - являет­
ся задачей NР-трудной. Чтобы доказать это утверждение, необходимо найти способ 
закодировать задачу пропозициональной выполнимости в виде байесовской сети 
таким образом, чтобы, выполнив вероятностный вывод в этой сети, можно было 
узнать, выполнимы ли исходные пропозициональные высказывания. (На языке те­
ории сложности это позволит ► свести задачи выполнимости к задачам вероят­
ностного вывода в байесовских сетях.) Как оказалось, сделать это довольно про­
сто. На рис. 13 .14 показано, как можно закодировать конкретную задачу 3-SAT. 
Пропозициональные переменные используются в качестве корневых переменных 
сети, каждая с априорной вероятностью 0,5. Следующий уровень вершин соот­
ветствует выражениям, причем каждая переменная выражения Cj связывается с 
соответствующими переменными как родительскими вершинами. Условное рас­
пределение для переменной выражения задается как детерминированная дизъюнк­
ция - с отрицанием, если это потребуется, так что каждая переменная выражения 
будет иметь значение true тогда и только тогда, когда присваивание значений ее ро­
дительским узлами удовлетворяет это выражение. И наконец, переменная S явля­
ется конъюнкцией переменных выражений. 

w 
С1 

х 
С2 s 

у 

Сз 

z 

Рис. 1 3. 1 4. Байесовская сеть, в которой закодировано высказывание 3-CNF 
(WV XV У) /\  (, W V  rv Z) /\ (XV r v  ,Z) 

Чтобы выяснить, удовлетворяется ли исходное высказывание, достаточно про­
сто вычислить P(S = true). Если высказывание выполнимо, то существуют некото­
рые возможные присваивания для логических переменных, при которых S будет 
иметь значение true. В байесовской сети это означает, что существует возможный 
мир с ненулевой вероятностью, в котором корневые переменные имеют такое при­
сваивание, что переменные выражений будут иметь значение true и переменная 
S также будет иметь значение true. Следовательно, P(S = true) > О для выполни­
мых высказываний. И наоборот, P(S = true) = О для невыполнимых высказываний: 
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все миры с S = true имеют вероятность О. Таким образом, вероятностный вывод в 
байесовских сетях можно использовю-ь для решения задач 3-SAT, а из этого мож­
но сделать заключение, что вероятностный вывод в байесовских сетях является 
NР-сложной задачей. 

На самом деле можно сделать даже больше. Обратите внимание, что вероят­
ность каждого выполняющего присваивания составляет 2-n для задачи с п пе­
ременными. Следовательно, количество выполняющих присваиваний равно 
P(S = true)/(2-n). Поскольку вычисление количества выполняющих присваиваний 
для задачи 3-SAT является #Р-полным (читается как "шарп-Р-полным"), это озна­
чает, что вероятностный вывод в байесовской сети является задачей #Р-трудной, 
т.е. строго сложнее, чем NР-полные задачи. 

Существует тесная связь между сложностью вероятностного вывода в байесов­
ской сети и сложностью задач удовлетворения ограничений (УО). Как было пока­
зано в главе 6, трудность решения дискретной задачи УО зависит от того, насколь­
ко "древовидным" является ее граф ограничений. Такие показатели, как ширина 
гипердерева, устанавливающие пределы сложности решения задачи УО, могут 
также применяться непосредственно к байесовским сетям. Более того, можно 
обобщить алгоритм устранения переменной таким образом, чтобы он позволял 
находить решения не только в байесовских сетях, но и в задачах УО. 

Подобно сведению задач выполнимости к вероятностному выводу в байесов­
ских сетях, можно свести сам вероятностный вывод в байесовских сетях к опре­
делению выполнимости, что позволит использовать преимущества мощных при­
ложений, созданных для решения задач SAT ( см. главу 7). В этом случае сведение 
выполняется к определенной форме решения задач SAT, называемой ► подсчетом 
взвешенных моделей (weighted model counting - WMC). При обычном подсчете 
моделей подсчитывается просто количество выполняющих присваиваний для вы­
ражения SAT. В методе WMC суммируется общий вес этих выполняющих присва­
иваний, где для данного случая вес модели, по существу, является произведением 
условных вероятностей для каждой переменной присваивания при заданных зна­
чениях родительских вершин. (Подробности приведены в упражнении 1 3  .1 9.) От­
части потому, что технология решю-елей SAT была столь хорошо оптимизирована 
именно для крупномасштабных приложений, вероятностный вывод в байесовских 
сетях через WMC оказался вполне конкурентоспособным, а иногда и превосходя­
щим эффективность других точных алгоритмов для байесовских сетей с большой 
шириной дерева. 

1 3 .3 .4. Алгоритмы кластеризации 

Обсуждавшийся выше алгоритм устранения переменной является простым 
и эффективным средством получения ответов на отдельные запросы. Однако, 
если потребуется вычислить апостериорные вероятности для всех переменных 
в сети, этот алгоритм может оказаться менее эффективным. Например, в сети с 
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полидревовидной струК'I)'рой для этого потребуется выдать О(п) запросов с заrра­
тами О(п) каждый, что в сумме потребует зarpar времени О(п2) . Использование ал­
горитмов ► кластеризации (известных также под названием алгоритмов ► дере­
ва соединения (join tree), позволяет сокраrить это время до О(п). По этой причине 
данные алгоритмы широко используются в коммерческих системах работы с бай­
есовскими сетями. 

Основная идея кластеризации состоит в объединении отдельных узлов сети для 
формирования кластерных вершин таким образом, чтобы результирующая сеть 
стала полидеревом . Например, многосвязная сеть, показанная на рис . 1 3 . 1 5 , а, 
может быть преобразована в полидерево путем объединения вершин Sprinkler 
(дождеваrель) и Rain (дождь) в кластерную вершину с названием Sprinkler+ Rain, 
как показано на рис. 1 3 . 1 5 , б. В результате эти две булевы вершины заменяют­
ся ► мегавершниой, принимающей четыре возможных значения : tt, tf, ft и ff. 
Эта мегавершина имеет только одну родительскую вершину - булеву перемен­
ную Cloudy, поэтому для нее количество обусловливающих случаев равно двум . 
Хотя данный пример этого не демонстрирует, процесс кластеризации часто приво­
дит к формированию мегавершин, разделяющих некоторые переменные. 

t t 0,99 
t f 0,90 
f t 0,90 
f f 0,00 

! Р(С = 0,5) ! 
Cloudy 

tt 
tf 
ft 
ff 0,00 

P(S+Rlc) 
с tt tf ft ff 
t 0,08 0,02 0,72 0, 1 8  
f О, 1 0  0,40 0, 10  0,40 

Рис. 13. 1S. а) Многосвязная сеть, описывающая процедуру ежедневного ухода за 
газоном Мэри. Каждое утро она проверяет погоду и, если облачно (cloudy), обыч­
но не включает дождеватель системы полива. Если дождеватель был включен или в 
течение дня шел дождь, то трава будет влажной (wetgrass) . Следовательно, верши­
на C/oudy влияет на вершину WetGrass двумя различными путями причинно-след­
ственных связей. б) Кластеризованный эквивалент исходной многосвязной сети 
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После приведения сети к форме полидерева применяется алгоритм вероят­ностного вывода специального назначения, поскольку обычные методы не по­зволяют обрабатывать мегаузлы, включающие общие переменные. По сути, этот алгоритм представляет собой одну из форм алгоритма распространения ограни­чений (см . главу 6), где ограничения обеспечивают согласование соседних кла­стеров по апостериорной вероятности любых переменных, которые являются у них общими. При наличии тщательно продуманных средств учета этот алгоритм позволяет вычислять апостериорные вероятности для всех вершин в сети, от­личных от вершин свидетельства, за время, линейно зависящее от размера кла­стеризованной сети. Тем не менее NР-трудность решаемой задачи никуда не ис­чезает: если сеть требует экспоненциальных затрат времени и пространства при устранении переменных, то экспоненциальные затраты времени и пространства потребуются и для построения таблиц условной вероятности (СРТ) в кластери­зованной сети. 

13.4. Приближенный вероятностный вывод 
в байесовских сетях 

Принимая во внимание неразрешимость точного вероятностного вывода в больших байесовских сетях, далее мы рассмотрим приближенные методы веро­ятностного вывода. В этом разделе описываются рандомизированные алгоритмы выборки (называемые также алгоритмами ► Монте-Карло), обеспечивающие по­лучение приближенных ответов, точность которых зависит от количества сфор­мированных выборок. Они работают посредством генерирования случайных со­бытий, исходя из вероятностей в байесовской сети и подсчитывания различных ответов, найденных при этих случайных событиях. При достаточном количестве выборок этот метод позволяет сколь угодно приблизиться к восстановлению ис­тинного распределения вероятностей - при условии, что байесовская сеть не имеет детерминированных условных распределений. Алгоритмы Монте-Карло, примером которых является алгоритм эмуляции от­жига ( см. раздел 4. 1 .2), используются во многих отраслях науки для оценки вели­чин, которые трудно рассчитать точно. В этом разделе нас интересует выборка, применяемая для вычисления апостериорных вероятностей в байесовских сетях. Здесь описывается два семейства алгоритмов: непосредственная выборка и выбор­ка с помощью цепи Маркова. Несколько других подходов к реализации приблизи­тельного вероятностного вывода упоминаются в разделе "Библиографические и исторические заметки" в конце главы. 



Глава 13. Вероятностные рассуждения 93 

1 3.4. 1 . Методы непосредственной выборки 

Примитивным элементом в любом алгоритме выборки является формирова­
ние выборок из известного распределения вероятностей. Например, обычная мо­
нета может рассматриваться как случайная переменная Coin со значениями (heads, 
tails) и априорным распределением P(Coin) = (0,5 ;  0,5 ) .  Операция получения вы­
борки из этого распределения полностью аналогична подбрасыванию монеты : с 
вероятностью 0,5 эта операция будет возвращать значение heads (орел) и с такой 
же вероятностью - значение tails (решка). Если имеется источник случайных чи­
сел r, равномерно распределенных в диапазоне [О, 1 ] , совсем несложно сформи­
ровать любое распределение по одной переменной, как дискретное, так и непре­
рывное. Это выполняется путем построения кумулятивного распределения для 
переменной и возврата первого значения, кумулятивная вероятность которого пре­
вышает r (см . упражнение 1 3 .20). 

Начнем с процесса построения случайной выборки для байесовской сети, не 
имеющей связанных с этой выборкой свидетельств . Идея состоит в том, что вы­
борка должна формироваться последовательно по каждой переменной, в топологи­
ческом порядке. Распределение вероятностей, из которого берется выборка значе­
ния, обусловливается значениями, уже присвоенными родительским переменным 
текущей переменной. (Поскольку выборка выполняется в топологическом поряд­
ке, родительские вершины гарантированно уже будут иметь значения.) Этот алго­
ритм приведен на рис. 1 3  . 1 6 .  Применяя его к сети, представленной на рис 1 3 . 1 5 , а, 
с упорядоченностью переменных Cloudy, Sprinkler, Rain, WetGrass, случайное со­
бытие можно создать следующим образом. 

1 .  Выполняем выборку из распределения P(Cloudy) = (0,5 ; 0,5) ; предположим, 
что она возвращает true. 

2. Выполняем выборку из распределения P(Sprinkler I Cloudy = true) = (О, 1 ; 0,9) ; 
предположим, что она возвращаетfа/sе. 

3 .  Выполняем выборку из распределения P(Rain I Cloudy = true) = (0,8;  0,2) ; 
предположим, что она возвращает true. 

4. Выполняем выборку из распределения P(WetGrass I Sprinkler = false, 
Rain = true) = ( О, 9; О, 1 ) ; предположим, что она возвращает true. 

В данном случае алгоритм PRIOR-SAMPLE возвращает событие [true,false, true, true] . 
Легко показать, что алгоритм PRIOR-SAMPLE генерирует выборки на основе 

априорного совместного распределения, заданного в рассматриваемой сети. Итак, 
пусть Sps(x 1 , • • • , хп) представляет собой вероятность того, что конкретное событие 
сгенерировано алгоритмом PRIOR-SAMPLE. Просто взглянув на процесс формиро­
вания выборки, можно утверждать, что 

п 
Sps (x1 . . .  Хп ) = П P(xi I parents(Xi )) , 

i=] 
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поскольку каждый этап процедуры зависит только от родительских значений. Это 
выражение должно показаrься читателю весьма знакомым, так как оно определя­
ет также вероятность события в соответствии с представлением совместного рас­
пределения в байесовской сети, как указано в уравнении (13.2). Поэтому получа­
ем следующее: 

Sps(X 1 ,, · · ·  , Хп) = Р(х, ,, . . .  , Хп)-
Этот простой факт позволяет легко получать ответы на вопросы с помощью вы­
борок. 

function PRIOR-SAMPLE(bn) returns событие, полученное путем применения 
операции формирования выборки к априорному 
распределению, заданному в виде сети Ьп 

inputs : Ьп, байесовская сеть, задающая совместное распределение Р(Х1 , . . .  , Хп) 

х +- событие с п элементами 
for еасЬ переменная Х; in Х1 , . . .  , Хп do 

x[i] +- случайная выборка из Р(Х; 1 parents(X;)) 
return х 

Рис. 13. 1 6. Алгоритм выборки, генерирующий события на основании байесовской 
сети. Каждая переменная получает значение в соответствии с ее условным распре­
делением при уже заданных значениях ее родительских переменных 

В mобом алгоритме формирования выборки ответы вычисляюrся подсчетом фак­
тически сформированных выборок. Предположим, что общее количество выборок, 
полученных с помощью алгоритма PRioR-SAМPLE, равно N, и пусть Nps(x 1 , . . . , Хп) ­
количество раз, когда конкретное событие х 1 , • • • , Хп появлялось в множестве выбо­
рок. Мы рассматриваем это количество как часть от целого, которая в пределе сой­
дется к ожидаемому значению, соответствующему вероятности выборки: 

( 1 3.6) 

Например, рассмотрим событие, полученное ранее: [true,false, true, true]. Веро­
ятность формирования выборки для этого события такова: 

Sps(true,false, true, true) = 0,5 х 0,9 х 0,8 х 0,9 = 0,324. 

Следовательно, в пределе при очень больших значениях N около 32,4% выборок 
будут относиться к этому событию. 

В дальнейшем всякий раз, когда будет использован символ приближенного ра­
венства (�), мы будем придавать ему именно этот смысл, - что оцениваемая 
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вероятность становится точной в пределе при больших количествах выборок. Та­
кая оценка называется ► согласованной. Например, можно получить согласован­
ную оценку вероятности любого частично заданного события х 1 , • • • , хт, где т ::;;  п, 
следующим образом: 

( 1 3 .7) 

Это означает, что вероятность события можно оценить с помощью деления ко­
личества выборок частично заданного события на количество завершенных собы­
тий, полученных в процессе формирования выборок. Мы будем использовать за­
пись Р (произносится как "Р-шапочка") для обозначения предполагаемой 
вероятности. Например, если для сети полива лужайки ( см. рис. 1 3  . 1 5, а) будет 
сгенерирована 1 ООО выборок и 5 1 1 из них будут включать выражение Rain = true, 
то оценка вероятности дождя, которая записывается как Р (Rain = true), будет рав­
на 0,5 1 1 . 

Формирование выборок с отклонением в байесовских сетях 
Формирование ► выборок с отклонением представляет собой общий метод 

получения выборок на основании распределения, для которого трудно получить 
выборки, если дано распределение, позволяющее легко сформировать выборки. 
В своей простейшей форме этот метод может использоваться для вычисления ус­
ловных вероятностей, т.е. для определения вероятностей Р(Х I е). Алгоритм 
REJECTION-SAMPLING приведен на рис. 1 3  . 1 7. В начале он формирует выборки из 
априорного распределения, определяемого сетью, а затем исключает все те выбор­
ки, которые не соответствуют свидетельству. Наконец, формируется оценка 
Р (X=x l е) путем подсчета, насколько часто событие Х=х встречалось в оставших­
ся выборках. 

Пусть Р (XI е) - оцениваемое распределение, которое было возвращено алго­
ритмом; это распределение вычислено посредством нормализации Nps(X, е), век­
тора количества выборок для каждого значения Х, где выборка согласуется со сви­
детельством е: 

P(X l e) = a Nps (X, e) Nps (X, e)
. 

Nps (e) 

На основании уравнения ( 1 3 . 7) это соотношение может быть преобразовано в сле­
дующее: 

Р(Х I е) � 
Р(Х,е) = Р (Х I е) . 

Р(е) 

Таким образом, алгоритм формирования выборок с отклонением вырабатывает со­
гласованную оценку истинной вероятности. 
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function REJECТION-SAMPLING(X, е, Ьп, N) returns оценка значения Р(Х I е) 
inputs: Х, переменная запроса 

е, наблюдаемые значения ДJIЯ переменных Е 
Ьп, байесовская сеть 
N, общее количество выборок, которые должны быть сгенерированы 

local variaЫes: С, вектор результатов подсчетов количества ДJIЯ каждого 
значения Х, исходно равен нулю 

for j = 1 to N do 
х +- PRIOR-SAMPLE(bn) 
if х согласуется со свидетельством е then 

С[,1 +- СIЛ + 1 ,  где xj есть значение переменной Х в множестве х 
return NoRMALIZE(C) 

Рис. 13. 17. Алгоритм формирования выборок с отклонением ДJIЯ получения ответов 
на запросы при заданных свидетельствах в байесовской сети 

Вновь обраrившись к примеру, приведенному на рис. 13.15, а, предположим, 
что необходимо оценить вероятность P(Rain I Sprinkler = true) на основании 100 вы­
борок. Предположим, что из 100 сформированных выборок 73 включают событие 
Sprink/er =false и исключаются из рассмотрения, а в 27 оставшихся выборках име­
ет место событие Sprinkler = true, причем в 8 из этих 27 выборок наблюдается со­
бытие Rain = true, а в оставшихся 19 - Rain = false. Следовательно, 

P(Rain I Sprinkler = true) � NoRMALIZE ( (8; 1 9) )  = (0,296; о, 704).  

Точным ответом является (0,3 ; 0,7). По мере дальнейшего накопления все боль­
шего количества выборок получаемая оценка сходится к правильному ответу. 
Среднеквадраrичное отклонение ошибки в каждой оценке вероятности будет про-
порционально 1 / ✓n , где п - количество выборок, используемых для получения 
оценки. 

Теперь, когда мы знаем, что результат алгоритма формирования выборок с от­
клонением сходится к правильному отве,у, следующим вопросом будет, насколько 
быстро это происходит? Говоря точнее, как много потребуется сгенерировать вы­
борок, прежде чем станет известно, что полученные оценки с высокой вероятно­
стью близки к правильным ответам? В то время как сложность точных алгоритмов 
в значительной степени зависит от топологии сети - деревья просчитать легко, 
а плотно связанные сети трудно, - сложность выборки с отклонением в первую 
очередь зависит от доли выборок, которые принимаются. Эrа доля в точности рав­
на априорной вероятности свидетельства Р(е). К сожалению, для сложных задач 
со многими переменными свидетельства эта доля исчезающе мала. При примене­
нии к дискретной версии сети страховой компании, приведенной на рис. 13.9, доля 
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выборок, согласованных с типичными вариантами вектора свидетельств, выбран­
ных из самой сети, обычно находится между одной тысячной и одной десятиты­
сячной. Схождение к правильному результату в этом случае является чрезвычайно 
медленным (обратитесь к рис. 1 3 . 1 9, приведенному ниже). 

Можно полагать, что доля выборок, согласованных со свидетельством е, будет 
экспоненциально уменьшаться по мере увеличения количества переменных свиде­
тельства, поэтому данная процедура становится неприменимой для решения слож­
ных задач. Для нее также характерны трудности в отношении переменных свиде­
тельства с непрерывными значениями, так как вероятность получения выборки, 
согласованной с такими свидетельствами, равна нулю ( если переменная действи­
тельно является непрерывной) или бесконечно мала (если это просто число с пла­
вающей точкой конечной точности). 

Обратите внимание на то, что процесс формирования выборок с отклонением 
очень похож на процесс оценки условных вероятностей по данным, полученным 
из реального мира. Например, чтобы оценить условную вероятность того, что ка­
кие-то люди выживут после падения на Землю астероида диаметром 1 км, можно 
просто подсчитать, как часто какие-то люди выживали после падения на Землю 
астероида диаметром 1 км, исключив из рассмотрения все остальные дни, когда 
такого события не происходило. (В этом случае роль алгоритма формирования вы­
борок играет сама Вселенная . )  Чтобы получить достойную оценку, может потре­
боваться дождаться, пока произойдет 1 00 подобных событий .  Очевидно, что на это 
потребуется очень много времени, и именно в этом и состоит основной недостаток 
процедуры формирования выборок с отклонением. 

Выборка по значимости 
Общий статистический метод ► выборки по значимости нацелен на имита­

цию эффекта выборки из распределения Р с использованием выборок из другого 
распределения Q. Гарантируется, что в пределе полученные ответы будут верны 
за счет применения поправочного коэффициента P(x)/Q(x), называемого весовым, 
к каждой выборке х при подсчете выборок. 

Причина использования выборки по значимости в байесовских сетях очень 
проста: хотелось бы делать выборки из истинного апостериорного распределения, 
обусловленного по всем имеющимся свидетельствам, но, как правило, это слиш­
ком сложно.6 Так что вместо этого выборка выполняется из простого распределе­
ния и к ней применяются необходимые поправки.  Причина, по которой выборка по 
значимости работает, также проста. Обозначим множество переменных, не имею­
щих свидетельства, как Z. Если бы у нас была возможность делать выборку непо­
средственно из P(z I е), можно было бы получить такие оценки: 

6 Если бы это было просто, то можно было бы аппроксимировать желаемую вероят­
ность до произвольной точности при полиномиальном количестве выборок. Однако можно 
показать, что подобной схемы аппроксимации за полиномиальное время не существует. 
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А Np (Z) P(z l e) = -- � P(z J e) , 
N 

где Np(z) представляет собой количество выборок с Z = z при выполнении выборки 
из Р. Теперь предположим, что вместо этого мы выбираем из Q(z) . Оценка в этом 
случае будет включать поправочные коэффициенты : 

P(z J e) 
NQ (z) P(z J e) � Q(z) P(z J e) P(z l e) . 

N Q(z) Q(z) 

Следовагельно, оценка сходится к правильному значению независимо от того, 
какое выборочное распределение Q используется. (Единственное техническое требо­
вание состоит в том, что Q(z) не должно быть равно нулю для любого z, где P(z I е) 
отлично от нуля.) Иmуитивно понятно, что поправочный коэффициент компенсиру­
ет перевыборку или недовыборку. Например, если для некоторого z распределение 
Q(z) значительно больше, чем P(z I е), то для этого z будет намного больше выборок, 
чем должно быть, но каждая из них будет иметь небольшой вес, поэтому конечный 
результаг будет таким же, как если бы их было правильное количество. 

Что касается того, какое распределение Q следует использовагь, то желательно 
выбрать такое, из которого легко делать выборки и которое как можно ближе к ис­
тинному апостериорному распределению P(z I е). Наиболее общепринятый подход 
называют ► взвешиванием по правдоподобию (likelihood weighting) - по при­
чинам, которые скоро станут понятны. Как представлено в функции WEIGНТED­
SAMPLE на рис. 1 3  . 1 8, алгоритм фиксирует значения переменных свидетельства Е 
и делает выборку по всем переменным, не имеющим свидетельства, в топологи­
ческом порядке, каждая из которых обусловливается своими родительскими вер­
шинами. Это гарантирует, что каждое сгенерированное событие будет согласова­
но со свидетельством. 

Пусть Qws - выборочное распределение, сформированное этим алгоритмом . 
Если множеством переменных, отличных от переменных свидетельства, является 
Z =  {Z1 , . . .  , Z1 } ,  то имеем 

/ 
Qws(z) = П P(z; 1 parents(Z; )) , 

i=1 
( 1 3 . 8) 

поскольку для каждой переменной выборка формируется с учетом значений ее ро­
дительских узлов. Чтобы полностью завершить этот алгоритм, необходимо знать, 
как вычислить весовой коэффициент для каждой выборки, сформированной из 
Qws- Согласно общей схеме формирования выборки по значимости, весовой коэф­
фициент должен быть 

w(z) = P(z I e)/Qws(z) =  a P(z, e)/Qws(z), 
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где константа нормализации а = 1 /Р(е) будет одной и той же для всех выборок. Те­
перь z и е вместе охватывают все переменные в байесовской сети, поэтому P(z, е) 
является просто произведением всех условных вероятностей (см. уравнение ( 1 3 .2), 
раздел 1 3 .2). Можно записать его как произведение условных вероятностей для пе­
ременных, не являющихся переменными свидетельства, умноженное на произве­
дение условных вероятностей для переменных свидетельства: 

w(z) = а P(z, e) = 
Q ws(z) 

= а П�= 1 Р(z; 1 parents(Z; )) П�= 1 Р(е; 1 parents(E; )) = 
п�= I P(z; 1 parents(Zi )) 

= а П Р(е; 1 parents(E; )) . 
i = I  

function LIKELIHOOD-WEIGHTING(X, е ,  Ьп, N) returns оценка значения Р(Х I е) 
inputs: Х, переменная запроса 

е, свидетельство, определяемое как некоторое событие в Е 

( 1 3 .9) 

Ьп, байесовская сеть, задающая совместное распределение Р(Х1, • • •  , Хп) 
N, общее количество выборок, которые должны быть сформированы 

local variaЫes: W, вектор взвешенных результатов подсчетов для каждого 
значения Х, исходно равен нулю 

for j = 1 to N do 
х, w - WEIGHTED-SAMPLE(bn, е) 
W[J1 .- WU] + w, где Xj является значением переменной Х в множестве х 

return NoRМALIZE(W) 

function WEIGHTED-SAMPLE(bn, е) returns событие х и вес w 

w .- 1 ;  х .- событие с п элементами, значения которых определяются из е 
for i = 1 to п do 

if Х; является переменной свидетельства со значением xii в е 
then w .- w х Р(Х; = Xij I parents(X;)) 
else x[i] .- случайная выборка из распределения Р(Х; 1 parents(X;)) 

return х, w 

Рис. 13. 18. Алгоритм взвешивания по правдоподобию для вероятностного вывода в 
байесовских сетях. В функции WEIGНТED-SAMPLE для каждой переменной, не явля­
ющейся переменной свидетельства, формируется выборка в соответствии с услов­
ным распределением при заданных значениях родительских переменных, выборка 
для которых уже была сформирована, в то время как весовое значение накаrmивает­
ся на основе вероятности для каждой переменной свидетельства 
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Таким образом, весовой коэффициент является произведением условных ве­
роятностей для переменных свидетельства при заданных значениях родитель­
ских переменных. (Вероятности свидетельства обычно называют правдоподоби­
ем, отсюда и название метода.) Вычисление весовых коэффициентов в функции 
WEIGIПED-SAMPLE выполняется пошагово, умножением текущего значения (исход­
но это 1 )  на условную вероятность каждый раз, когда встречается очередная пере­
менная свидетельства. Нормализация весовых коэффициентов выполняется в кон­
це работы основного алгоритма, перед возвращением результата запроса. 

Применим этот алгоритм к сети, представленной на рис. 1 3 . 1 5 , а, на примере 
получения ответа на запрос P(Rain I Cloudy = true, WetGrass = true) и упорядочен­
ности вершин C/oudy, Sprinkler, Rain, WetGrass. (Может быть использовано лю­
бое топологическое упорядочение.) Эrот процесс происходит следующим обра­
зом: вначале вес w устанавливается равным 1 ,0, а затем генерируется событие, как 
описано ниже. 

1 .  Cloudy - это переменная свидетельства со значением true. Поэтому мы 
устанавливаем 

w � w x P(Cloudy = true) = 0,5 .  

2 . Переменная Sprinkler не является переменной свидетельства, поэтому вы­
борка из P(Sprinkler l Cloudy= true) = (0, 1 ; 0,9) . Предположим, что возвраща­
ется значение/а/sе. 

3. Переменная Rain не является переменной свидетельства, поэтому выборка 
из P(Rain I Cloudy = true) = (0,8; 0,2) . Предположим, что возвращается значе­
ние true. 

4. Переменная WetGrass - это переменная свидетельства со значением true, 
поэтому мы устанавливаем 

w � w х P(WetGrass = true I Sprink/er = false, Rain = true) = 
= 0,5 х 0,9 = 0,45 .  

В этом случае алгоритм WEIGНТED-SAMPLE возвращает событие [true,Jalse, true, 
true] с весовым коэффициентом 0,45, и данные об этом событии подытоживаются 
с учетом условия Rain = true. 

Обратите внимание, что в число переменных Parents(Z;) могут входить как 
скрытые переменные, не являющиеся переменными свидетельства, так и пере­
менные свидетельства. В отличие от априорного распределения P(z), в распреде­
лении Qws некоторое внимание уделено свидетельству: для каждой переменной Z; 
на значения сформированных выборок среди других предков Z; оказывает влия­
ние и свидетельство. Например, при формировании выборочных значений для пе­
ременной Sprink/er алгоритм обращает внимание на свидетельство Cloudy = true в 
ее родительских переменных. С другой стороны, в распределении Qws свидетель­
ству уделяется меньше внимания, чем в истинном апостериорном распределении 
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P(z I е), поскольку в значениях сформированных выборок для каждой перемен­
ной Z; игнорируются свидетельства, относящиеся к переменным, не являющим­
ся предками Z;. Например, при формировании выборок для переменных Sprinlder 
и Rain алгоритм игнорирует свидетельство дочерней переменной WetGrass = true, 
а это означает, что он сформирует много выборок с переменными Sprinkler =false 
и Rain =false, несмотря на тот факт, что свидетельство факгически исключает этот 
случай. Эти выборки будут иметь нулевой вес .  

Поскольку в алгоритме взвешивания по правдоподобию используются все 
сформированные выборки, он может оказаться гораздо более эффективным по 
сравнению с алгоритмом формирования выборок с отклонением. Тем не менее 
он также имеет недостаток: снижение производительности по мере увеличения 
количества переменных свидетельства. Это связано с тем, что в таких случаях 
большинство выборок будут иметь очень малые весовые коэффициенты и, сле­
довательно, во взвешенной оценке будет доминировать крошечная доля выборок, 
которые согласуются со свидетельством с правдоподобием, большим бесконечно 
малого. Эта проблема усугубляется, если переменные свидетельства занимают по­
следние места в упорядочении переменных, поскольку в этом случае переменные, 
не являющиеся переменными свидетельства, не получат никаких свидетельств от 
своих родительских переменных и других предков, которые направляли бы про­
цесс формирования выборок. Фактически в этом случае процесс формирования 
выборки будет представлять собой некую "галлюцинацию" - моделирование си­
rуации, имеющей мало сходства с реальностью, определяемой свидетельством. 

При применении к дискретной версии сети страховой компании, представ­
ленной на рис. 1 3 .9, алгоритм взвешивания по правдоподобию оказывается зна­
чительно более эффективным в сравнении с алгоритмом выборки с отклонени­
ем (рис. 1 3  . 1 9) .  Сеть страховой компании является относительно благоприятным 
случаем для алгоритма взвешивания по правдоподобию, поскольку большая часть 
переменных свидетельства находится в начале последовательности упорядочения 
переменных, а переменные запроса представляют собой конечные узлы сети. 

1 3.4.2. Вероятностный вывод по методу 
моделирования цепи Маркова 

Алгоритмы ► Монте-Карло с использованием цепи Маркова (Marlwv chain 
Monte Car/o - МСМС) работают не так, как алгоритмы выборки с отклонени­
ем или взвешивания по правдоподобию. Вместо формирования каждой выборки 
с нуля алгоритмы МСМС формируют очередную выборку посредством внесения 
случайного изменения в предыдущую выборку. Работу алгоритма МСМС можно 
представить так: находясь в некотором определенном текущем состоянии, в кото­
ром каждой переменной присвоено некоторое значение, алгоритм формирует сле­
дующее состояние за счет внесения случайных изменений в текущее состояние. 
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Рис. 13. 1 9. Производительность алгоритмов выборки с отклонением и взвешивания 
по правдоподобию применительно к сети страховой компании. Ось х представляет 
количество сформированных выборок, а ось у - максимальную абсолютную ошиб­
ку любых значений вероятности для запроса о переменной PropertyCost 

Термин ► цепь Маркова определяет случайный процесс, в котором формиру­
ется некоторая последоваrельность состояний. (Концепция цепей Маркова также 
занимает видное место в материале глав 14 и 17; алгоритмы моделирования 01ЖИ· 
га из главы 4 и WALKSAT из главы 7 также являются членами семейства МСМС.) 
Мы начнем с обсуждения определенной формы алгоритмов МСМС, называемой 
► выборкой Гиббса, которая особенно хорошо подходит для байесовских сетей. 
Затем будет рассмотрен более общий алгоритм ► Метрополиса-Гастиигса, обе­
спечивающий гораздо больше гибкости в процессе формирования выборок. 

Выборка Гиббса в байесовских сетях 
Алгоритм выборки Гиббса для сетей Байеса начинает работу с произвольного 

состояния (при этом наблюдаемые значения переменных свидетельства являются 
зафиксированными) и формирует следующее состояние посредством случайной 
выборки значения для одной из переменных Х;, отличной от переменных свиде­
тельства. Напомним из раздела 13 .2.1, что переменная Х; является независимой от 
всех других переменных при заданных значениях переменных ее марковского по­
крытия ( ее родительских переменных, дочерних переменных и других родитель­
ских переменных ее дочерних переменных). Следовательно, выборка Гиббса для 
переменной Х; означает выборку, обусловленную текущими значениями перемен­
ных в ее марковском покрытии. Таким образом, алгоритм предполагает случай­
ное блуждание в пространстве состояний (пространстве возможных полных при­
сваиваний), при котором каждый раз изменяется значение одной переменной, но 
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значения переменных свидетельства остаются зафиксированными. Полный текст алгоритма представлен на рис. 1 3 .20. 
function Gшвs-Аsк(Х, е, Ьп, N) returns оценка значения P(X je) 

local variaЫes: С, вектор результатов подсчетов по Х, исходно равен нулю 
Z, переменные в сети Ьп, отличные от переменных свидетельства 
х, текущее состояние сети, первоначально скопированное из е 

инициализировать х случайными значениями переменных из Z 
for k = 1 to N do 

choose значение любой переменной Z; из Z в соответствии с любым 
распределением p(i) 

установить значение Z; в х посредством выборки из P(Z; lmb(Z;)) 
С И] +- С И] + 1 ,  где xi является значением переменной Х в х 

return NoRМALIZE(C) 

Рис. 13.20. Алгоритм выборки Гиббса дr1я приближенного вывода в байесовских се­
тях. В представленной версии переменные выбирают случайным образом, но вари­
ант с циклическим перебором переменных также будет работать 

Рассмотрим запрос P(Rain I Sprinkler = true, WetGrass = true) для сети, приве­денной на рис. 1 3 . 1 5 , а. Значения переменных свидетельства Sprink/er и WetGrass зафиксированы и равны их наблюдаемым значениям ( обе имеют значение true ), а переменные Cloudy и Rain, отличные от переменных свидетельства, инициали­зируются случайным образом, - скажем, true иfalse соответственно. Таким обра­зом, начальным состоянием сети является [true, true,fa/se, true], где фиксирован­ные значения переменных свидетельства выделены полужирным шрифтом. Далее для переменных Z;, отличных от переменных свидетельства, многокраrно форми­руются выборки, при этом изменяемая переменная определяется в некотором слу­чайном порядке, соответствующем вероятностному распределению р(1). Вот кон­кретный пример. 
1 .  В качестве изменяемой выбирается переменная Cloudy и формируется вы­борка с учетом текущих значений переменных ее марковского покрытия : в данном случае выборка берется из Р( C/oudy I Sprinkler = true, Rain = false ) . Предположим, что результаrом является Cloudy = false, и в этом случае но­вым текущим состоянием становится [false, true,false, true] . 2. Выбирается переменная Rain и формируется выборка с учетом текущих зна­чений переменных ее марковского покрытия : в данном случае выборка фор­мируется из P(Rain I Cloudy = fa/se, Sprinkler = true, WetGrass = true ). Предпо­ложим, что результатом является Rain = true. Новым текущим состоянием становится [fa/se, true, true, true] . 



1 04 Часть IV. Неопределенные знания и рассуждения в условиях неопределенности 

Одной из еще не рассмотренных деталей является метод расчета распределения 
марковскоrо покрытия Р(Х; 1 тЬ(Х;)), где через тЬ(Х;) обозначены значения пере­
менных в марковском покрытии МВ(Х;) переменной Х;. К счастью, он не предпо­
лагает каких-либо сложных логических выводов. Как показано в упражнении 1 3 . 8, 
это распределение задается как 

P(xi l тЬ(Х; )) = o.P(xi l parents(X;)) п 
Y1 eChildren(X; ) 

Иначе говоря, для каждого значения xi вероятность задается перемножением ве­
роятностей из таблиц условных вероятностей (СРТ) для переменной Х; и ее до­
черних переменных. Например, на первом этапе показанной выше последователь­
ности действий выборка выполнялась из распределения Р( Cloudy I Sprinkler = true, 
Rain =fa/se). По уравнению ( 1 3 . 1 0), воспользовавшись сокращенными именами 
переменных, получим 

Р(с I s, ,r) = а P(c)P(s I c)P( ,r I с) = о. 0,5 · О, 1 · 0,2, 
Р(,с l s,,r) = o. P(,c)P(s 1 ,c)P(,r l ,c) = о. 0,5 · 0,5 · 0,8, 

поэтому распределение выборки о.(0,00 1 ;  0,020) � (0,048;  0,952) . 
На рис. 1 3 .2 1 ,  а показана полная марковская цепь для случая, когда перемен­

ные выбирались при равномерном распределении, т.е. p(Cloudy) = p(Rain) = 0,5. Ал­
горитм будет просто блуждать по этому графу, выбирая ребра для очередного пе­
рехода с указанными вероятностями.  Каждое состояние, посещенное в ходе этого 
процесса, представляет собой выборку, которая вносит свой вклад в оценку значе­
ния переменной запроса Rain. Если процесс посетит 20 состояний, в которых пере­
менная Rain имеет значение true, и 60 состояний, в которых переменная Rain будет 
иметь значение/а/sе, то ответом на запрос будет NORMALIZE((20; 60) ) = (0,25 ;  0,75 ) .  

Анаяиз цепей Маркова 

Выше уже упоминалось, что выборка Гиббса работает посредством случайного 
блуждания по пространству состояний в процессе генерации выборок. Чтобы обьяс­
нить, почему выборка Гиббса работает прави11ьно - т.е. почему ее оценки в пределе 
сходятся к правильным значениям, - нам потребуется некоторый тuщrельный анализ. 
(Эrот раздел несколько магемагический и может бьrrь пропущен при первом чтении.) 

Начнем с некоторых основных понятий из области анализа цепей Маркова в це­
лом . Любая такая цепь определяется своим начальным состоянием и ► ядром пе­
рехода k (х ➔ х' ) - вероятностью перехода в состояние х' из состояния х. Теперь 
предположим, что мы запускаем цепь Маркова для выполнения t этапов, и пусть 
111(х) - вероятность того, что система будет в состоянии х в момент времени t. 
Аналогичным образом пусть 111+ 1 (х') - вероятность того, что система будет в со­
стоянии х' в момент времени t + 1 .  Если дано значение 11,(х), то значение 11н 1 (х') 
можно вычислить путем суммирования по всем состояниям х, в которых система 



Глава 13. Вероятностные рассуждения 105 

может находиться во время t, вероятностей пребывания в этом состоянии, умно­
женных на вероятности осуществления перехода в состояние х': 

0,2222 

0,0926 

0,4074 

0,2778 0,0238 

0,3922 

0, 1 078 

а) 

'ТТ1+1 (х') = L 'ТТ1 (x)k(x ➔ х') . 
х 

0,4762 0,5000 

0,0000 

0,5000 

0,0000 0,0000 

0,5000 

0,0000 

б) 

0,5000 

Рис. 13.21 .  а) Состояния и вероятности перехода марковской цепи для запроса 
P(Rain I Sprinkler = true, WetGrass = true). Обратите внимание на петли для отдель­
ных состояний: состояние остается тем же самым, когда выбирается любая пере­
менная, а затем для нее вновь выбирается то же значение, которое она уже имеет. 
б) Вероятности перехода, когда таблица условных вероятностей переменной Rain 
ограничивает ее, вынуждая иметь такое значение, как у переменной Cloudy 

Цепь называют достигшей своего ► стационарного распределения (stationary 
distribution), когда -тt1 = 'ТТн t •  Обозначим это стационарное распределение как -тt, -
оно определяется следующим уравнением: 

-тt(х') = L -тt(x)k(x ➔ х') для всех х'. ( 1 3 . 1 1 )  
х 

При условии, что ядро перехода является ► эргодическим - т.е. любое состо­
яние достижимо из любого другого и в сети нет строго периодических циклов, -
существует одно и только одно распределение -тt, удовлетворяющее данному урав­
нению при любом заданном k. 

Уравнение ( 1 3  . 1 1 ) можно тракrовать как утверждение, что ожидаемый "01Т0к" 
из каждого состояния (т.е. его текущее "население") равен ожидаемому "притоку" 
из всех других состояний. Один из очевидных способов удовлетворения этого от­
ношения состоит в достижении того, чтобы ожидаемый поток между любыми па­
рами состояний был одинаковым в обоих направлениях, иначе говоря 
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11(x)k (x ➔ x') = 11(x')k (x' ➔ х) для всех х, х' . ( 1 3 . 1 2) 

Когда эти уравнения выполнены, говорят, что k (х ➔ х') находится в ► детали­
зированном равновесии с 11(х). Одним из частных случаев является петля х = х', 
т.е. переход из некоторого состояния в него же. В этом случае условие детализиро­
ванного равновесия преобразуется в 11(x)k (х ➔ х) = 11(x)k (х' ➔ х), что, конечно же, 
является тождеством для любого стационарного распределения 11 и любого ядра 
перехода k. 

Можно показать, что из свойства детализированного равновесия можно выве­
сти свойство стационарности, просто просуммировав по х в уравнении ( 1 3 . 1 2). 
Получим следующее соотношение: 

L 11(x)k(x ➔ х') = L 11(x')k(x' ➔ х) = 11(х') Lk(x' ➔ х) = 11(х'), 
х х k 

где последний этап возможен, поскольку выполнение перехода из состояния х' га­
рантировано. 

Почему выборка Гиббса работает 
Теперь покажем, что выборка Гиббса возвращает совместимые оценки для 

апостериорной вероятности. Основное выдвигаемое положение просто: • ста­
ционарное распределение процесса выборки Гиббса - это в точности апостериорное 
распределение переменных, отличных от переменных свидетельства, обусловленных 
свидетельством. Это замечательное свойство следует из особого способа, кото­
рым процесс выборки Гиббса переходит из состояния в состояние. 

Общее определение выборки Гиббса состоит в том, что сначала выбирается пе­
ременная Х;, а затем для нее формируется выборочное значение, обусловленное те­
кущими значениями всех других переменных. (При применении конкретно к бай­
есовским сетям мы просто используем тот дополнительный факт, что 
обусловленность выборки текущими значениями всех переменных здесь эквива­
лентна обусловленности выборки лишь текущими значениями переменных мар­
ковского покрытия, как было показано в разделе 1 3.2. 1 . ) Мы будем использовать 
нотацию Х; для ссылок на эти другие переменные (за исключением переменных 
свидетельства), и Х; для ссьmок на их значения в текущем состоянии. 

Чтобы записать ядро перехода k(x ➔ х') для выборки Гиббса, необходимо рас­
смотреть три случая : 

1 .  Состояния х и х' различаются двумя или более переменными. В этом случае 
k(x ➔ х') = О, поскольку выборка Гиббса изменяет только одну переменную. 

2. Состояния х и х' различаются ровно одной переменной Х;, которая изменила 
свое значение с х; на х/. Вероятность такой ситуации равна 

k(x ➔ х') = k((x; , Х; ) ➔ (х; ,  Х; )) = p(i)P(x; 1 х;) .  ( 1 3 . 1 3 ) 
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3 .  Состояния одинаковы : х = х'. В этом случае может быть выбрана любая пе­
ременная, но процесс выборки сформирует то же значение, которое эта пе­
ременная уже имеет. Вероятность такой сиrуации равна 

k(x ➔ х) = L P(i)k((xi , xi ) ➔ (xi , xi )) = L P(i)P(x; 1 xi) .  
i i 

Теперь покажем, что это общее определение выборки Гиббса находится в дета­
лизированном равновесии со стационарным распределением, равным Р(х I е), т.е.  
истинным апостериорным распределением по переменным, отличным от перемен­
ных свидетельства. Иначе говоря, покажем, что 7t(x)k(x ➔ х') = 7t(x')k(x' ➔ х), где 
7t(X) = P(x I е), для всех состояний х и х'. 

Для первого и третьего случаев из числа приведенных выше детализированное 
равновесие будет всегда соблюдаться : если два состояния различаются значения­
ми двух или более переменных, вероятность перехода в обоих направлениях равна 
нулю. Если х � х', то из уравнения ( 1 3  . 1 3)  имеем 

7t(x)k(x ➔ х') = Р(х I e)p(i)P(xf I Х; , е) = p(i)P(x; , X; 1 e)P(xf I Х; , е) = 

= p(i)P(x; 1 Х; , е)Р(х; 1 e)P(xf I Х; , е) = (используя цепное правило после 
первого терма) 

= p(i)P(x; 1 X; , e)P(xf , Х; 1 е) = 

= 7t(x')k (х' ➔ х). 

( используя цепное правило для 
перехода в обратном направлении) 

Заключительной частью головоломки является эргодичность цепи, т.е .  каждое 
ее состояние должно быть достижимо из каждого другого и не существует ни од­
ного периодического цикла. Оба условия будут удовлетворены, если таблицы ус­
ловных вероятностей (СРТ) не будут содержать вероятностей О или 1 .  Дости­
жимость определяется тем фактом, что одно состояние можно преобразовать в 
другое, изменяя по одной переменной за раз, а отсутствие периодических циклов 
определяется тем, что каждое состояние имеет петлю с ненулевой вероятностью. 
Следоваrельно, при этих условиях k является эргодическим, а это означает, что вы­
борки, сформированные алгоритмом выборки Гиббса, в конечном итоге будут взя­
ты из истинного апостериорного распределения. 

Спожность выборки Гиббса 

ПреЖде всего, хорошая новость : на КаЖдОМ этапе работы алгоритма выборки 
Гиббса требуется вычислить распределение марковского покрытия для выбран­
ной переменной Х;, что предполагает выполнение нескольких операций умноже­
ния, количество которых пропорционально числу дочерних переменных Х; и раз­
меру ее области определения. Эrо очень важно, поскольку означает, что ♦ объем 
работы, необходимый для формирования каждой выборки, не зависит от размера сети. 
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Теперь не обязательно плохая новость: сложность алгоритма выборки Гиббса 
гораздо труднее анализировать по сравнению с анализом сложности алгоритмов 
выборки с отклонением или взвешивания по правдоподобию. Первое, что необ­
ходимо отметить, - выборка Гиббса, в отличие от взвешивания по правдоподо­
бию, действительно обеспечивает распространение свидетельства. Информация 
распространяется от узлов свидетельства во всех направлениях: сначала для лю­
бых соседей узлов свидетельства формируются выборочные значения, отражаю­
щие данные свидетельства в этих узлах; затем то же самое происходит с их сосе­
дями и т.д. Следовательно, можно ожидать, что алгоритм выборки Гиббса покажет 
лучшие результаты по сравнению с алгоритмом взвешивания по правдоподобию, 
когда данные свидетельства присутствуют в основном в узлах нижней части сети. 
И действительно, именно это можно отметить на рис. 1 3 .22. 
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Рис. 13.22. Производительность алгоритма выборки Гиббса по сравнению с алго­
ритмом взвешивания по правдоподобию дЛЯ сети страховой компании. а) Для стан­
дартного запроса по переменной PropertyCost. б) Для случая, когда значения выход­
ных переменных наблюдаются, а переменная запроса - Age 

Скорость сходимости для алгоритма выборки Гиббса - ► скорость смешива­
ния марковской цепи, определяемая алгоритмом - очень сильно зависит от ко­
личественных свойств условных распределений в сети. Чтобы увидеть это, рас­
смотрим, что произойдет в сети, представленной на рис. 1 3 . 1 5 , а, если СРТ для 
переменной Rain станет детерминированной : дождь идет тогда и только тог­
да, когда небо облачное. В этом случае истинное апостериорное распределение 
для запроса P(Rain I sprinkler, wetGrass) будет примерно (О, 1 8 ; 0,82 ) ,  но выборка 
Гиббса никогда не достигнет этого значения .  Проблема состоит в том, что един­
ственными двумя состояниями для переменных Cloudy и Rain, имеющими нену­
левую вероятность, являются [true, true] и [false,false] . Начав раб01)' с состояния 
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[true, true], цепь никогда не сможет достичь состояния [false, false], потому что 
переходы в требуемые промежуточные состояния имеют нулевую вероятность 
(см. рис. 1 3.2 1 ,  6). В итоге, если работа начинается с состояния [true, true], резуль­
татом для запроса всегда будет апостериорная вероятность ( 1 ,0; 0,0) , а если рабо­
та начинается с состояния [false,false], то результатом всегда будет апостериорная 
вероятность (0,0; 1 ,0) . 

В этом случае алгоритм выборки Гиббса терпит неудачу, потому что детерми­
нистическая связь между переменными Cloudy и Rain нарушает свойство эрго­
дичности, необходимое для сходимости. Однако, если сделать отношения почти 
детерминированными, то сходимость восстанавливается, но достигается произ­
вольно медленно. Существует несколько вариантов исправлений, помогающих ал­
горитмам МСМС достигать смешивания быстрее. Одним из них является ► блоч­
ная выборка, т.е. выборка нескольких переменных одновременно. В этом случае 
можно попробовать совместно сформировать выборочные значения для перемен­
ных Cloudy и Rain при условии объединения их марковских покрытий. Другой 
способ - генерировать очередные состояния более разумно, как будет показано в 
следующем подразделе. 

Выборка Метропоnиса-Гастинrса 

Метод выборки Метрополиса-Гастингса, или МН - это, вероятно, наиболее 
широко используемый алгоритм МСМС. Подобно выборке Гиббса, алгоритм МН 
предназначен для генерации выборок х (в конечном итоге) в соответствии с целе­
выми вероятностями 'Т\"(х). В случае вероятностного вывода в байесовских сетях 
требуется, чтобы 'Т\"(Х) = Р(х I е) . Как и алгоритм имитации отжига (раздел 4. 1 .2), на 
каждой итерации процесса выборки алгоритм МН выполняется в два этапа. 

1 .  Формируется новое состояние х' из ► вспомогательного распределения 
q(x' 1 х) при заданном текущем состоянии х. 

2. Состояние х' принимается или отклоняется в соответствии с ► вероятно­
стью успешного приема 

а(х' 1 х) = min (1, 'Т\"(х')q(х I х')
) . 

'Т\"(x)q(x' l x) 

3. Если предложение х' отклонено, сохраняется состояние х. 
Для алгоритма МН ядро перехода состоит из этого двухэтапного процесса. Об­

ратите внимание, что если предложение отклонено, цепь остается в том же состо­
янии. 

Именно вспомогательное распределение отвечает за то, каким будет следую­
щее предлагаемое состояние х'. Например, q(x' 1 х) можно определить следующим 
образом. 
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• Для генерации х' с вероятностью О, 95 использовать на этом этапе алгоритм 
выборки Гиббса. 

• В противном случае для генерации х' использовать алгоритм WEIGHTED­
SAMPLE, приведенный на рис. 13 .18. 

Это вспомогательное распределение вынудит алгоритм МН выполнить около 
20 этапов, применяя выборку Гиббса, а затем "перезапустить" процесс из нового 
состояния (при условии, что оно будет принято), сформированного "с нуля". Такая 
уловка позволяет алгоритму МН обойти свойственную выборке Гиббса проблему 
"застревания" в одной части пространства состояний без возможности добраться 
до других его частей. 

Может возникнуть вопрос, откуда, в конце концов, берется такая уверенность, 
что алгоритм МН с таким странным выбором предлагаемых состояний вообще 
сойдется в конечном счете к правильному результmу? Замечательная особенность 
алгоритма МН состоит в том, что ♦ сходимость к правильному стационарному рас­
пределению гарантируется для любого вспомоzательноzо распределения - при усло­
вии, что результирующее ядро перехода будет эргодическим. 

Это свойство следует из способа, которым была определена вероятность 
успешного приема. Как и в случае выборки Гиббса, наличие петли с х = х' автома­
тически удовлетворяет детализированному равновесию, поэтому сосредоточимся 
только на случае, когда х 7' х'. Очевидно, что это может иметь место, только если 
предложение принято. Вероятность такого перехода следующая: 

k (x ➔ x') = q(x' 1 х)а(х' 1 х). 

Как и в случае выборки Гиббса, доказательство детализированного равновесия 
означает, что поток от х до х', 11(x)k (х ➔ х'), совпадает с потоком от х' до х, 11(х') 
k (x' ➔ х). После подстановки вместо k (x ➔ х') приведенного выше выражения до­
казательство будет довольно простым. 

11(x)q(x' I  x)a(x' I х) = 11(x)q(x' I  x) min ( l,  1l
(x')q(x l

1
x')

) = (определение a( · I · )) 
1'1"(x)q(x' х) 

= min(11(x)q(x' I х), 11(x')q(x l х ') =  (выполняем умножение) 

. 
( 

11(x)q(x' I  х) 
) = 11(x')q(x l x ') mш ---'----,1 = 

11(x')q(x l х ') 

= 11(x')q(x I х')а(х I х') 

(делим на второй терм) 

Оставив математические свойства в стороне, сосредоточим внимание на важ­
ной части алгоритма МН: отношении 11(х')/11(х) в формуле вероятности успешно­
го приема. Оно говорит о том, что если предлагаемое следующее состояние явля­
ется более вероятным, чем текущее состояние, оно, определенно, будет принято. 
(Мы пока не обращаем внимания на терм q(x I x')/q(x' 1 х), который присутствует 
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там, чтобы обеспечить детализированное равновесие и во многих пространствах 
состояний является равным 1 вследствие симметрии.) Если предлагаемое новое 
состояние менее вероятно, чем текущее состояние, вероятность его принятия про­
порционально уменьшается. 

Таким образом, один из руководящих принципов при разработке вспомогягель­
ного распределения состоит в необходимости убедиться, что предлагаемые на его 
основе новые состояния будут достаточно вероятными. Алгоритм выборки Гиббса 
обеспечивает это автоматически: здесь в качестве вспомогательного используется 
распределение Гиббса P(Xt I Х; ), а это означает, что вероятность формирования не­
которого конкретного нового значения для Х; прямо пропорциональна его вероят­
ности. (В упражнении 1 3 .23 предлагается показать, что выборка Гиббса - это 
особый случай алгоритма МН с вероятностью принятия, равной 1 ). 

Другая важная рекомендация состоит в необходимости убедиться, что марков­
ская цепь хорошо смешивается, - в том смысле, что иногда должны предлагать­
ся большие перемещения, ведущие в отдаленные области пространства состояний. 
В приведенном выше примере случайное использование алгоритма WEIGHTED­
SAMPLE для перезапуска цепи из нового состояния служит именно этой цели. 

Помимо почти полной свободы в разработке вспомогаrельного распределения, 
у алгоритма МН есть два дополнительных свойства, которые делают его практич­
ным. Во-первых, апостериорная вероятность 11(х) = Р(х I е) появляется в расчетах 
возможности принятия только в виде отношения 11(х')/11(х), что очень удачно. Вы­
числение Р(х I е) напрямую - это то же самое вычисление, которое мы пытаемся 
аппроксимировать, используя алгоритм МН, поэтому не имеет смысла делать по­
добные расчеты для каждого образца ! Вместо этого мы используем следующий 
прием: 

11(х') Р(х' 1 е) Р(х' , е) Р(е) Р(х', е) = = = 
11(х) Р(х I е) Р(е) Р(х, е) Р(х, е) 

Термы в этом соотношении являются полными совместными распределениями ве­
роятности, т.е. произведениями условных вероятностей в байесовской сети. Вто­
рое полезное свойство этого отношения состоит в том, что, пока вспомогательное 
распределение вносит лишь локальные изменения в х для получения х', только не­
большое число членов в произведении условных вероятностей будет различаrь­
ся. Все условные вероятности, включающие переменные, значения которых не из­
меняются, в этом соотношении будут скомпенсированы. Таким образом, как и в 
случае выборки Гиббса, работа, необходимая для формирования каждой выборки, 
не зависит от размера сети, пока изменения состояния являются локальными. 
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13.4.3. Вычисления при приближенном 
вероятностном выводе 

Алгоритмы выборки, приведенные на рис. 1 3  . 1  7, 13 .18 и 13 .20, имеют общее 
свойство:  они работают в байесовской сети, представленной в виде структуры 
данных. Эго кажется вполне естественным: в конце концов, байесовская сеть яв­
ляется направленным ациклическим графом, как же иначе его можно представить? 
Проблема с этим подходом состоит в том, что для доступа к этим структурам дан­
ных необходимы определенные операции - например, поиск родительских узлов 
для заданного узла, - которые выполняются вновь и вновь тысячи или даже мил­
лионы раз, пока продолжается выполнение алгоритма, и все эти вычисления явля­
ются совершенно нену.жными. 

Структура сети и условные вероятности остаются неизменными на всем протя­
жении вычислений, поэтому есть возможность компw,яции сети в специфический 
для модели код логического вывода, который выполняет только те вычисления 
вероятностного вывода, которые необходимы именно для этой конкретной сети . 
(Возможно, это звучит знакомо, - та же идея использовалась при компиляции 
логических программ в главе 9.) Например, предположим, что требуется сфор­
мироваrь выборочное значение переменной Earthquake в сети защиты от взлома, 
приведенной на рис. 1 3.2, используя алгоритм выборки Гиббса. В соответствии с 
алгоритмом Gшвs-Аsк, представленном на рис. 13.20, потребуется выполнить сле­
дующие вычисления: 

установить значение переменной Earthquake в х, сформировав 
выборку из распределения P(Earthquake I mb(Earthquake)), 

где это распределение вычисляется в соответствии с уравнением ( 1 3  .1 О), повтор­
но приведенным ниже: 

P(x; I тЬ(Х; )) = aP(x; j parents(X; )) п P(yj l parents(Yj )). 
Yj eChildren( Х; ) 

Эrо вычисление, в свою очередь, потребует выполнить поиск родительских и до­
черних узлов переменной Earthquake в структуре байесовской сети и поиск их те­
кущих значений; использовать эти значения для индексации в соответствующих та­
блицах СРТ (которые также необходимо найти в байесовской сети) с последующим 
перемножением всех соогветствующих строк из этих таблиц для формирования но­
вого распределения для выборки. Наконец, как было отмечено в разделе 1 3.4. 1 ,  на 
самом этапе формирования выборочного значения потребуется построить накопи­
тельную версию дискретного распределения, а затем найти в ней значение, которое 
будет соответствомгь случайному числу, выбранному в интервале [О, 1 ]. 

Если вместо всего этого скомпилировать сеть, можно получить специфический 
для конкретной модели код выборки значения переменной Earthquake, который бу­
дет выглядеть следующим образом: 
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r +- равномерная случайная выборка из  [О, 1 ]  
if A/arm = true 

then if Burglary = true 
then return [r < 0.00202 12]  
else return [r  < 0.36755]  

else if Burglary = true 
then return [r < 0.00 1 6672] 
else return [r < 0.00 14222] 

Здесь переменные байесовской сети Alarm, Burglary и так далее становятся 
обычными программными переменными со значениями, представляющими теку­
щее состояние цепи Маркова. Числовые пороговые выражения позволяют в чис­
ловом виде выразить истинность или ложность и представляют собой предвычис­
ленные распределения Гиббса для каждой комбинации значений в марковском 
покрытии переменной Earthquake. Эrот код нельзя назвать совершенным - в ти­
пичном случае он будет примерно так же велик, как и байесовская сеть сама по 
себе, - но он является невероятно эффективным. По сравнению с алгоритмом 
Gшвs-Аsк, скомпилированный код будет работать, как правило, на 2-3 порядка 
быстрее. На обычном ноуrбуке он позволяет выполнять десятки миллионов этапов 
выборки в секунду, и скорость его работы в значительной степени ограничивается 
вычислительными затратами на генерацию случайных чисел. 

13.5. Причинно-следственные байесовские сети 
Выше уже обсуждалось несколько важных преимуществ поддержания в бай­

есовских сетях упорядоченности узлов, совместимой с направлением причин­
но-следственных связей. В частности, была отмечена легкость, с которой могут 
быть оценены условные вероятности, когда такое упорядочение поддерживается, 
а также компактность результирующей структуры сети. Однако было отмечено, 
что в принципе любая упорядоченность узлов обеспечивает структуру сети, при­
годную для представления функции совместного распределения. Эго было проде­
монстрировано на рис. 1 3 .3 ,  где изменение порядка узлов приводило к получению 
сетей, которые были более запутанными и намного менее естественными, чем ис­
ходная сеть, приведенная на рис. 1 3.2, но позволяли представить то же самое рас­
пределение по всем переменным. 

В этом разделе описываются ► причинно-следственные сети, ограниченный 
класс байесовских сетей, в которых запрещены все совместимые упорядоченности 
за исключением тех, которые отражают отношения причинности. Мы рассмотрим, 
как строятся такие сети, какие преимущества дает подобная структура сети и как 
использовать эти преимущества при решении задач принятия решений. 

Рассмотрим простейшую из возможных байесовских сетей с единственным ре­
бром: Fire ➔Smoke. Она говорит нам, что переменные Fire (огонь) и Smoke (дым) 
могут быть зависимы, поэтому необходимо определить априорную вероятность 
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P(Fire) и условную вероятность P(Smoke I Fire), чтобы задать совместное распре­
деление P(Fire, Smoke). Однако такое распределение может быть одинаково хоро­
шо представлено и при развороте стрелки в обратную сторону: Fire � Smoke с ис­
пользованием соответствующих вероятностей P(Smoke) и P(Fire I Smoke), 
вычисленных по правилу Байеса. Мысль о том, что эти две сети эквивалентны и, 
следовательно, представляют одну и ,у же информацию, вызывает у большинства 
людей дискомфорт и даже внутреннее сопротивление. Как они могут представлять 
,у же информацию, если мы знаем, что огонь вызывает дым, а не наоборот? 

Другими словами, из нашего опьrrа и научных соображений мы знаем, что про­
стое удаление дыма не погасит огонь, тогда как, погасив огонь, мы прекратим и 
пос,упление дыма. Поэтому мы ожидаем, что именно эта асимметрия представля­
ется направлением стрелки между вершинами графа. Но если обращение стрелки 
позволяет получить лишь эквивалентные результаты, каким образом можно пред­
ставить э,у важную информацию формально? 

Причинно-следственные байесовские сети - иногда их называют причин­
но-следственными диаграммами - бьmи разработаны, чтобы позволить нам пред­
ставлять причинную асимметрию и использовать ее для рассуждений в отноше­
нии причинно-следственной информации. Идея состоит в том, чтобы выбирать 
направление стрелки по соображениям, которые выходят за пределы вероятност­
ной зависимости и требуют совершенно другого типа суждений . Вместо того что­
бы спросить у эксперта, являются ли дым и огонь вероятностно зависимыми -
что и делается в обычной байесовской сети, - мы теперь спрашиваем, что за что 
несет ответственность: дым за огонь или огонь за дым? 

Это фраза может показаться немного мистической, но ее можно уточнить с 
помощью понятия "присваивания", аналогичного оператору присваивания в язы­
ках программирования. Если природа присваивает значение вершине Smoke на 
основе того, что она знает о вершине Fire, мы можем нарисовать стрелку в на­
правлении от Smoke к Fire. Более важно другое: если предполагается, что приро­
да назначает переменной Fire значение truth в зависимости от значений других 
переменных, но не от значения переменной Smoke, то следует воздержаться от 
рисования стрелки в направлении Fire � Smoke. Другими словами, значение Х; 
каждой переменной Х; определяется уравнением х; = f;( Other VariaЫes ), а стрелка 
}{_j ➔Xi рисуется тогда и только тогда, когда переменная }{_j является одним из ар­
гументов функции/;. 

Уравнение х; =/,{·) называют ►структурным уравнением, поскольку оно опи­
сывает устойчивый механизм в природе, который, в отличие от вероятностей, 
лишь количественно определяющих байесовскую сеть, остается инвариантным к 
измерениям и локальным изменениям в окружающей среде. 

Чтобы оценить эту устойчивость к локальным изменениям, обратимся к 
рис. 1 3 .23, а, на котором представлена слегка измененная версия сети задачи о по­
ливе газона ( см. рис. 1 3  . 1 5). Например, для того, чтобы представить выключенный 
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дождеватель, из  сети достаточно просто удалить все ребра, направленные на  вер­
шину Sprinkler. Чтобы представить газон, покрытый палаткой, потребуется лишь 
удалить стрелку Rain ➔ WetGrass. Следовательно, любое локальное изменение 
конфигурации механизмов в окружающей среде может быть представлено относи­
тельно небольшой модификацией в виде изоморфной реконфигурации топологии 
сети. Однако потребуются гораздо более сложные преобразования, если сеть была 
построена с нарушением причинно-следственной упорядоченности. Эrа локаль­
ная стабильность особенно важна для представления действий или вмеша­
тельств, - темы, обсуждаемой в следующем разделе. 

Rain Rain 

GreenerGr4SS 

а) б) 

Рис. 13.23. а) Причинно-следственная байесовская сеть, представляющая причин­
но-следственные отношения между пятью переменными. б) Эта же сеть после вы­
полнения действия "включить дождеватель" 

13.5.1. Представление действий: оператор do 

Еще раз обратимся к примеру причинно-следственной сети для задачи о поли­
ве газона, представленной на рис. 1 3 .23, а. В соответствии со стандартной семан­
тикой байесовских сетей совместное распределение для ее пяти переменных опре­
деляется как произведение пяти условных распределений: 

Р(с, r, s, w, g) = Р(с) P(r I с) P(s I с) P(w I r, s) P(g I w). ( 1 3 . 1 4) 
(Здесь имя каждой переменной сокращено до его первой буквы.) Как система 
струК'l)'рных уравнений соответствующая модель выглядит следующим образом. 
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C =fc (Uc) 
R =/R (C, UR) S =fs (C, Us) 
W = /w(R, S, Uw) 
G =fa (W, Ua) 

( 1 3 . 1 5) 

Здесь, без потери общности,/с может быть функцией тождества. И-переменные в этих уравнениях представляют ► случайные составляющие (unmode/ed 
variahles), также называемые ошибками (error terms) или возмущениями 
(disturbances), которые вносят искажения в функциональную зависимость между каждой переменной и ее родительскими переменными. Например, переменная Uw может представлять собой еще один потенциальный источник влажности травы на газоне, помимо дождевателя и дождя - скажем, MorningDew (утренняя роса) или 
FirefightingHelicopter (пожарный вертолет). Если все И-переменные ямяюrся взаимно независимыми случайными величина­ми с подходящим образом подобранными априорными распределениями, совместное распределение в уравнении ( 1 3 . 1 4) может бьrrь точно представлено струК'I)'рными уравнениями в уравнении ( 1 3  . 1 6). Эrо значит, что систему стохастических отноше­ний можно будет охмrить системой детерминированных отношений, каждое из ко­торых подвержено внешним возмущениям. Однако система струК'I)'рных уравнений дает нам нечто большее: она позволяет предсказаrь, какое влияние внешние воздей­
ствия окажуr на рабmу всей системы и, следоваrельно, на наблюдаемые следствия 
Э'П1Х воодействий. Эrо невозможно, если дано только совместное распределение. Например, предположим, что дождеватель был включен, т.е. некто (кто по определению не является частью причинных процессов, описываемых моделью) оказал на систему некоторое внешнее воздействие, результаrом которого стало ус­ловие Sprinkler = true. В обозначениях ► dо-всчисленвя, которое является ключе­вой частью теории причинно-следственных сетей, это записывается как do(Sprin­
kler = true). В результате такого внешнего воздействия переменная Sprinkler уже не будет зависеть от того, облачный ли сегодня день. Поэтому уравнение S = fs ( С, Us) удаляется из системы структурных уравнений и заменяется уравнением S = true, что приводит модель к такому виду. 

C =fc (Uc) 
R =/R (C, UR) 
S = true  
W = fw(R, S, Uw) 
G =fa (W, Ua) 

( 1 3 . 1 6) 

Из этих уравнений можно получить новое совместное распределение для оставшихся переменных, обусловленное действием do(Sprinkler = true) : 

Р(с, r, w, g I do(S = true) = Р(с) P(r I с) P(w I r, s = true) P(g I w). ( 1 3 . 1 7) 
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Это уравнение соответствует "искаженной" сети, представленной на 
рис. 1 3 .23 , б. Из уравнения ( 13 . 1 7) следует, что единственными переменными, ве­
роятности которых изменились, являются переменные WetGrass и GreenerGrass, 
т.е. потомки подвергшейся внешнему воодействию переменной Sprinkler. 

Обратите внимание на разницу между обусловленностью для действия 
do(Sprinkler = true) в исходной сети и обусловленностью для наблюдения Sprin­
k/er = true. Исходная сеть указывает, что дождеваrель будет включен с меньшей ве­
роятностью, когда погода облачная, поэтому, если наблюдения свидетельствуют, 
что дождеваrель включен, это снижает вероятность того, что погода облачная. Но 
здравый смысл подсказывает, что если некто (действующий, так сказаrь, за пре­
делами мира) подойдет и включит дождеватель, это не окажет влияния на погоду 
и не предоставит новой информации о том, какая погода в этот день. Как показа­
но на рис. 1 3 .23 ,  б, данное воздействие нарушает нормальную причинную связь 
между погодой и дождеваrелем, а также препятствует любому влиянию в обраr­
ном направлении, от переменной Sprink/er к переменной Cloudy. Таким образом, 
обусловленность действия do(Sprinkler = true) в исходном графе эквивалентна об­
условленности наблюдения Sprinkler = true в искаженном графе. 

Аналогичный подход можно применить к анализу эффекта от действия do(J{_j 
= x1k) в обобщенной причинно-следственной сети с переменными Х1 , • • •  , Хп . Эта 
сеть соответствует совместному распределению, определенному обычным спосо­
бом (см. уравнение (1 3 .2)): 

Р(х1 , • • · , Хп) = Ц P(x; lparents(X;)). 1=\ ( 1 3 . 1 8) 

После применения действия do(J{_j = x1k) в новом совместном распределении Pxjk 

будет просто опущен фактор для J{_j. 

( 1 3 . 1 9) 

Этот вывод следует из того факrа, что присваивание переменной J{_j определенно­
го значения XJk соответствует удалению уравнения J{_j = fi (Parents(J{_j), ½) из системы 
струюурных уравнений и замене его на J{_j =XJk• После небольших дополнительных 
алгебраических манипуляций можно вывести формулу для эффекта, оказываемого 
присваиванием значения переменной J{_j на любую друrую переменную Х;: 

Р(Х; =х; 1 do(x1 =x1k) = Pxjk (Х; =х;) = 

= L Р(х; 1 XJk , parents(X1 ))P(parents(X1 )). ( 1 3 .20) 
parents(Xj ) 
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Вероятностные слагаемые в сумме получаются посредством вычислений в исходной сети с использованием любого стандартного алгоритма вероятностно­го вывода. Эrо уравнение известно как ► •ормула корректировки (adjustment 

formula). Оно характеризует вероятностно-взвешенное среднее влияние перемен­ной Xj и ее родительских переменных на .Х;, где веса являются априорными веро­ятностями значений родительских переменных. Эффект от воздействия сразу на несколько переменных может быть вычислен, если предположить, что эти отдель­ные воздействия происходили последовательно, одно за другим, каждый раз вы­зывая удаление причинных влияний на очередную переменную и получение но­вой, искаженной модели. 
13.5 .2. Критерий косвенного влияния 

Возможность прогнозировагь эффект от любого внешнего воздействия являет­ся замечательным результаrом, но при этом нам требуется точно знать необходи­мые условные распределения в модели, в частности P(xj l parents(Xj)). Однако во многих реальных сюуациях потребуется слишком много усилий, чтобы получить эти сведения. Например, мы знаем, что "генетические факторы" играют опреде­ленную роль в ожирении, но пока ничего не известно о том, какие именно гены за это ответственны, как и о точном характере их воздействия. Даже в простой задаче о принятии решений в отношении полива газона Мэри (см. рис. 1 3 . 1 5  и 1 3 .23 , а) нам может быть известно, что она обращает внимание на погоду, прежде чем при­нять решение о включении дождевателя, но мы можем не знать, как именно она принимает свое решение. Конкретная причина, вызывающая в данном случае проблемы, заключается в том, что желательно было бы предсказать эффект от включения дождевателя, ока­зываемый на выходные переменные, такие как GreenerGrass, но тогда формула корректировки (уравнение ( 1 3 ,20)) должна принимать во внимание не только воз­действие по прямому пути от переменной Sprink/er, но и воздействие по другому, "обходному", пути через переменные Cloudy и Rain. Если значение переменной 
Rain известно, то этот другой путь будет заблокирован, и это дает нам подсказку, что может существовать способ записать формулу корректировки, которая будет обусловливать переменную Rain вместо С/оиdу. И действительно, это вполне воз­можно: 

P(g I do(S = true) = I;P(g I S = true, r)P(r) . ( 1 3 .2 1 )  
r 

В общем, если требуется определить эффект от действия do(Xj =Xjk) на перемен­ную .Х;, ► критерий косвенноrо влияния (back-door criterion) позволяет написать формулу корректировки, которая обусловливает любое множество переменных Z, которое охватывает все возможные косвенные влияния. Говоря более формально, необходимо, чтобы множество Z было таким, чтобы переменная .Х; была условно 
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независима от Parents(J{_j) при заданных J{_j и Z. Это прямое применение метода 
d-разделения (см. раздел 1 3.2. 1 ). 

Критерий косвенного влияния является основным строительным блоком в тео­
рии причинно-следственных рассуждений, появившейся в последние два десяти­
летия. Эта теория предоставляет способ оспорить положения вековой стагистиче­
ской догмы, утверждающей, что причинную информацию нам может предоставить 
только ► рандомизированное контролируемое испытание. Новая теория предо­
ставляет концептуальные инструменты и алгоритмы для причинно-следственно­
го анализа в широком спектре не экспериментального и квазиэкспериментального 
окружения; для вычисления вероятностей на встречных фактических утвержде­
ниях ("Если бы вместо того произошло это, какой была бы вероятность?"), для 
определения, когда результаты в одной популяции могут быть перенесены на дру­
гую, и для обработки всех форм отсутствующих данных при изучении вероятност­
ных моделей. 

Резюме 
В этой главе рассматривались байесовские сети - тщагельно разработанное 

представление для неопределенных знаний. Байесовские сети играют роль, анало­
гичную той, которую выполняет логика высказываний применительно к опреде­
ленным знаниям. 

• Байесовская сеть - это ориентированный ациклический граф, вершины ко­
торого соответствуют случайным переменным и с каждой вершиной связа­
но распределение условных вероятностей для этой вершины с учетом ее ро­
дительских вершин. 

• Байесовские сети обеспечивают удобный способ представления отношений 
условной независимости в рассмагриваемой проблемной области. 

• Любая байесовская сеть определяет полное совместное распределение по 
своим переменным. Вероятность любого заданного присваивания значений 
всем переменным определяется как произведение соответствующих элемен­
тов в локальных условных распределениях. Байесовская сеть часто позволя­
ет экспоненциально уменьшить размеры вероятностного представления по 
сравнению с полным совместным распределением. 

• Многие условные распределения могут быть представлены компактно с по­
мощью канонических семейств распределений. Целый ряд канонических 
распределений используется в гибридных байесовских сетях, которые мо­
гут включать как дискретные, так и непрерывные переменные. 

• Под вероятностным выводом в байесовских сетях подразумевается вычисле­
ние распределения вероятностей множества переменных запроса, если дано 
множество переменных свидетельства. Алгоритмы точного вероятностного 
вывода, такие как алгоритм устранения переменной, позволяют вычислять 
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суммы произведений условных вероятностей настолько эффективно, на­
сколько это возможно. 

• В полидеревьих (односвязных сетях) точный вероятностный вывод требует 
времени, линейно зависящего от размера сети. А в общем случае проблема 
такого вывода неразрешима. 

• Методы случайной выборки, такие как выборка по значимости и метод 
Монте-Карло на основе цепи Маркова, позволяют получить приемлемые 
оценки истинных апостериорных вероятностей в сети и позволяют достичь 
желаемых результатов для гораздо более крупных сетей по сравнению с точ­
ными алгоритмами вероятностного вывода. 

• В то время как байесовские сети представляют вероятностные влияния, 
причинно-следственные сети отображают причинно-следственные связи 
между переменными и позволяют прогнозировать эффекты от внешних воз­
действий в той же мере, что и наблюдения. 

Библиографические и исторические заметки 
Использование сетей для представления вероятностной информации началось 

в первой четверти ХХ века с работы Сьюэлла Райта по вероятностному анали­
зу генетического наследования и показателей роста животных (Райт [2387), 1 92 1 ;  
[23 89), 1 934). И. Дж. Гуд ([89 1 ) , 1 96 1 )  в сотрудничестве с Аланом Тьюринrом раз­
работал вероятностные представления и методы байесовского вероятностного вы­
вода, которые можно рассматривать как предшествующие современным байесов­
ским сетям, хотя указанная статья не часто цитируется в данном контексте.7 Эта 
же статья является оригинальным источником с описанием модели зашумленно­
го ОR. 

Форма представления задач принятия решений с помощью диаграммы влия­
ния, встроенная в представление DAG для случайных переменных, использова­
лась в области анализа принятия решений с конца 1 970-х годов (см. главу 1 6), но 
для оценки применялись только методы перебора. Джуди Перл разработал метод 
передачи сообщений для осуществления вероятностного вывода в древовидных 
сетях (Перл [ 1 749), 1 982) и ввел понятие полидеревьев сетей (Ким и Перл [ 1 225] ,  
1 983 ) ,  а также объяснил важность составления причинных, а не диагностических 
вероятностных моделей. Первой экспертной системой, в которой использовались 
байесовские сети, бьта CONVINCE (Ким [ 1 224], 1 983) .  

Как упоминалось в историческом обзоре в главе 1 ,  в середине 1 980-х годов 
возник настоящий бум экспертных систем на основе правил, в которые были 

7 И. Дж. Гуд был главным статистиком в группе Тьюринга, занимавшейся раскрытием 
шифров во время Второй мировой войны. В книге "200 1 :  Космическая одиссея" (Кларк 
[449], 1 968) выражена благодарность Гуду и Мински за их вклад в научный прорыв, при­
ведший к разработке компьютера HAL 9000. 
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включены специальные методы для работы с неопределенностью, - вероят­
ность в качестве основы для рассуждений расценивалась и как непрактичная, 
и как "познавательно неправдоподобная". Воинственная стаrья Питера Чизме­
на "В защиту вероятности" ([405], 1985) и более поздняя его стаrья "Исследова­
ние компьютерного понимания" ([406] , 1988, с комментариями) помогли изме­
нить это отношение. 

Однако возрождение интереса к вероятности определялось главным образом 
разработкой Перлом теории байесовских сетей и вызванного этим широкого при­
менения вероятностного подхода в области ИИ, как это было описано в его книге 
Probabllistic Reasoning in lnte/ligent Systems (Перл [ 1755], 1988). В книге рассма­
тривались как вопросы представления, включая отношения условной независи­
мости и критерий d-разделения, так и алгоритмические подходы. Гейгер и соавт. 
( [825], 1990), а также Тиан и соавт. ([22 15], 1998) представили ключевые вычисли­
тельные результаrы по эффекrивному обнаружению d-разделения. 

Представить идеи Перла исследователям в области искусственного интеллек­
та помог Юджин Чарняк - благодаря популярной стаrье "Байесовские сети без 
слез" ([398], 199 1)8 и книге [393] ( 1993). Книга Дина и Веллмана [572] ( 199 1) так­
же способствовала ознакомлению исследоваrелей в области ИИ с байесовскими 
сетями. Позднее Шахтер ([2029], 1998) представил упрощенный способ определе­
ния d-разделения, названный алгоритмом "байесовского шара". 

По мере разработки приложений с применением байесовских сетей исследо­
ватели столкнулись с необходимостью выйти за пределы базовой модели, допу­
скающей лишь дискретные переменные в таблицах условной вероятности (СРТ). 
Например, в медицинской системе CPCS (Прадхан и др. [ 18 19], 1994), использо­
валась байесовская сеть, насчитывающая 448 вершин и 906 ребер, - в ней широ­
ко применялись зашумленные логические операrоры, предложенные Гудом ( [89 1 ] ,  
1961 ). Бутилье и соавт. ([270], 1996) проанализировали алгоритмические преиму­
щества независимости от контекста. Включение непрерывных случайных величин 
в байесовские сети рассматривалось Перлом ([ 1755], 1988) и Шахтером и Кенли 
([2031 ], 1989); в этих работах обсуждались сети, содержащие только непрерывные 
переменные с линейным распределением Гаусса. 

Гибридные сети как с дискретными, так и с непрерывными переменными ис­
следовались Лориценом и Вермутом ([ 1362], 1989) и бьmи реализованы в системе 
cHUGIN (Олесен [ 17 1 О], 1993). Дальнейший анализ линейно-гауссовых моделей с 
привязкой ко многим другим моделям, используемым в стаrистике, был представ­
лен Роуисом и Гахрамани ([ 1923], 1999), а Лернер ( [ 1388], 2002) дал очень под­
робное обсуждение их использования в гибридных байесовских сетях. Разработ­
ку пробит-распределения обычно приписывают Гэддуму ( [803], 1933) и Блиссу 

8 Оригинальная версия статьи имела другое название: "Pearl for swine", т.е. "Жемчуг 
мя свиней" - здесь обыгрывается дословный перевод с английского фамилии Джуди 
Перла: pear/ означает "жемчужина". 
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([229], 1 934 ), хотя оно несколько раз упоминалось еще в XIX веке. Позднее рабо­
та Блисса была значительно расширена Финни ([742], 1 947). Пробит-распределе­
ние широко использовалось для моделирования процессов дискретного выбора и 
может быть расширено для работы с более чем двумя выборами (Даrанцо [5 1 4], 
1 979). Модель экспит-распределения (или инверсного лоrит-распределения) была 
представлена Берксоном ([ 1 82], 1 944), - в начале к ней относились насмешливо, 
но в итоге она стало более популярной, чем модель пробит-распределения. Бишоп 
([22 1 ], 1 995) дал простое обоснование его использования. 

К ранним приложениям на основе байесовских сетей в медицине относятся си­
стема MUNIN, предназначенная для диагностики нервно-мышечных нарушений (Ан­
дерсен и др. [46], 1 989), и система PATHFINDER, предназначенная для работы с па­
тологиям (Хекерман [999], 1 99 1  ). К приложениям в области инженерии относятся 
разработки инсти,уга Electric Power Research по мониторингу силовых генераторов 
(Морхарья и др. [ 1 625], 1 995), разработки НАСА по отображению информации, кри­
тической по времени, в Центре управления полетами в Хьюстоне (Хорвиц и Барри 
[ 1 066], 1 995), а также общее поле сетевой томографии, направленной на вывод не­
наблюдаемых локальных свойств узлов и связей в Ингернете на основе наблюдений 
производительности передачи сообщений от источника к получагелю (Кастро и др. 
[380], 2004). Пожалуй, наиболее широко используемыми системами с байесовски­
ми сетями стали модули диагностики и восстановления (например, модуль Printer 
Wizard) в операционной системе Microsoft Windows (Бриз и Хекерман [297], 1 996) 
и приложение Office Assistant в пакете Microsoft Office (Хорвиц и др. [ 1 067], 1 998). 

Другой важной областью применения является биология: математические мо­
дели, используемые для анализа генетического наследования в генеалогических 
деревьях (так называемый ► анализ родословной), в действительности пред­
ставляют собой специальную форму байесовских сетей. Этот метод точного ве­
роятностного вывода, используемый в анализе родословных и напоминающий ме­
тод устранения переменной, бьm разработан в 1 970-х годах (Каннинге и др. [362], 
1 978). Также байесовские сети использовались для идентификации генов чело­
века посредством ссьmок на гены мыши (Чжанr и др. [243 1 ], 2003 ), при исследо­
вании клеточных сетей (Фридман [793], 2004), в анализе генетических связей с 
целью определения местонахождения генов, связанных с определенным заболева­
нием (Зильберштейн и др. [2060], 20 1 3), а также для решения многих других задач 
в области биоинформатики. Мы могли бы продолжить, но вместо этого отсьmаем 
читателя к работе Пурре и соавт. [ 1 8 1 8] (2008) - руководству по применению бай­
есовских сетей объемом в 400 страниц. В последнем десятилетии количество пу­
бликаций о разработке подобных приложений измеряется десятками тысяч, от сто­
матологии до глобальных климатических моделей. 

Джуди Перл ([ 1 752], 1 985)  в первой статье, в которой использовался термин 
"байесовские сети", кратко описал алгоритм вероятностного вывода для сетей об­
щего вида, основанный на идее обусловленности сечением, представленной в гла­
ве 6. Независимо от него Росс Шахтер ([2028], 1 986), работавший в сообществе 
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исследователей диаграмм влияния, разработал полный алгоритм, основанный на целенаправленном сокращении сети с использованием апостериорных преобразо­ваний. Перл ( [ l  753], 1 986) разработал алгоритм кластеризации для точного вероят­ностного вывода в байесовских сетях общего вида, используя метод преобразо­вания в ориентированное полидерево кластеров, в котором для достижения со­гласованности по переменным, разделяемым между кластерами, использовалась передача сообщений. Аналогичный подход, разработанный стагистиками Дэвидом Шпиrельхальтером и Штеффеном Лаурищеном ([ 1 3 6 1 ] , 1 988), основан на преоб­разовании графической модели в неориентированную форму, называемую цепью Маркова. Этот подход реализован в системе HUGIN - эффективном и широко применяемом инструментальном средстве формирования рассуждений в услови­ях неопределенности (Андерсен и др. [46], 1 989). Основная идея метода устранения переменной - что повторных вычислений в пределах выражений, включающих суммирование произведений, можно избежать за счет кеширования - появилась в алгоритме символического вероятностного вывода (Symbo/ic Probabllistic Inference, SPI) (Шахтер и соавт. [2030], 1 990). При­веденный в данной книге вариант больше всего напоминает алгоритм, разрабо­танный Чжанrом и Пулом ([2432], 1 994) .  Критерии отсечения нерелевантных пе­ременных были разработаны Гейrером и соавт. ( [826], 1 990), а также Лорищеном и соавт. ( [ 1 360] , 1 990), - приведенный в данной книге критерий представляет со­бой простой частный случай этих критериев. Рина Дехтер ([580], 1 999) показала, что идея устранения переменной по сути идентична ► непоследовательному ди­намическому проrраммированию (Бертеле и Бриоши [ 1 96], 1 972). В этом подходе алгоритмы байесовских сетей применяются в сочетании с мето­дами решения задач УО и дается прямая оценка меры сложности точного вывода в терминах ширины дерева сети. Предотвращение экспоненциального роста размера факторов в методе устранения переменной может быть реализовано посредством сбрасывания переменных из крупных факторов (Дехтер и Риш [584], 2003); также возможно связагь введенную этим ошибку (Векслер и Мик [2328], 2009). В каче­стве альтернагивы факторы могут быть сжаты за счет представления их с исполь­зованием алгебраических диаграмм принятия решений вместо таблиц (Гоrаг и До­мингос [877], 20 1 1  ) . Точные методы, основанные на рекурсивном перечислении ( см. рис. l 3  . 1 1 )  в сочетании с кешированием, включают алгоритм рекурсивного преобразования (Дарвич [524], 200 1 ), алгоритм с отклонением значений (Бахус и др. [ 1 02], 2003) и AND-OR поиск (Дехтер и Магисс [588], 2007). Метод взвешенной модели подсче­та (Санr и др. [ 1 975], 2005; Чавира и Дарвич [403] ,  2008) обычно строится по прин­ципу решагелей SAT в стиле DPLL (рис. 7 . 1 7, раздел 7.6. 1 ). Аналогично им в нем также выполняется рекурсивное перечисление переменных с кешированием, поэто­му данный подход на самом деле очень похож на них. Все три эти алгоритма по­зволяют реализовагь полный диапазон компромиссов заграг пространства/времени. 
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Поскольку в них рассмагриваются присваивания переменных, эти алгоритмы легко 
могут использовать преимущества детерминизма и специфической для контекста 
независимости в модели. Они могут также быть модифицированы для использова­
ния эффективных алгоритмов с линейной временной зависимостью всякий раз, ког­
да частичное присваивание превращает оставшуюся часть сети в полидерево. (Эrо 
версия метода разрыва цикла, который бьm описан для задач УО в главе 6.) Для 
точного вероятностного вывода в больших моделях, в которых пространственные 
требования методов кластеризации и устранения переменной становятся чрезмер­
ными, эти рекурсивные алгоритмы часто являются наиболее пракrичным выбором. 

Помимо вычисления предельных вероятностей, в байесовских сетях есть и дру­
гие важные задачи вероятностного вывода. ► Наиболее вероятное объяснение 
или МРЕ - это наиболее вероятное присваивание для переменных, отличных от 
переменных свидетельства. (МРЕ является частным случаем МАР - maximum а 
posteriori (максимальный апостериорный) - вероятностный вывод, запрашиваю­
щий наиболее вероятное присваивание подмножеству переменных, отличных от 
переменных свидетельства, с учетом свидетельства.) Для таких задач было разра­
ботано много различных алгоритмов, некоторые из которых связаны с алгоритма­
ми кратчайшего пути или поиска AND-OR (краткое изложение приведено в рабо­
те Маринеску и Дехтера [ 1493] (2009)). 

Первый результат по вопросу сложности вероятностного вывода в байесовских 
сетях принадлежит Куперу ([474], 1990), который показал, что общая проблема ве­
роятностного вывода в байесовских сетях без ограничений является NР-трудной. 
Как было отмечено в данной главе, этот результат может быть усилен до #Р-труд­
ности через сокращение от подсчета удовлетворяющих присваиваний (Рот, 1996). 
Эrо также подразумевает NР-сложность приблизительного вывода (Дагум и Луби 
[5 15], 1993). Однако для случая, когда вероятности могут бьпь отделены от О и 1, 
форма алгоритма взвешивания по правдоподобию сходится за (рандомизирован­
ное) полиномиальное время (Дагум и Луби [5 16], 1997). Шимони ([205 1], 1994) 
показал, что поиск наиболее вероятного объяснения является NР-полной, т.е. не­
разрешимой задачей, но несколько более простой, чем вычисления без ограниче­
ний. В то же время Парк и Дарвич ([ 1732], 2004) предоставили тщательный анализ 
сложности расчета МАР и показали, что эта задача попадает в класс NРРР_полных 
задач, т.е. она несколько сложнее, чем вычисления без ограничений. 

Разработка быстрых аппроксимирующих алгоритмов для вероятностного вы­
вода в байесовских сетях представляет собой очень активную научную область, 
испытывающую положительное влияние со стороны статистики, компьютерных 
наук и физики. Способ формирования выборок с отклонением представляет собой 
общий метод, давно известный статистикам, - его история восходит по крайней 
мере к задаче Бюффона об игле ([342], 1777). Впервые он был применен к байе­
совским сетям Максом Хенрионом ([ 10 1 1], 1988), который назвал этот метод ло­
гическим формированием выборок. Метод взвешивания по правдоподобию из­
начально был предложен для использования в области физики (Кан [ 1169-1170], 
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1 950). К байесовским сетям его впервые применили Фунг и Чанг ( [802), 1 989) (на­
зывавшие этот алгоритм "взвешиванием свидетельства"), а также Шахтер и Пеот 
([2032), 1 989). 

В статистике адаптивная выборка применяется ко всем видам алгоритмов 
Монте-Карло с целью ускорения сходимости. Основная идея состоит в том, что­
бы адаптировать распределение, из которого формируются выборки, на основе ре­
зультатов предыдущих выборок. Гилкс и Вайлд ([857), 1 992) разработали адаптив­
ную выборку с отклонением, в то время как адаптивная выборка по значимости, 
по-видимому, появилась независимо в физике (Лепаж, [ 1 3 87) 1 978), гражданском 
строительстве (Карамчаидани и др. [ 1 1 87), 1 989), статистике (О и Берrер [ 1 707), 
1 992), а также в компьютерной графике (Вич и Гуибас [2267), 1 995). Ченг и Друзд­
зел ([ 4 1 5) , 2000) описывают адаптивный вариант выборки по значимости, приме­
няемый к вероятностному выводу в байесовских сетях. Относительно недавно Ли 
и соавт. ( [ 1 368), 20 1 7) продемонстрировали использование систем глубокого обу­
чения для создания пропозиционального распределения, ускоряющего рабо,у ал­
горитма выборки по значимости на несколько порядков. 

Развитие алгоритмов Монте-Карло на основе цепи Маркова (МСМС) началось 
с алгоритма Метрополиса, описанного в статье [ 1 560), 1 953), которая стала так­
же первой публикацией об алгоритме эмуляции отжига (см. главу 4). Позднее Га­
стингс ( [982), 1 970) ввел в исходный алгоритм этап "принять/отклонить", кото­
рый теперь является неотьемлемой частью того, что ныне называют алгоритмом 
Метрополиса-Гастингса. Метод выборки Гиббса бьm предложен Геманом и Гема­
ном ([833) ,  1 984) для вероятностного вывода в неориентированных сетях Марко­
ва. Применение выборки Гиббса к байесовским сетям было предложено Перлом 
([ 1 754), 1 987). Статьи, собранные Гилксом и соавт. ([854), 1 996), охватывают как 
теорию, так и применение алгоритмов семейства МСМС. 

К середине 1 990-х годов алгоритмы МСМС уже стали рабочей лошадкой бай­
есовской статистики и различных статистических вычислений во многих других 
дисциплинах, включая физику и биологию. Справочник Handbook of Markov Chain 
Monte Carlo (Бруке и др. [3 1 7) ,  20 1 1 ) охватывает многие аспекты по этой литера­
rуре. Пакет BUGS (Гилкс и др. [855) ,  1 994) бьm ранней и влиятельной системой для 
моделирования байесовской сети и выполнения вероятностного вывода с исполь­
зованием выборки Гиббса. Система STAN (названная в честь Станислава Улама, со­
здателя методов Монте-Карло в физике) более новая, использующая метод вывода 
Монте-Карло Гамильтона (Карпентер и др. [3 75), 20 1 7). 

Есть два очень важных семейства методов аппроксимации, которые не были 
рассмотрены в этой главе. Первым из них является семейство методов вариацион­
ной аппроксимации, которые могут использоваться для упрощения сложных вы­
числений любых типов. Основная идея состоит в том, что необходимо предложить 
сокращенную версию первоначальной задачи, с которой будет легче работать, но 
которая напоминает первоначальную задачу настолько близко, насколько это воз­
можно. Сокращенная задача описывается с помощью некоторых вариационных 
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параметров л, которые корректируюrся с целью минимизации функции рассто­
яния D между оригинальной и сокращенной задачами, часто путем решения си­
стемы уравнений 8D/8л = О. Во многих случаях могут быть получены строгие 
верхние и нижние границы. Вариационные методы уже давно использовались в 
спrгистике (Рустаги [ 1 950], 1 976). В статистической физике метод поля оереднен­
ных величин (mean.field) представляет собой особую вариационную аппроксима­
цию, в которой предполагается, что отдельные переменные, входящие в состав мо­
дели, являюrся полностью независимыми. 

Эга идея была применена для поиска решений в крупных неориентированных 
сетях Маркова (Петерсон и Андерсон [ 1 78 1 ] , 1 987; Паризи [ 1 730], 1 988). Саул и 
др. ([ 1 982], 1 996) представили результаты разработки математических основ при­
менения вариационных методов к байесовским сетям и получения точных аппрок­
симаций нижней границы для сигмоидальных сетей с использованием методов 
поля осредненных величин. После этих первых работ вариационные методы были 
применены для многих конкретных семейств моделей . В замечательной статье 
У айнрайта и Джордана ([2285], 2008) предоставляется общий теоретический ана­
лиз литерmуры по вариационным методам. 

Второе важное семейство алгоритмов аппроксимации основано на алгоритме 
Перла передачи сообщений в полидереве ([ 1 749], 1 982). Как указал Перл ([ 1 755] ,  
1 988), этот алгоритм может применяться к "петельчатым" сетям общего типа. Ино­
гда результаты могут оказаться неверными или алгоритм не может нормально за­
вершить рабmу, но во многих случаях полученные значения близки к истинным. 
Так называемый подход с ► циклическим распространением оценок уверен­
ности привлекал мало внимания до тех пор, пока Макэлис и др. ( [ 1 547], 1 998) не 
установили, что эти расчеты полностью аналогичны вычислениям, выполняемым 
в алгоритме ► турбодекодирования (turbo decoding) (Берроу и др. [ 1 94], 1 993), 
который стал крупным научным прорывом в области разработки эффективных ко­
дов с коррекцией ошибок. 

Из этого следует вывод, что способ циклического распространения быстро и 
точно работает в очень крупных и тесно связанных сетях, используемых для де­
кодирования, и поэтому может найти более широкое применение. Теоретическая 
поддержка этих результатов, включая доказательства сходимости для некоторых 
особых случаев, была предоставлена Вейссом ( [2306] , 2000), Вейссом и Фриме­
ном ([2307], 200 1 ), а также Йедидой и др. ( [2402], 2005) и опирается на связь с иде­
ями статистической физики . 

Теории причинно-следственных связей, выходящие за рамки рандомизирован­
ных контрольных экспериментов, были предложены Рубином ( [ 1 926], 1 974) и Ро­
бинсом ([ 1 898], 1 986), но эти идеи оставались неясными и противоречивыми, пока 
Джуда Перл не разработал и не представил полностью сформулированную теорию 
причинности, основанную на причинно-следственных сетях (Перл [ 1 756], 2000). 
Петерс и соавт. ([ 1 779], 20 1 7) предоставили дальнейшее развитие этой теории с 
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акцентом на обучение. Более поздняя работа, The Book of Why (Перл и Маккензи 
[ 1 7  57], 20 1 8), предлагает менее матемю-ическое, но более читаемое и широкое вве­
дение в эту область. 

Неопределенные рассуждения в ИИ не всегда основывались на теории веро­
ятностей. Как отмечалось в главе 1 2, интерес к ранним вероятностным системам 
значительно снизился в начале 1 970-х годов, а образовавшийся вакуум был ча­
стично заполнен альтернативными методами .  К ним относятся основанные на пра­
вилах экспертные системы, теория Демпстера-Шейфера и (в некоторой степени) 
нечеткая логика.9 

Основанные на правилах подходы к неопределенности надеялись развить успех 
логических систем, основанных на правилах, но добавляли своего рода "фактор 
выдумки" - более вежливо называемый фактором уверенности - к каждому 
правилу, чтобы включить в него некоторую неопределенность. Первой такой си­
стемой была MYCIN (Шортлайф [2056], 1 976), медицинская экспертная система по 
бактериальным инфекциям.  Коллекция Rule-Based Expert Systems (Бучнан и Шорт­
лайф [33 8] ,  1 984) предоставляет полный обзор системы MYCIN и ее потомков (см .  
также Штефик [2 1 25] ,  1 995). 

Дэвид Хекерман ( [998], 1 986) показал, что в одних случаях слегка модифици­
рованная версия на основе вычислений с фактором определенности позволяет по­
лучить правильные вероятностные результаты, но в других случаях приводит к 
серьезной переоценке важности свидетельств . Если набор правил увеличивается, 
нежелательные взаимодействия между правилами получают большее распростра­
нение, и пракгикующий обнаруживает, что определенные факторы многих других 
правил требуется "подправить", когда в систему добавляются новые правила. Ос­
новные мю-емю-ические свойства, которые допускают цепочки логических рассуж­
дений, просто не подходят для вероятности. 

Теория Демпстера-Шефера впервые была представлена в статье Артура Демп­
стера ( [599], 1 968), предложившего обобщение способа представления вероятно­
стей в виде интервальных значений и обосновавшего правила комбинирования для 
их использования . Такой подход позволяет уменьшить сложность точного опреде­
ления вероятностей.  После опубликования более поздней статьи Гленна Шефера 
([2033 ], 1 976) теория Демпстера-Шефера стала рассматриваться как подход, спо­
собный конкурировю-ь с вероятностным подходом.  Перл ([ 1 755] ,  1 988) и Руспини 
и соавт. ( [  1 935] ,  1 992) проанализировали связь между теорией Демпстера-Шефера 
и стандартной теорией вероятностей.  Во многих случаях теория вероятностей не 
требует, чтобы вероятности были определены точно: мы можем выразить неопре­
деленность относительно значений вероятности в виде вероятностного распреде­
ления (второго порядка), как это объясняется в главе 20. 

9 В четвертом подходе, рассуждения по умолчанию, выводы рассматриваются не как 
"верим в определенной степени", а как "верим, пока не появится лучшая причина верить 
во что-то другое". Этот подход обсуждался в главе 1 0 . 
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Нечеткие миожеетва бьmи разработаны Лотфи Задэ ([24 1 8] ,  1 965) в целях 
устранения общепризнанных сложностей предоставления точных входных дан­
ных для интеллеюуальных систем. Нечеткое множество является таким множе­
ством, членство в котором - это вопрос степени. Нечеткая логика - это метод 
рассуждения с логическими выражениями, описывающими членство в нечетких 
множествах. Нечеткий контроль является методологией построения управляю­
щих систем, в которых отображение между реальными значениями входных и вы­
ходных параметров представлено нечеткими правилами. Нечеткий контроль уже 
проявил себя очень успешно во многих коммерческих продуктах, таких как авто­
магические коробки передач, видеокамеры или электрические бритвы. Учебник 
Циммермана ( [244 7], 200 1 )  представляет собой исчерпывающее введение в тео­
рию нечетких множеств, а стаrьи по приложениям нечетких множеств собраны в 
работе Циммермана [2446] (1999). 

Нечеткую логику часто траюуют неправильно, усмm-ривая в ней прямого кон­
курента теории вероятностей, тогда как в этой теории фактически рассматри­
ваются совсем другие вопросы: вместо учета неопределенности в отношении к 
истинности четко определенных высказываний нечеткая логика работает с ие­
определеииоетью в отображении термов символической теории на реальный 
мир. Подобная неопределенность является реальной проблемой при любом при­
менении логики, вероятностей и даже стандартных маrемаrических моделей к ре­
альности. Даже такая, казалось бы, безупречная величина, как масса Земли, при 
проверке оказывается изменяющейся во времени за счет непрерывного паде­
ния метеоритов и диссипации молекул атмосферы в космос. Кстати, последнее 
утверждение также неточно, - масса нашей планеты включает в себя ее аrмосфе­
ру? Если да, то до какой высоты? В некоторых случаях дальнейшая разработка мо­
дели может снизить подобную неопределенность, но нечеткая логика принимает 
такие неясности как данность и развивает вокруг этого свою теорию. 

Дrlя вычислений с учетом неопределенности в нечетких системах была пред­
ложена ► теория воэможноетей (possibllity theory) (Задэ [24 1 9], 1 978). Она имеет 
много общего с теорией вероятностей (дюбуа и Праде [658], 1994). 

Многие исследователи ИИ в 1 970-х годах отвергали вероятность, поскольку 
численные расчеты, которые, как считалось, требовались в теории вероятностей, 
не бьmи достаточно очевидны для самоанализа и предполагали нереалистичный 
уровень точности в наших неопределенных знаниях. Разработка качеетвенных 
вероятноетных еетей (Веллман [23 1 6], 1 990), предоставила чисто качественную 
абстракцию байесовских сетей, используя понятие о положительных и отрица­
тельных влияниях между переменными. Веллман показал, что во многих случа­
ях такой информации будет вполне достаточно для принятия оптимального реше­
ния без необходимости точного указания вероятностных значений. Гольдшмидт и 
Перл ( [883] ,  1 996) использовали аналогичный подход. В работе Дарвича и Гинз­
берга [525] (1992) извлекаются основные свойства обусловленности и комбинации 
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свидетельств из теории вероятностей и показано, что они также могут быть при­
менены в логических рассуждениях и рассуждениях по умолчанию. 

Несколько отличных учебников (Йенсен [ 1 13 5], 2007; Дарвич [526], 2009; Кол­
лер и Фридман [ 1266], 2009; Корб и Никольсон [ 1282], 20 10; Дехтер [586], 20 19) 
предоставляют подробное рассмотрение всех тем, которые обсуждались в этой 
главе. Новости об исследованиях в области вероятностных рассуждений публику­
ются как в основных журналах по ИИ, таких как Artificial Intelligence и Journal of 
А/ Research, так и в более специализированных журналах, таких как International 
Journal of Approximate Reasoning. Многие статьи о графических моделях, кото­
рые включают байесовские сети, появляются в стаrистических журналах. Маге­
риалы конференций Uncertainty in Artificial Intelligence (UAI), Neural Information 
Processing Systems (NeurIPS) и Artificial Intelligence and Statistics (AISTATS) также 
являются хорошими источниками информации о текущих исследованиях. 

Упражнения 
13.1. Имеется мешок с тремя поддельными монетами, а, Ь и с, с вероятностью выпа­

дения орла 20%, 60% и 80% соответственно. Одна из монет случайным образом 
достается из мешка (с равной вероятностью выбора каждой из трех монет), а за­
тем подбрасывается три раза с получением результатов Х1 , Х2 и Х3 . 
а) Нарисуйте байесовскую сеть, соответствующую этим условиям, и определи­

те необходимые таблицы условной вероятности (СРТ). 
б) Подсчитайте, какая монета, вероятнее всего, была извлечена из пакета, если 

в результате бросков два раза выпал орел и один раз - решка. 
13.2. Имеется мешок с тремя поддельными монетами, а, Ь и с, с вероятностью выпа­

дения орла 30%, 60% и 75% соответственно. Одна из монет случайным образом 
достается из мешка ( с равной вероятностью выбора каждой из трех монет), а за­
тем подбрасывается три раза с получением результатов Х1 , Х2 и Х3 • 
а) Нарисуйте байесовскую сеть, соответствующую этим условиям, и определи­

те необходимые таблицы условной вероятности (СРТ). 
б) Подсчитайте, какая монета, вероятнее всего, была извлечена из пакета, если 

в результате бросков два раза выпал орел и один раз - решка. 
13.3. Уравнение ( 1 3. 1 ) в разделе 1 3.2 определяет совместное распределение, пред­

ставленное байесовской сетью, в терминах параметров 0(Х; 1 Parents(X;)) .  Из 
данного определения выведите эквивалентность между этими параметрами и 
условными вероятностями Р(Х; 1 Parents(X;)). 
а) Рассмотрите простую сеть Х ➔ У ➔ Z с тремя булевыми переменными. 

Используйте уравнения ( 1 2.3) в разделе 1 2.2. 1 и ( 1 2.7) в разделе 1 2.3 , чтобы 
выразить условную вероятность P(z I у) в виде отношения двух сумм, в ка­
ждой из  которых суммируются элементы совместного распределения 
Р(Х, У, Z). 
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б) Теперь используйте уравнение ( 13.1), чтобы записать это выражение в тер­
минах параметров сети 0(А), 0(У \ А)  и 0(Z I У). 

в) Далее расширьте суммирование в выражении, полученном в п. б, явно запи­
сав термы для значений true иfa/se каждой суммируемой переменной. Пред­
полагая, что все параметры сети удометворяют ограничению L х; 0 (х; 1 Par­
ents(X;)) = 1, покажите, что полученное выражение сводится к 0(х I у). 

7) Обобщите этот вывод, чтобы показать, что 0(Х; 1 Parents(X;)) = Р(Х; 1 Par­
ents(X;)) для любой байесовской сети. 

13.4. Операция инверсии ребра в байесовской сети позволяет изменять напрамение 
ребра Х ➔ У, сохраняя совместное распределение вероятностей, предстамяе­
мое этой сетью. Для инверсии ребра может потребоваться введение новых ре­
бер: все родители Х также становятся родителями У, а все родители У также ста­
новятся родителями Х. 
а) Предположим, что Х и У исходно имеют т и п родителей соответственно и 

что все переменные имеют k значений. Рассчитав изменение размера таблиц 
СРТ для Х и У, покажите, что общее количество параметров в сети не мо� 
жет уменьшиться в процессе инверсии ребра. (Подсказка. Родители Х и У не 
должны быть непересекающимися.) 

б) При каких обстоятельствах общее число параметров может оставаться по­
стоянным? 

в) Пусть родителями Х будут U U  V, а родителями У будут VU W, где множе­
ства И и W не пересекаются. Формулы для новых таблиц СРТ после инвер­
сии ребра будут следующими: 

P(Y I U, V, W) =  ; P(Y I V, W, x)P(x l U, V), 

P(X I u, V, W, У) =  P(Y I  х, V, W)P(X I u, V)/P(Y I  U, V, W). 
Докажите, что новая сеть выражает то же самое совместное распределение по 

всем переменным, что и исходная сеть. 
13.5. Обратимся к байесовской сети, предстаменной на рис. 13.2. 

а) Если не наблюдается никаких свидетельств, будут ли независимыми пере­
менные Burglary и Earthquake? Обоснуйте свой ответ, исходя из числовой се­
мантики и топологической семантики. 

б) Если наблюдаемое значение переменной Alarm = true, будут ли независи­
мыми переменные Burg/ary и Earthquake? Обоснуйте свой ответ, рассчитав, 
удовлетворяют ли значения соответствующих вероятностей определению ус­
ловной независимости. 

13.6. Предположим, что в байесовской сети, содержащей ненаблюдаемую перемен­
ную У, наблюдаются все переменные ее марковского покрытия МВ(У). 
а) Докажите, что удаление вершины У из сети не помияет на апостериорное 

распределение для любой другой ненаблюдаемой переменной в сети. 
б) Поясните, можно ли удалить вершину У, если планируется использовать ал­

горитмы: а) выборки с отклонением; б) взвешивания по правдоподобию. 
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13.7. Пусть Нх - случайная величина, обозначающая характеристику отдельного х, 
с возможными значениями / (левша) или r {правша). Распространена гипоте­
за, что наследование характеристики левши или правши определяется простым 
механизмом, т.е., возможно, существует ген Gx, также со значениями / или r, и, 
возможно, фактическая характеристика индивида в основном будет такой же 
(с некоторой вероятностью s), что и значение гена, которым обладает данный 
индивид. Кроме того, возможно, что этот ген с равной вероятностью наследу­
ется от любого из родителей индивида с небольшой ненулевой вероятностью т 
случайной мутации, переворачивающей его значение. 
а) Какая из трех сетей на рис. 1 3 .24 утверждает, что 

Р( G Jather, G mother, G child) = Р( G Jather )Р( G mother )Р( G child)? 

б) Какие из трех сетей независимо друг о друга утверждают, что они совмести­
мы с упомянутой выше гипотезой о наследовании характеристики "правша/ 
левша"? 

в) Какая из трех сетей является наилучшим описанием предложенной выше ги­
потезы? 

г) Запишите таблицу СРТ для узла Gchild в сети а) в терминах s и т. 
д) Предположим, что P(Gfather I l) = P(Gmother 1 /) = q. В сети а) выведите выраже­

ние для P(Gchild 1 /) в терминах только вероятностей т и q с учетом обуслов­
ливания от его родительских узлов. 

е) В условиях генетического равновесия можно ожидать, что распределение ге­
нов в разных поколениях будет одинаковым. Используйте это положение для 
вычисления значения q, а затем, с учетом того, что известно о фактической 
распространенности правшей и левшей среди людей, объясните, почему ги­
потеза, предложенная в условиях этого упражнения, должна быть неверной. 

а) б) в) 

Рис. 13.24. Три возможные струК1)'ры байесовской сети, описывающей принцип ге­
нетического наследования характеристики "правша/левша" 
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13.8. Определение марковского покрытия переменной дано в разделе 1 4.2 . 1 .  Дока­
жите, что переменная не зависит от всех других переменных в сети, если дано 
ее марковское покрытие, и выведите уравнение ( 1 3 . 1 0), приведенное в разде­
ле 1 3 .4.2. 

13.9. Рассмотрите сеть для диагностики авrомобиля, представленную на рис. 1 3 .25 . 
а) Дополните сеть булевыми переменными IcyWeather (морозная погода) и 

StarterMotor (стартер). 
б) Приведите приемлемые таблицы условных вероятностей для всех вершин. 
в) Сколько независимых значений содержится в совместном распределении ве­

роятностей для восьми булевых вершин, если исходить из предположения, 
что нет известных связывающих их отношений условной независимости? 

г) Сколько независимых значений вероятности содержится в таблицах вашей 
сети? 

д) Условное распределение для вершины Starts (запускается) может быть опи­
сано как распределение зашумленного AND. Дайте общее определение это­
го семейства распределений и покажите его связь с распределениями зашум­
ленного ОR. 

Radio Gas 

Moves 

Рис. 13.2S. Байесовская сеть, описывающая некоторые характеристики электриче­
ской системы и двигателя автомобиля. Каждая переменная является булевой, при 
этом значение true указывает на то, что соответствующая подсистема автомобиля 
находится в рабочем состоянии 

13.10. Рассмотрим простую байесовскую сеть с корневыми переменными Cold (про­
студа), Flu (грип п) и Malaria (малярия) и дочерней переменной Fever (жар) с 
условным распределением зашумленного OR для переменной Fever, как опи­
сано в разделе 1 3 .2.2. Добавив соответствующие вспомогательные перемен­
ные для событий понижения и повышения температуры, создайте эквива­
лентную байесовскую сеть, таблицы СРТ которой (за исключением корневых 
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переменных) будут детерминированными. Определите эти С РТ и докажите эк­
вивалентность. 

13.11.  Рассмотрим семейство линейных гауссовых сетей, которое было определено в 
разделе 1 3 .2.3 . 
а) Допустим, что в сети с двумя переменными переменная Х1 ямяется родитель­

ской по отношению к переменной Х2, переменная Х1 имеет гауссово распре­
деление априорных вероятностей, а Р(Х2 1 Х1) - линейное гауссово распреде­
ление. Покажите, что совместное распределение Р(Х1, Х2) представляет собой 
мноrомерное гауссово распределение, и рассчитайте ero матрицу ковариации. 

б) Докажите методом индукции, что совместное распределение для линейной 
гауссовой сети общеrо вида по переменным Х1 , ••• , Хп также является много­
мерным гауссовым распределением. 

13.12. Пробит-распределение, описанное в разделе 1 3 .2.3 ,  описывает распределение 
вероятностей для булевой дочерней переменной, если задана одна непрерывная 
родительская переменная. 
а) Как можно расширить это определение, чтобы оно охватывало несколько не­

прерывных родительских переменных? 
б) Как оно может быть расширено на случай многозначной дочерней перемен­

ной? Рассмотрите как те случаи, в которых значения дочерней переменной 
упорядочены (например, в случае выбора при управлении авгомобилем пе­
редачи в зависимости от скорости, крутизны подъема, требуемого ускорения 
и т.д.), так и те случаи, в которых они не упорядочены (например, при вы­
боре авгобуса, трамвая или авгомобиля для поездки на работу). (Подсказка. 
Рассмотрите способы разделения возможных значений на два множества для 
имитации булевой переменной.) 

13.13. На атомной электростанции предусмотрена тревожная сигнализация, срабаты­
вающая, если показания датчика температуры превышают некоторое пороrовое 
значение. Датчик измеряет температуру в реакторе. Рассмотрите булевы пере­
менные А (звучит сигнал тревоги), FA (тревожная сигнализация неисправна) и 
FG (неисправен даrчик), а также мноrозначные вершины G (показания датчика) 
и Т (фактическая темпераrура в реакторе). 
а) Нарисуйте байесовскую сеть для этой проблемной области с учетом того, 

что вероятность отказа датчика повышается, если температура в реакторе 
становится слишком высокой. 

б) Является ли ваша сеть полидеревом? Почему да или почему нет? 
в) Предположим, что есть только два значения фактической и измеряемой темпе­

раrур - нормальная и высокая. Вероятность тоrо, что даrчик сообщает пра­
вильную температуру, равна х, если он работает, и равна у, если он неиспра­
вен. Составьте таблицу условных вероятностей, связанную с вершиной G. 

г) Предположим, что тревожная сигнализация работает правильно, при усло­
вии, что она не вышла из строя; в последнем случае сигнал тревоги никогда 
не зазвучит. Составьте таблицу условных вероятностей, связанную с верши­
ной А. 
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д) Предположим, что тревожная сигнализация и щпчик исправны и что сигнал 
тревоm звучит. Вычислите выражение для вероятности того, что темпера,у­
ра в реакторе слишком высока, в терминах различных условных вероятно­
стей в этой сети. 

13.14. Два астронома в различных частях Земли с помощью своих телескопов провели 
подсчеты, М1 и М2, количества звезд N на некотором небольшом участке неба. 
При подсчетах обычно имеет место небольшая вероятность ошибки е на одну 
звезду в большую или меньшую сторону. Каждый телескоп также может ( с го­
раздо меньшей вероятностью Л оказагься сильно расфокусированным (собы­
тия F1 и F2), и в этом случае ученый не досчитается трех или более звезд (или, 
если N меньше 3, вообще не обнаружит ни одной звезды). Рассмотрите три бай­
есовские сети, приведенные на рис. 1 3 .26. 
а) Какая из этих трех байесовских сетей является правильным (но не обязагель­

но эффективным) представлением приведенной выше информации? 
б) Какая из этих сетей лучше? Обьясните, почему. 
в) Запишите распределение условных вероятностей Р(М1 1 N) для случая, где 

N{ 1 ,  2, 3 } и М1 { О, 1 ,  2, 3, 4 } . Каждая запись в распределении условных веро­
ятностей должна быть представлена как функция от параметров е и/или f. 

г) Предположим, что М1 = 1 и М2 = 3 .  Каково возможное количество звезд, если 
предполагается, что на значения N не налагаются априорные ограничения? 

д) Каково наиболее вероятное количество звезд, если даны эти наблюдения? 
Обьясните, как рассчитагь эту вероятность, или, если ее невозможно рассчи­
тагь, объясните, какая требуется дополнительная информация и как она мо­
жет повлиять на результаг. 

13.15. Рассмотрим сеть, показанную на рис. 1 3 .26, 6. Предположим, что два телеско­
па дают идентичные результаты, N{ 1 ,  2, 3 } и М1 , М2 { 0, 1 ,  2, 3 , 4 } , а также что 
используются те же символические таблицы СРТ, которые описаны в упражне­
нии 1 3 . 1 4. Используя алгоритм перебора, рассчитайте распределение вероятно­
стей P(N I М1 = 2, М2 = 2). 

а) б) в) 

Рис. 13.26. Три возможных варианта сети для задачи об астрономах и телескопах 
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13. 16. Рассмотрим байесовскую сеть, показанную на рис. 1 3 .27. 
а) Какие из следующих утверждений подтверждаются структурой сети? 

1 .  Р(В, /, М) = Р(В)Р(/)Р(М) 
2. P(J I  G) = P(J I G, l) 
3 .  P(MI G, в, 1) = P(MI G, в, /, .1) 

б) Рассчитайте значение Р(Ь, i, ,т, g,j). 
в) Рассчитайте вероятность того, что кто-то попадет в тюрьму, если он нарушил 

закон, ему предъявлено обвинение и он столкнулся с политически мотивиро­
ванным прокурором. 

r) Контекстно специфическая независимость (см. раздел 1 3 .2.2) позволяет пе­
ременной быть независимой от некоторых ее родительских переменных при 
определенных значениях других. В дополнение к обычным условным неза­
висимостям, определяемым струк,урой графа, какие контекстно специфиче­
ские независимости присутствуют в байесовской сети, представленной на 
рис. 1 3 .27? 

д) Предположим, в эту сеть требуется добавить переменную PPresidentia/Par­
don (президентское помилование). Нарисуйте новую сеть и крагко объясни­
те присутствие любых ребер, которые были добавлены. 

в м  P(I ) 
t t 0,9 
t f 0,5 
f t 0,5 
f f 0, 1 

в / м P(G) 
t t t 0,9 
t t f 0,8 
t f t 0,0 
t f f 0,0 G P(J) 
f t t 0,2 
f t f 0, 1 
f f t 0,0 

t 0,9 
f 0,0 

f f f 0,0 
Рис. 13.27. Простая байесовская сеть с булевыми переменными В =  {BrokeElec­
tionLaw} (нарушен избирательный закон), / =  { lndicted} (предъявлено обвине­
ние), М = {PoliticallyMotivationProvisor} (политически мотивированный прокурор), 
G = {FoundGuilty} (признан виновным), J = {Jailed} (заключен в тюрьму) 



136 Часть IV. Неопределенные знания и рассуждения в условиях неопределенности 

13.17. Рассмотрим байесовскую сеть, представленную на рис. 1 3.27. 
а) Что из приведенного ниже, если таковое имеется, подтверждается структу­

рой сети (пока СРТ игнорируются)? 
1. Р(В, /, М) = Р(В)Р(/)Р(М) 
2 .  P(J I G) = P(J I  G, /)  
3 .  P(MI G, в, /) =  P(MI G, в, /, J) 

б) Рассчитайте значение Р(Ь, i, т, ,g,j). 
в) Рассчитайте вероятность того, что кто-то попадет в тюрьму, если он нарушил 

закон, ему предъявлено обвинение и он столкнулся с политически мотивиро­
ванным прокурором. 

r) Контекстно специфическая независимость (см. раздел 1 3.2.2) позволяет пе­
ременной быть независимой от некоторых ее родительских переменных при 
определенных значениях других. В дополнение к обычным условным незави­
симостям, определяемым структурой графа, какие контекстно специфические 
независимости присутствуют в байесовской сети, представленной на рис. 1 3.27? 

д) Предположим, в эту сеть требуется добавить переменную PPresidentia/Par­
don (президентское помилование). Нарисуйте новую сеть и кратко объясни­
те присутствие любых ребер, которые были добавлены. 

13.18. Рассмотрим алгоритм устранения переменной, представленный на рис. 1 3.1 3 
(раздел 1 3 .3.2). 
а) В разделе 1 3.3 алгоритм устранения переменной применялся к следующему 

запросу: 
P(Burglary I JohnCalls = true, MaryCalls = true). 

Проведите указанные вычисления и проверьте правильность ответа. 
б) Подсчитайте количество выполненных арифметических операций и сравни­

те его с количеством операций, выполняемых в алгоритме перебора. 
в) Предположим, что сеть имеет форму цепи - последовательности булевых 

переменных Х1 , ... , Хп, где Parents(X;) = {.х;_1 } для i = 2, ... , п. Какова слож­
ность вычисления выражения Р(Х1 1 Хп = true) с использованием алгоритма 
перебора? С использованием алгоритма устранения переменной? 

r) Докажите, что сложность применения алгоритма устранения переменной в 
сети, имеющей форму полидерева, линейно зависит от размера дерева при 
любом упорядочении переменных, согласованном со структурой сети. 

13.19. Проведите исследование сложности точного вывода в байесовских сетях обще­
го вида. 
а) Докажите, что любую задачу 3-SAT можно свести к задаче точного вывода в 

байесовской сети, построенной для представления данной конкретной задачи, 
и поэтому такой точный вывод является NР-трудным. (Подсказка. Рассмотри­
те сеть с одной переменной для каждого пропозиционального символа, с од­
ной - для каждого выражения и с одной - для конъюнкции выражений.) 

б) Проблема подсчета количества выполняющих присваиваний для задачи 
3-SAT является #Р-полной. Покажите, что задача точного вывода является 
по меньшей мере такой же трудной, как эта. 
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13.20. Рассмотрим задачу формирования случайной выборки из заданного распреде­
ления по одной переменной. Предположим, что в вашем распоряжении имеет­
ся генератор случайных чисел, возвращающий случайное число с равномерным 
распределением в интервале от О до 1 .  
а) Пусть Х - дискретная переменная с Р(Х = х;) = р; для i = { 1 ,  . . .  , k} . Кумуля­

тивное распределение (cumulative distribution) Х задает вероятность того, что 
Х= {х 1 , • • •  , х1} для каждого возможногоj. Объясните, как рассчитать это куму­
лятивное распределение за время O(k) и как получить из него одну выбор­
ку Х Может ли последняя операция быть выполнена за время меньше O(k)? 

б) Теперь предположим, что необходимо сформировать N выборок Х, где 
N>> k. Объясните, как выполнить эту операцию с ожидаемым временем вы­
полнения в расчете на выборку, К010рое является постоянным (т.е. независи­
мым от k). 

в) После этого рассмотрим непрерывную переменную с параметризованным 
распределением (например, с гауссовым). Как можно формировать выборки 
с помощью такого распределения? 

r) Предположим, что необходимо сформулировать запрос, касающийся непре­
рывной переменной, и что для вероятностного вывода используется такой 
алгоритм, как LIKELIНOODWEIGНТING. Как вы модифицировали бы процесс 
поиска ответов на такие запросы? 

13.21. Рассмотрим запрос P(Rain I Sprinkler = true,WetGrass = true) в байесовской сети, 
приведенной на рис. 1 3 . 1 5 , а, и то, как можно получить на него ответ с помо­
щью алгоритма МСМС. 
а) Какое количество состояний имеет эта цепь Маркова? 
б) Рассчитайте матрицу переходов Q, содержащую значение q(y ➔ у') для всех 

у, у'. 
в) Что представляет собой Q2 , квадрат матрицы переходов? 
r) А что можно сказать о выражении Qп, где n ➔ oo? 
д) Объясните, как следует выполнять вероятностный вывод в байесовских се­

тях при условии, что доступно выражение Qп . Является ли такой способ ве­
роятностного вывода практически применимым? 

13.22. В этом упражнении исследуется стационарное распределение для методов вы­
борки Гиббса. 
а) Выпуклая композиция [� q 1 ;  1 - � q2] для распределений q 1 и q2 представ­

ляет собой распределение вероятностей перехода, К010рое сначала выбирает 
что-то одно из распределений q 1 и q2 с вероятностями а и 1 - а соответствен­
но, а затем применяет то, что выбрано. Докажите, что если распределения q 1 
и q2 находятся в детализированном равновесии с 71", то их выпуклая компо­
зиция также находится в детализированном равновесии с 71". (Примечание. 
Этот результат оправдывает вариант алгоритма GIBBS-ASK, в котором пере­
менные выбираются случайным образом, а не в фиксированной последова­
тельности.) 
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б) Докажите, что если распределения q 1 и q2 имеют 1r в качестве стационарного 
распределения, то последовательная композиция для распределений q 1 и q2 
также имеет 1r в качестве стационарного распределения. 

13.23. Алгоритм Метрополиса-Гастинrса является членом семейства алгоритмов 
МСМС. Как таковой он предназначен для генерации выборок х (в конечном ито­
ге) в соответствии с целевыми вероятностями 1r(x). (Обычно нас интересует вы­
борка из 1r(x)P(x I е) .) Как и алгоритм имитации отжига, алгоритм Метрополи­
са-Гастинrса работает в два этапа. На первом формируется новое состояние х' 
из вспомогательного распределения q(x' 1 х) при заданном текущем состоя­
нии х. На втором состояние х' вероятностно принимается или отклоняется в со­
ответствии с вероятностью успешного приема 

а(х' 1 х) = min (1, 1r(x')q(x I х')
) . 

1r(x)q(x' 1 х) 

Если предложение х' отклонено, сохраняется состояние х. 
а) Рассмотрите случай, когда на первом этапе выполняется обычная выборка 

Гиббса для конкретной переменной Х;. Покажите, что результат выполнения 
этого этапа, рассматриваемый как предложение, гарантированно будет при­
нят в алгоритме Метрополиса-Гастинrса. (Следовательно, выборка Гиббса 
является частным случаем алгоритма Метрополиса-Гастинrса.) 

б) Покажите, что описанный выше двухэтапный процесс, рассматриваемый как 
распределение вероятностей перехода, находится в детализированном равно­
весии с 1r. 

13.24. Три футбольные команды, А, В и С, играют друг с друrом по одному разу. Каждый 
магч проводится между двумя командами и может закончиться для команды выи­
грышем, ничьей или проигрышем. Каждой команде присвоена постоянная, неиз­
вестная оценка ее класса (целое число в диапазоне от О до 3), и результт- магча ве­
роятностно зависит от разницы в классе между двумя участвующими командами. 
а) Сформируйте реляционную вероятностную модель для описания этой про-

блемной области и предложите реальные числовые значения для всех необ­
ходимых распределений вероятностей. 

б) Постройте эквивалентную байесовскую сеть для трех матчей. 
в) Предположим, что в первых двух матчах команда А побеждает команду В и 

заканчивает игру вничью с командой С. Используя алгоритм точноrо вывода 
по своему выбору, вычислите распределение апостериорных вероятностей 
для результатов третьего матча. 

r) Предположим, что в этой футбольной лиге п команд и у нас есть результаты 
всех мт-чей, кроме последнего. Как сложность предсказания последней игры 
зависит от п? 

д) Рассмотрите возможность применения алгоритма МСМС для решения этой 
задачи.  Насколько быстро этот алгоритм сходится на практике и насколько 
хорошо он масштабируется? 



ГЛАВА 14 
Вероятностные 

рассуждения во времени 
В данной главе предпринимаются попытки интерпретировать настоящее, 
понимать прошлое и, возможно, предсказывать будущее, даже когда очень 
немногое полностью ясно. 

Агенты, действующие в частично наблюдаемых средах, должны быть способ­ны отслеживать текущее состояние среды в тех пределах, которые обеспечивают их датчики. В разделе 4.4 была представлена методология, позволяющая сделать это: агент поддерживает доверительное состояние, представляющее, какие со­стояния мира возможны на текущий момент. На основании доверительного состо­яния и модели перехода агент может предсказаrь, как может измениться мир на следующем временном этапе. Исходя из наблюдаемых восприятий и модели сен­соров или модели восприятия, агент может обновлять свое доверительное состо­яние. Эrо универсальная, всеохваrывающая идея: в главе 4 доверительные состоя­ния были представлены явно перечисленными множествами состояний, тогда как в главах 7 и 1 1  они были представлены логическими формулами. Однако во всех этих подходах доверительные состояния определялись лишь с точки зрения того, какие состояния мира были возможны, но они ничего не могли сказаrь о том, на­сколько эти состояния были вероятны или маловероятны. В этой главе теория ве­роятностей будет использована для получения количественной оценки степени до­верия к элементам доверительного состояния. В разделе 1 4. 1  поясняется выбранный базовый подход: время само по себе бу­дет представлено так же, как в главе 7: изменяющийся мир моделируется с исполь­зованием переменных, представляющих каждый аспект состояния мира в каж:дый 
момент времени. Модель переходов и модель восприятия могут быть неопреде­ленными: модель переходов описывает распределение вероятностей переменных в момент времени t при известном состоянии мира в прошедшие моменты времени, тогда как модель восприятия описывает вероятность каждого восприятия в момент времени t с учетом текущего состояния мира. В разделе 1 4.2 определяются основ­ные задачи вероятностного вывода и описана общая структура алгоритмов вероят­ностного вывода для временных моделей. Заrем рассмаrриваются три конкретных 
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типа моделей: скрытые марковские модели, фильтры Калмана и динамиче­
ские байесовские сети (которые включают скрытые марковские модели и филь­
тры Калмана в качестве частных случаев). 

14.1. Время и неопределенность 
В предыдущих главах методы вероятностных рассуждений рассматривались 

в контексте статических миров, в которых каждая случайная переменная име­
ла одно фиксированное значение. Например, в задаче о ремонте автомобиля пред­
полагалось, что любой неисправный узел останется неисправным на протяжении 
всего процесса диагностики, и наше задание заключалось лишь в вероятност­
ном выводе информации о состоянии автомобиля, исходя из наблюдаемых свиде­
тельств, которые также оставались фиксированными. 

Теперь рассмотрим несколько иную задачу: лечение больного диабетом. Как и в 
случае ремонта автомобиля, в нашем распоряжении имеются свидетельства, такие 
как последние дозы приема инсулина, рацион питания, результаrы измерения коли­
чества сахара в крови и другие физические симптомы. Задание состоит в том, чтобы 
оценить текущее состояние пациента, включая фактический уровень сахара в крови 
и уровень инсулина. При наличии такой информации можно будет принять решение 
о рационе питания больного и необходимой дозе инсулина. Но, в отличие от случая 
с ремонтом автомобиля, здесь становятся важными динамические аспекты задачи. 
Значения уровня сахара в крови и результаты его измерения могут быстро изменять­
ся во времени в зависимости от последнего приема пищи больным и доз инсулина, 
от интенсивности обмена веществ в организме, времени суток и т.д. Чтобы оценить 
текущее состояние больного по хронологии накопленных фактов и предсказаrь ре­
зульппы терапевтических действий, необходимо моделироваrь эти изменения. 

Точно такие же соображения возникают во многих других контекстах, подоб­
ных отслеживанию местоположения робота, наблюдению за экономической актив­
ностью некоторого государства или анализу смысла некоторой последовательно­
сти произнесенных или записанных слов. Как же можно смоделироваrь подобные 
динамические ситуации? 

14.1.1. Состояния и наблюдения 

В этой главе рассмаrриваются модели с ► дискретным представлением вре­
мени, в которых мир рассмаrривается как серия снимков или ► временных сре­
зов. 1 Мы просто будем нумеровать временные срезы (О, 1 ,  2 и т.д.) вместо того, 
чтобы присваивать им некоторое конкретное значение времени. Обычно интервал 

1 Неопределенность в отношении непрерывного времени может быть смоделирована 
с помощью стохастических дифференциальных уравнений (Stochastic Differential Equa­
tions - SDE). Модели, анализируемые в этой rnaвe, можно рассматривать как приближе­
ния к SDE в дискретном времени. 
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времени Л между срезами предполагается одинаковым для каждого интервала. 
Для любого конкретного применения необходимо выбрать конкретное значение Л. 
Иногда оно может задаваться особенностями датчика, например видеокамера мо­
жет предоставлять изображения с интервалом 1 /30  секунды. В других случаях ин­
тервал диктуется типичной скоростью изменения соответствующих переменных, 
например в случае мониторинга содержания глюкозы в крови ситуация может рез­
ко измениться в течение десяти минут, поэтому вполне обоснованным будет вы­
бор интервала в одну минуту. С другой стороны, при моделировании дрейфа кон­
тинентов во временных масштабах геологических эпох хорошим выбором может 
быть интервал в один миллион лет. 

Каждый временной срез в вероятностной модели с дискретным представлени­
ем времени содержит множество случайных переменных, одни из которых являют­
ся наблюдаемыми, а другие - нет. Для простоты мы будем предполагать, что одно 
и то же подмножество переменных можно наблюдать в каждом временном срезе 
(хотя такое требование не является строго необходимым в отношении всего после­
дующего изложения). Будем использовать Х1 для обозначения множества перемен­
ных состояния во время t, которые предполагаются ненаблюдаемыми, и Е1 - для 
обозначения множества наблюдаемых переменных свидетельства. Результатами на­
блюдения во время t является Е1 = er, т.е. некоторое множество значений е1• 

Рассмотрим следующий простой пример: предположим, что на некоем секрет­
ном подземном объекте имеется охранник, который на весь период вахты никогда 
его не покидает. Если он захочет узнать, идет ли сегодня дождь, то единственную 
доступную информацию о состоянии внешнего мира он сможет получить толь­
ко утром, встречая директора, пришедшего с зонтиком или без него. Таким обра­
зом, для каждого дня t множество Е1 включает единственную переменную свиде­
тельства Umbrella1 (зонтик) или И1 (определяющую, был ли у директора зонтик), 
а множество Х1 содержит единственную переменную состояния Rain1 (дождь) или 
R1 (указывающую, идет ли дождь). Другие задачи могут включать более крупные 
множества переменных. В частности, в примере с диабетом могут использоваться 
такие переменные свидетельства, как результаты измерения уровня сахара в крови 
MeasuredB/oodSugar1 и частоты пульса PulseRate1, а также переменные состояния, 
такие как фактический уровень сахара в крови ВloodSugar1 и содержимое желудка 
StomachContents1 • (Обратите внимание, что ВloodSugar1 и MeasuredВloodSugar1 -

это не одна и та же переменная, именно так принято поступать с зашумленными 
результатами измерений реальных величин.) 

Будем считать, что в задачах последовательность состояний начинается в момент 
времени t = О, а информация свидетельства начинает поступать с момента времени 
t = 1 . Таким образом, мир задачи с зонтиком может быть представлен переменными 
состояния Я.О, R 1 , R2, • • • и переменными свидетельства U1 , U2, • • •  Для обозначения 
последовательности целых чисел от а до Ь (включительно) будем использовать за­
пись а:Ь и запись Ха:Ь - для обозначения соответствующего ряда переменных от Ха 
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до Хь . Например, И1 : з  соответствует переменным И1 , И2, И3 • (Обратите внимание, 
что этот подход отличается от нотации, используемой в языках программирования, 
таких как Python или Go, где запись U [ 1 : З ]  не включает U [ З ]  .) 

14.1.2. Модель перехода и модель восприятия 

После выбора для рассматриваемой задачи множества переменных состояния и 
переменных свидетельства на следующем этапе следует указать, как этот мир раз­
вивается (модель перехода) и как переменные свидетельства получают свои значе­
ния (модель восприятия). 

Модель перехода определяет распределение вероятностей для переменных 
последнего состояния при заданных их предыдущих значениях, т.е. Р(Х, 1 Хо:1--1) .  
И здесь возникает проблема: множество Xo:,-I неограниченно возрастает в раз­
мерах по мере увеличения t. Эта проблема решается принятием ► марковского 
предположения о том, что текущее состояние зависит только от конечного фик­
сированного числа предыдущих состояний. Процессы, удовлетворяющие этому 
предположению, впервые были глубоко исследованы статистиком Андреем Мар­
ковым (185�1922) и называются ► марковскими процессами или марковскими 
цепями. Существует несколько разновидностей таких процессов, и простейшим 
из них является ► марковский процесс первого порядка, в котором текущее со­
стояние зависит только от предыдущего состояния и не зависит от каких-либо бо­
лее ранних состояний. Другими словами, каждое состояние предоставляет доста­
точно информации, чтобы сделать будущее условно независимым от прошлого: 

Р(Х, 1 Хо:,- 1) = Р(Х, 1 Х,- 1 ) .  (14.1) 

Таким образом, в марковском процессе первого порядка модель перехода пред­
ставлена условным распределением Р(Х, 1 Хн)- Моделью перехода для марков­
скоrо процесса второго порядка является условное распределение Р(Х, 1 Х,_2, Х1_ 1 ) .  
На рис. 14 .1 приведены структуры байесовских сетей, соответствующие марков­
ским процессам первого и второго порядка. 

а) 

6) 

Рис. 1 4. 1 .  а) Струк,ура байесовской сети, соответствующая марковскому процессу 
первого порядка с состояниями, определяемыми переменными Х,. б) Марковский 
процесс второго порядка 
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Но даже при принятии марковского предположения все еще существует дру­
гая проблема: имеется бесконечно много возможных значений t. Необходимо 
определять иное распределение для каждого временного этапа? Можно избежать 
этой проблемы, если предположить, что изменения в состоянии мира обусловле­
ны ► стационарным (time-homogeneous) процессом, т.е .  процессом изменения, 
подчиняющимся законам, не изменяющимся с течением времени. Тогда в мире 
задачи с зонтиком условная вероятность дождя, P(R, 1 R1_1 ), будет одной и той же 
для всех t и достаточно будет определить только одну таблицу условной вероят­
ности. 

Теперь обратимся к модели восприятия. Переменные свидетельства Е, могут 
зависеть как от предыдущих, так и от текущих значений переменных состояния, 
но любого заслуживающего внимания состояния должно быть достаточно для ге­
нерации текущего значения датчика. Следовательно, ► марковское допущение 
для датчиков можно сформулировать следующим образом: 

( 14.2) 

Таким образом, модель восприятия (иногда ее называют моделью наблюде­
ния) может быть определена как Р(Е, 1 Х,). На рис. 1 4 .2 показаны модель пере­
хода и модель восприятия для примера задачи с зонтиком . Обратите внимание 
на направление зависимости между состоянием и датчиками: стрелки направле­
ны от фактического состояния мира к значениям датчиков, поскольку именно со­
стояние мира вынуждает датчики принимать определенные значения : дождь вы­
зывает появление зонтика. (Процесс вероятностного вывода, конечно же, идет в 
другом направлении, - различие между направлением смоделированных зави­
симостей и направлением вывода является одним из главных преимуществ бай­
есовских сетей.) 

Rt-1 P(RI 1Rt-1 
t 
f 

Rain1_1 

Umbrellaн 

R Р(ИI 1R1) 
t 0,9 
f 0,2 

Umbrel/a1 Umbrellщ+ 1 

Рис. 14.2. Структура байесовской сети и распределения условных вероятностей, 
описывающие мир задачи с зонтиком. Моделью перехода является P(Rain1 1 Rain1-1), 
а моделью восприятия является Р( Umbrella1 1 Rain1) 
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В дополнение к модели перехода и модели восприятия также необходимо опре­
делить, как все начиналось, т.е. задать распределение априорных вероятностей в 
момент времени О, Р(Хо). Эrих трех распределений достаточно, чтобы получить 
спецификацию полного совместного распределения по всем переменным, исполь­
зуя уравнение ( 1 3 .2). Для любого этапа времени t получаем: 

Р(Хо:,, Е , :1) = Р(Хо) Ц Р(Х; 1 Х;- 1 ) Р(Е; 1 Х;). ( 1 4 .3 ) 

Три элемента в правой части уравнения являются начальным состоянием мо­
дели Р(Хо), моделью перехода Р(Х; 1 Хн) и моделью восприятия Р(Е; 1 Х;) . Это 
уравнение определяет семантику семейства временных моделей, представлен­
ных тремя данными элементами. Обратите внимание, что стандартные байесов­
ские сети не могут представлять такие модели, поскольку они требуют, чтобы 
множество переменных было конечным. Способность работать с бесконечными 
множествами переменных появляется из-за двух особенностей: во-первых, из-за 
определения бесконечного множества с использованием целочисленных индек­
сов и, во-вторых, из-за использования неявного универсального квантификатора 
(см. раздел 8.2) в определении модели восприятия и модели перехода для каждо­
го временного этапа. 

СтруК1)'ра, приведенная на рис. 1 4.2, представляет марковский процесс перво­
го порядка - предполагается, что вероятность дождя зависит только от того, был 
ли дождь в предыдущий день. Разумно ли такое предположение, зависит от самой 
проблемной области. Марковское предположение первого порядка говорит о том, 
что переменные состояния содержат всю информацию, необходимую для описа­
ния распределения вероятностей для следующего временного среза. Иногда такое 
предположение полностью соответствует истине; например, если некоторая части­
ца совершает случайное блуждание вдоль оси х, изменяя свою позицию на вели­
чину ± 1 в каждый интервал времени, то применение в качестве состояния коорди­
наты х позволяет определить марковский процесс первого порядка. Иногда такое 
предположение является лишь приблизительным, как в случае предсказания до­
ждя лишь на основании того, был ли дождь в предыдущие сутки. Существуют два 
возможных метода повысить точность такого приближения. 

1 .  Повышение порядка модели марковского процесса. Например, можно пе­
рейти к использованию модели второго порядка, введя переменную Rain,_2 
в качестве родительской по отношению к Rain" что позволит получить не­
много более точные предсказания (например, в Пало-Альто, Калифорния, 
дождь очень редко идет больше двух дней подряд). 

2. Расширение множества переменных состояния. Например, можно вве­
сти переменную Season1, представляющую время года, что позволит вклю­
чить в рассмотрение хронологические данные о дождливых временах года, 
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или ввести переменные Temperature1 (темпера'I)'ра), Humidity1 (влажность) и 
Pressure1 (атмосферное давление), чтобы появилась возможность использо­
вания физической модели условий, способствующих возникновению дождя. 

В упражнении 1 4. 1  предлагается показать, что первое решение (увеличение по­
рядка модели) всегда можно переформулировать как расширение множества пе­
ременных состояния с сохранением исходного порядка. Обратите внимание, что 
введение дополнительных переменных состояния позволяет повысить предска­
зательные возможности системы, но при этом повышает требования к прогно­
зированию, поскольку теперь потребуется также прогнозировать значения новых 
переменных. Следовагельно, необходимо найти "самодостаточное" множество пе­
ременных, что фактически означает требование понять "физику" моделируемого 
процесса. Очевидно, что требования к точному моделированию процесса можно 
ослабить, если есть возможность ввести новые результаты восприятия (например, 
результаты измерения темперагуры и атмосферного давления), которые непосред­
ственно предоставляют информацию о новых переменных состояния. 

Рассмотрим, например, задачу слежения за роботом, случайным образом 
блуждающим на плоскости Х-У. Можно предположить, что достаточно восполь­
зоваться лишь таким множеством переменных состояния, как положение и ско­
рость, - ведь для вычисления нового положения можно просто использовать 
законы Ньютона, а скорость может изменяться непредсказуемо. Но если робот 
работает на электрической энергии от аккумулятора, то постепенный разряд ак­
кумулятора будет оказывать систематическое влияние на изменение скорости. 
А поскольку само это влияние зависит от того, сколько электроэнергии было из­
расходовано при всех предыдущих маневрах, то свойство марковости (т.е. принад­
лежности марковской цепи к модели определенного порядка) будет нарушаться. 

Марковость цепи можно восстановить, включив переменную Battery1, пред­
ставляющую уровень заряда аккумулятора, в состав переменных состояния, вхо­
дящих в множество Х1• Это позволит лучше предсказывагь движения робота, но, 
в свою очередь, потребует создания модели для предсказания значения Battery1 на 
основании значения Battery,_ 1 и скорости. В некоторых случаях такое моделирова­
ние может быть выполнено достаточно надежно, в большинстве случаев вскоре бу­
дет обнаружено, что ошибка предсказания накапливается со временем. В этом слу­
чае повышения точности можно будет добиться путем ввода нового датчика для 
измерения уровня заряда аккумулятора. Мы еще вернемся к примеру с аккумуля­
тором в разделе 1 4.5 . 
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1 4.2. Вероятностный вывод во временных моделях 
Теперь, после определения структуры общей временной модели, можно сфор­

мулировать основные задачи вероятностного вывода, которые должны быть реше­
ны с помощью этой модели. 

• ► Фильтрация2 или ► оценка состояния. Это задача вычисления ► дове­
рительного состояния Р(Х1 1 е 1 : i) - распределения апостериорных вероят­
ностей, относящихся к текущему состоянию, с учетом всех полученных к 
данному моменrу свидетельств. В примере задачи с зонтиком это может оз­
начать вычисление вероятности дождя сегодня, если даны все результагы 
наблюдений о наличии зонтика, полученные до сих пор. Фильтрацией назы­
вают те действия, которые рациональный агент должен выполнять для от­
слеживания текущего состояния таким образом, чтобы получить возмож­
ность принимагь рациональные решения . Как оказалось, почти идентичные 
расчеты выполняются при определении правдоподобия последовагельности 
свидетельств, Р( е1 : 1) . 

• ► Предсказание. Это задача вычисления распределения апостериорных ве­
роятностей для будущих состояний с учетом всех свидетельств, получен­
ных к данному моменrу. Это означает, что может потребоваться вычислить 
P(X1+k I е 1 : 1) для некоторого k > О. В примере задачи с зонтиком такие вычис­
ления моrут выполняться с целью определения вероятности дождя через три 
дня от нынешнего с учетом всех результатов наблюдений о наличии зонтика, 
полученных до сих пор. Предсказание полезно для оценки возможных дей­
ствий, исходя из их ожидаемых результагов. 

• ► Сглаживание. Это задача вычисления распределения апостериорных ве­
роятностей для прошлых состояний с учетом всех свидетельств вплоть до 
нынешнего состояния. И это означает, что требуется вычислить значение 
P(Xk I е 1 : i) для некоторого k, такого, что О � k < t. В примере задачи с зонти­
ком это может означать вычисление вероятности того, что дождь шел в про­
шлую среду, с учетом всех результатов наблюдений о наличии зонтика, по­
лученных до сих пор. Сглаживание обеспечивает лучшую оценку состояния 
в момент времени k, чем та, которая была досrупна в тот момент, поскольку 
она включает больше свидетельств.3 

• Наиболее вероятное обьяснение. При наличии результатов последовагель­
ности наблюдений может потребоваться найти такую последовательность 

2 Термин "фильтрация" относится к истокам этой задачи, впервые рассматривавшейся 
в ранних работах по обработке сигналов, где проблема состояла в том,  чтобы отфильтро­
вать шум от сигнала посредством оценки его базовых свойств. 

3 В частности, при отслеживании движущегося обьекта посредством неточных наблю­
дений за положением сглаживание дает более гладкую оценочную траекторию, чем филь­
трация, - отсюда и название. 
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состояний, которая с наибольшей вероятностью стала причиной получения 
этих результатов. Это означает, что необходимо вычислить значение 
argmaxx1:, Р(х 1 : t  I е 1 : ,). Например, если наличие зонтика бьmо оrмечено в каж­
дый из первых трех дней, а на четвертый день зонтика у директора не бьmо, 
то наиболее вероятным обьяснением становится наличие дождя в первые 
три дня и его отсутствие на четвертый. Алгоритмы решения такой задачи 
оказались полезными во многих приложениях, включая распознавание 
речи - здесь целью является поиск наиболее вероятной последоваrельно­
сти слов при наличии серии звуков - и реконструкцию цепочек битов, пе­
редаваемых по зашумленному каналу. 

В дополнение к этим задачам вероятностного вывода можно упомянуть еще 
одну. 

• Обучение . Модель перехода и модель восприятия, если они еще не из­
вестны, можно изучить, исходя из наблюдений. Как и в случае статиче­
ских байесовских сетей, обучение динамических байесовских сетей может 
быть выполнено как побочный продукт вероятностного логического выво­
да. Вероятностный вывод дает оценку того, какие переходы между состоя­
ниями действительно произошли и какие состояния определили результаrы 
восприятия, - эти оценки могут быть использованы для обучения моде­
лей. Процесс обучения может работать через итеративный алгоритм об­
новления, получивший название "ожидание-максимизация" (expectation­
maximization - ЕМ), либо стать результатом байесовского обновления 
параметров моделей, исходя из имеющихся свидетельств. Подробнее об 
этом читайте в главе 20. 

В оставшейся части этого раздела описываются общие алгоритмы для приве­
денных выше четырех задач вероятностного вывода, не зависящие от конкретно­
го вида используемой модели. Возможные усовершенствования этих алгоритмов, 
специфические для каждой модели, рассмаrриваются в последующих разделах. 

1 4.2. 1 . Фильтрация и предсказание 

Как указывалось в разделе 7.7 .3, полезный алгоритм фильтрации должен под­
держиваrь оценку текущего состояния и обновлять ее, а не возвращаться назад 
по всей истории восприятий при каждом обновлении.  (В противном случае сто­
имость каждого обновления будет увеличиваться с течением времени.) Другими 
словами, при заданном результаrе фильтрации на момент времени t aremy необхо­
димо вычислить результаr фильтрации для момента t + 1 ,  исходя из нового свиде­
тельства ett 1 • Итак, для некоторой функции/ имеет место следующее: 

P(X1+ 1 I е 1 :1+ 1) = Ле1+ 1 , Р(Х, 1 е 1 : ,)). 
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Эюr процесс называюr рекурсивной оценкой. (См. также разделы 4.4 и 7.7.3 .) 
Эти вычисления можно рассматривпь как состоящие из двух частей: сначала те­
кущее распределение вероятностей проектируется вперед от t к t + 1, а затем оно 
обноWJяется с использованием нового свидетельства et+ 1 • Такое двухэтапное про­
текание процесса выразить формально можно просто за счет перестановки. 

P(X,+1 I е 1:н1) = Р(Хн1 1 е1:1 , ен1 ) = 

= а Р(ен1  I Хн1 , е 1: ,) Р(Хн1 1 е 1: ,) = 

= а Р(ен1 1 Хн1) Р(Хн1 l е 1:д  
'-------v------ '------v------' 

! ! 

обновление предсказание 

(разделение свидетельства) 
(применение правила 
Байеса при заданном е 1 : ,) 

(по свойству марковости 
свидетельства) 

( 1 4.4) 

Здесь и далее в этой главе а - это нормализующая константа, используемая 
для того, чтобы вероятности в сумме составляли 1. Теперь добавим выражение для 
одношагового предсказания Р(Х,+ 1 1 е 1 :,), полученное обуслоWiиванием вероятно­
стей текущего состояния Х,. Результирующее уравнение оценки нового состояния 
яWJяется центральным резульпrrом в этой главе. 

Р(Хн1 l е 1 :нд = а Р(ен1 1 Хн1 )L Р(Хн1 1  х, ,е 1 : 1)Р(х , l е 1 :д = 
Xt 

= а Р(ен1 I Хн1 ) L Р(Хн1 l x, ) P(x, l e1:1 ) 
'--т-' х, -----У----------Т-----

модель восприJ1ТИ1 модель перехода рекурсия 

(по свойству ( l 4_5) марковости) 

Оrфильтрованная оценка Р(Х, 1 е 1 : ,) может рассматриваться как "сообщение" 
f1 :,. которое распространяется в прямом направлении вдоль последовательности 
состояний, модифицируется при каждом переходе и обноWiяется при получении 
каждого нового результаrа наблюдения. Эюr процесс можно представить следу­
ющим образом: 

f1 :t+ I = fORWARD(f1 :,, е1+ 1), 

где функция FORWARD реализует обноWiение, описанное в уравнении ( 1 4.5), и про­
цесс начинается с f1 :o = Р(Хо). Если все переменные состояния являются дискрет­
ными, то затраrы времени на каждое обноWJение остаются постоянными (т.е. не 
зависят от t) и потребность в пространстве также остается постоянной. (Эти по­
стоянные показаrели временной и пространственной сложности, безусловно, зави­
сят от размера самого пространства состояний и конкретного типа используемой 
временной модели.) ♦ Требования к затратам времени и пространства для обновле­
ния должны быть постоянными, если агенту с ограниченной памятью необходимо сле­

дить за распределением вероятностей текущего состояния на протяжении неограни­
ченно долгой последовательности наблюдений. 
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Проиллюстрируем процесс фильтрации, состоящий из двух этапов, на простом примере задачи с зонтиком (см. рис. 1 4 .2). Сначала вычислим P(R2 1 и 1 :2). • В день О пока еще нет ни одного наблюдения, однако у охранника могут быть некоторые собственные убеждения о верояпюсти дождя в этот день. Предположим, что их можно представиrь как P(Ro) =  (0,5 ; 0,5) . • В день 1 директор пришел с зонтиком, поэтому U1 = true. Предсказание для перехода от t = О к t = 1 будет следующим:  
P(R 1 ) = L P(R 1 1 ro)P(ro) = ro 

= (О, 7; 0,3 ) х 0,5 + (0,3 ; О, 7) х 0,5 = (0,5; 0,5) . 
Затем на этапе обновления этот результат просто умножается на вероятно­сти свидетельства для t = 1 и результат нормализуется, как это было пред­ставлено в уравнении ( 1 4.4 ). 

P(R 1 1 и 1) = et P(u 1 1 R i )P(R 1 ) = et (0,9; 0,2) (0,5; 0,5) = 

= et (0,45 ; о, 1 )  � (0,8 1 8; о, 1 82) • В день 2 также было отмечено наличие зонтика, поэтому U2 = true. Предска­зание для перехода от t = 1 к t = 2 будет следующим:  
P(R2 1 и 1 ) = L P(R2 1 r 1 )P(r 1 1 и 1 ) = 

r1 

= (0,7; 0,3 ) х 0,8 1 8  + (0,3 ; 0,7) х 0, 1 82 � (0,627; 0,373) ,  
а после их обновления с помощью свидетельства для t = 2 получаем 

P(R2 1 и 1 , и2) = еt Р(и2 1 R2)P(R2 1 и 1 ) = et (0,9; 0,2) (0,627; 0,373) = 

= et (0,565 ; 0,075) � (0,883 ; О, l 1 7) .  Инrуитивно понятно, что вероятность дождя от дня l ко дню 2 повышается, по­скольку дождь, видимо, продолжается. В упражнении 1 4.2, а предлагается продоо­жить исследование этой тенденции. Задача предсказании может рассматриваться просто как фильтрация без добав­ления новых свидетельств. В действительности процесс фильтрации уже включает одношаговое предсказание, и поэтому можно легко вывести следующую формулу рекурсивного вычисления для предсказания состояния в момент времени t + k + 1 на основании предсказания для t + k. 
P(X1+k+1 I е 1 : 1 ) = L Fl(Xнk+I I Хнk) Р(хнk I е 1 : ,) .  ( 1 4.6) 

X1+k 

модель перехода рекурсия 
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Естественно, что в это вычисление включена только модель перехода, но не мо­
дель восприятия. 

Интересно рассмотреть, что произойдет при попытке предсказывать все даль­
ше и дальше в будущее. Как показано в упражнении 1 4.2, б, прогнозируемое рас­
пределение для дождя сходится к фиксированной точке (0,5 ;  0,5 ) ,  после чего уже 
не изменяется.4 Эrо так называемое стационарное распределение для марковско­
rо процесса, определяемого с помощью модели перехода (см. также раздел 1 3.4.2). 
О свойствах таких распределений и о ► времени смешивании (грубо говоря, о 
затратах времени, необходимых для достижения фиксированной точки) известно 
очень многое. С точки зрения практики эти знания сводятся к печальному выво­
ду, что любая попытка предсказать фактическое состояние для количества этапов, 
превышающего лишь небольшую часть времени смешивания, обречена на неу­
дачу, если только стационарное распределение само по себе не является острым 
пиком в небольшой области пространства состояний. Чем более неопределенной 
является модель перехода, тем короче будет время смешивания и тем более 1)'Ман­
ным становится будущее. 

Помимо фильтрации и предсказания, рекурсия в прямом направлении мо­
жет использоваться и для вычисления правдоподобии последовательности сви­
детельств, Р(е 1 : 1) - Эта величина может оказаться полезной, если потребуется 
сравнить различные временные модели, способные вырабатывать одну и 1)' же 
последовательность свидетельств (например, две различные модели для продол­
жительной дождливой погоды). Для такой рекурсии используется сообщение о 
правдоподобии l 1 : , (X,) = P(X" e 1 : t) - Несложно показать (см. упражнение 1 4 .5), что 
справедливо следующее соотношение: 

f1 :tt l  = FORWARD(l1 :i, e,+ i ). 

После вычисления l 1 :t получим фактическое значение правдоподобия, исключив 
суммированием значение Х,: 

( 1 4.7) 

Обратите внимание, что с течением времени правдоподобие сообщения пред­
стаRJIЯет вероятности все более и более длинных последоваrельностей свидетельств, 
и поэтому численно становится все меньше и меньше, что приводит к проблеме по­
тери значимости, свойственной арифметике с плавающей точкой. На практике это 
важная проблема, но здесь мы не будем вдаваться в методы ее решения. 

4 Если в качестве момента t = О выбирается некий произвольный день, то имеет смысл 
выбрать априорное распределение P(Rain0) соответствующим стационарному распреде­
лению, и именно поэтому распределение (0,5, 0,5 ) было выбрано нами как априорное. 
Если бы в этом качестве было выбрано другое распределение, стационарное распределе­
ние все равно осталось бы тем же самым, (0,5 ,  0,5) . 
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1 4.2.2. Сглаживание 

Как было указано выше, сглаживание - это процесс вычисления распределе­
ния вероятностей значений переменных в прошлых состояниях при наличии сви­
детельств вплоть до нынешнего состояния; иными словами, P(Xk \ е 1 : ,) для О :::;; k < t 
(рис. 1 4 .3 .) В предвидении еще одного рекурсивного подхода к передаче сообще­
ний разделим необходимые вычисления на два этапа: применительно к свидетель­
ствам вплоть до момента времени k и к свидетельствам от k + 1 до t: 

P(Xk l е 1 : ,) = P(Xk l e 1 :k• ek+ 1 : t) = 
= a P(Xk l e 1 :J P(ek+ i : , I Xь e 1 :J = 

= a P(Xk l e 1 :k) P(ek+ t : , I XJ = 

= a f1 :k X bk+1 : 1· 

(по правилу Байеса 
с учетом e 1 :k) 
(по правилу условной 
независимости) 

( 1 4 .8) 

Здесь символ " х  " представляет операцию точечного умножения векгоров. В этом 
уравнении бьmо определено "обраrное" сообщение bk+ 1 : t = Р( ek+ 1 : , \ XJ по аналогии 
с прямым сообщением f1 :k· Прямое сообщение f1 :k может быть вычислено фильтра­
цией в прямом направлении от 1 до k в соответствии с уравнением ( 1 4 .5). Как ока­
залось, обратное сообщение bk+ t : t  может бьrrь вычислено с помощью рекурсивно­
го процесса, осуществляемого в обратном направлении от t. 

P(ek+ t : t \ XJ = 

= 1t_ 1 P(ek+ 1 : 1 I Хь Xk+ 1 )P(xk+ 1 1 XJ = 

= L P(ek+i i l xk+ 1 )P(xk+ 1 1 Xk) =  Xk+t 

= 1
t_ 1 P(ek+ t •  ek+2: ,  1 xk+ 1 )P(xk+ 1 1 Xk) = 

= L P(ek+1  \ xk+ 1 ) P(ek+2: 1 \ Xk+ 1 ) P(xk+ 1 \ Xk ) 
1 k+ I  � .....-,------,, '------v----' 

! ! j 

модель  восприятия рекурсия модель  перехода 

( обусловливание 
по Хk+ 1 ) 

(правило условной 
независимости) ( 1 4 .9) 

Здесь последний этап вычислений следует из свойства условной независимости 
ek+ 1 и ek+2 : , при заданном xk+ t •  Все три множителя в этой операции суммирования 
можно получить непосредственно с помощью модели либо из предыдущего обрат­
ного сообщения . Следовагельно, это уравнение является искомой рекурсивной фор­
мулировкой. С использованием обозначения для сообщений получим следующее: 

bk+ 1 : t = 8ACKWARD(bk+2 : t• ek+ i ), 

где функция BACKWARD осуществляет обновление, описанное в уравнении ( 1 4 .9). 
Как и при рекурсии в прямом направлении, затраrы времени и пространства на ка­
ждое обновление являются постоянными и не зависят от t. 
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Рис. 14.3. Процесс сглаживания, в котором вычисляется P(Xk I е 1 : 1) - распределе­
ние апостериорных вероятностей значений переменных в состоянии, наблюдавшем­
ся в какой-то прошлый момент времени k с учетом полной последовательности на­
блюдений от l до t 

Теперь становится очевидным, что оба терма, приведенные в уравнении ( 1 4.8), 
можно вычислить с помощью рекурсий по времени, одна из которых проходит в 
прямом направлении, от 1 до k, и в ней используется уравнение фильтрации ( 1 4.5), 
а другая проходит в обратном направлении, от t до k + 1 ,  и в ней используется урав­
нение ( 1 4.9) . 

Для инициализации обратной фазы можно воспользоваться выражением bt+ 1 : t = 
Р( е,+ 1 :, 1 Х,) = Р( 1 Х,) = 1, где 1 - это вектор из единиц, поскольку е,н, - пустая по­
следовательность, вероятность наблюдения которой равна 1 . 

Теперь применим этот алгоритм к примеру с зонтиком и вычислим сглаженную 
оценку вероятности дождя в момент времени k= 1 с учетом наблюдений о наличии 
зонтика в дни 1 и 2. Согласно уравнению ( 1 4 .8), это значение определяется следу­
ющим образом : 

( 1 4 . 1 0) 

Как нам уже известно, первый терм равен ( 0,8 1 8; О, 1 82) , - по результатам при­
менения процесса прямой фильтрации, описанного выше. Второй терм можно вы­
числить, применив обратную рекурсию по уравнению ( 1 4.9): 

Р(и2 I R1 ) = L Р(и2 I r2)P( 1 r2)P(r2 I R1 ) = 
r2 = (О,9 х 1 х (0,7; 0,3 )) + (0,2 х 1 х (0,3 ; 0,7) ) = (0,69; 0,4 1 ) . 

Подставляя эти значения в уравнение ( 1 4. 1 О), можно найти, что сглаженная оцен­
ка вероятности дождя в день l такова: 

P(R 1 1 И1 , и2) = а (0,8 1 8; 0, 1 82) х (0,69; 0,4 1 )  � (0,883 ; 0, 1 1 7) . 

Таким образом, в данном случае сmаженная оценка выше, чем отфильтрованная оцен­
ка (0,8 1 8). Эrо связано с тем, что появление директора с зонтиком в день 2 повышает 
вероятность того, что в день 2 шел дожць, что, в свою очередь, поскольку дожди часто 
являются затяжными, приводит к повышению вероятности дождя и в день 1 .  
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И для прямой, и для обратной рекурсии требуется постоянное количество вре­
мени на каждый этап; поэтому временная сложность сглаживания по отношению 
к свидетельству е 1 : , составляет O(_t). Это сложность сглаживания для определенно­
го момента времени k. А если потребуется провести сглаживание всей последова­
тельности, то один из очевидных методов состоит в выполнении всего процесса 
сглаживания по одному разу для каждого интервала времени, для которого необ­
ходимо выполнить сглаживание. Такой подход приводит к получению временной 
сложности О(('). 

Лучшим подходом можно считать использование очень простого приложения 
динамического программирования, позволяющего свести сложность расчетов к 
величине O(t). Одну из подсказок, как это сделать, можно найти в приведенном 
выше анализе примера с зонтиком, в котором была показана возможность повтор­
ного использования результатов прямой фильтрации. Ключом к созданию алгорm­
ма с линейными затратами времени является регистрация, результатов прямой 
фильтрации по всей последовательности. В таком случае можно выполнить обрат­
ную рекурсию от t вплоть до 1 ,  вычисляя сглаженную оценку для каждого этапа k 
из вычисленного обратного сообщения bk+ 1 : , и сохраненного прямого сообщения 
f1 : k - Этот алгоритм, обоснованно называемый ► прямым-обратным алгоритмом 
(forward-backward algorithm), приведен на рис. 1 4.4. 

function FORWARD-BACKWARD( ev, prior) returns вектор распределений вероятностей 
inputs : ev, вектор значений свидетельств для этапов l ,  . . .  , t 

prior, распределение априорных вероятностей в начальном 
состоянии, Р(Х0) 

local variaЫes: fv, вектор прямых сообщений для этапов О, . .. , t 

fv[O] - prior 
for i = 1 to t do 

Ь, представление обратного сообщения, первоначально состоящее 
из одних единиц 

sv, вектор сглаженных оценок для этапов 1 ,  . . . , t 

fv[i] - FORWARD(fv[i - 1 ) , ev[,1) 
for i = t down to 1 do 

sv[,] - NoRMALIZE(fv[,] х Ь) 
ь - BACKWARD(b, ev[i]) 

return sv 

Рис. 14.4. Прямой-обратный алгоритм сглаживания: вычисление апостериорных 
вероятностей последовательности состояний при заданной последовательности на­
блюдений. Операторы FORWARD и BACKWARD определены в уравнениях ( 1 4.5) и 
( 1 4.9) соответственно 
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Внимательный читаrель должен был заметить, что струКl)'ра байесовской сети, 
приведенной на рис. 1 4 .3 ,  представляет собой полидерево, как оно было опреде­
лено в разделе 1 3 .3 . 3 .  Эго означает, что непосредственное применение алгоритма 
кластеризации также приводит к созданию алгоритма с линейными затратами вре­
мени, который вычисляет сглаженные оценки для всей последовательности. По­
этому вполне понятно, что прямой-обратный алгоритм фактически представляет 
собой частный случай алгоритма распространения в полидереве, используемого в 
сочетании с методами кластеризации (хотя эти два алгоритма были разработаны 
независимо). 

Прямой-обратный алгоритм образует вычислительную основу для многих при­
ложений, работающих с последовательностями зашумленных результатов наблю­
дений. Как было указано выше, он имеет два недостатка. Первым из них является 
пространственная сложность, которая может оказаться слишком высокой приме­
нительно к приложениям, в которых пространство состояний велико, а последова­
тельности имеют большую длину. Его потребности в пространстве определяются 
как O(l�t), где 1� - размер представления прямого сообщения . Потребность в про­
странстве можно уменьшить до O(l� log t) - за счет соответствующего увеличения 
временной сложности на коэффициент log t, как это показано в упражнении 1 4 . 3 .  
В некоторых случаях (см .  раздел 1 4 .3)  может использоваться алгоритм с постоян­
ными потребностями в пространстве. 

Вторым недостатком этого базового алгоритма является то, что он требует мо­
дификации для использования в приложениях, работающих в режиме реального 
времени, когда сглаженные оценки должны вычисляться для более ранних времен­
ных срезов по мере того, как к концу последовательности непрерывно добавляют­
ся новые наблюдения .  В таких случаях чаще всего используется ► сглаживание 
с постоянным запаздыванием, при котором требуется вычислять сглаженную 
оценку P(X,_d I е 1 : ,) для фиксированного значения d. Иначе говоря, в этом случае 
сглаживание выполняется для временного среза, отстоящего на d этапов от теку­
щего времени t; и по мере возрастания t сглаживание не должно отставать. Без­
условно, что прямой-обратный алгоритм можно вызывать на выполнение приме­
нительно к данным d-этапного "окна" по мере добавления результатов каждого 
нового наблюдения, но такой подход, по-видимому, будет неэффективным. В раз­
деле 1 4 .3 будет показано, что сглаживание с постоянным запаздыванием в некото­
рых случаях может выполняться за постоянное время в расчете на каждое обнов­
ление, независимо от запаздывания d. 

14.2.3. Поиск наиболее вероятной последовательности 

Предположим, что [true, true, false, true, true] - последовательность наблю­
дений за наличием зонтика, проведенных охранником в первые пять дней своей 
вахты. Какая последовательность состояний погоды может стать наиболее вероят­
ным объяснением для этих данных? Означает ли отсутствие зонтика в день 3 ,  что 
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дождя не было или что директор просто забыл его взять? А если в день 3 дождя не 
было, то, возможно, дождя не было и в день 4 (поскольку погода обычно является 
устойчивой), однако директор захватил с собой зонтик просто на всякий случай. 
В целом существует 25 возможных последовательностей состояний погоды, кото­
рые могут быть приняты в качестве обьяснения. Но есть ли способ найти наиболее 
вероятную из этих последовательностей, не перебирая их все? 

Один из возможных подходов состоит в использовании следующей процедуры 
с линейными затратами времени :  методом сглаживания найти распределения апо­
стериорных вероятностей погоды на каждом временном интервале, а затем соста­
вить искомую последовательность, на каждом этапе выбрав наиболее вероятное 
состояние погоды в соответствии с полученными апостериорными вероятностя­
ми.  Но такой подход должен вызвать у читателя сомнения, поскольку апостери­
орные вероятности, вычисленные методом сглаживания, представляют собой рас­
пределения вероятностей для отдельных временных интервалов, тогда как для 
нахождения наиболее вероятной последовательности необходимо рассматривать 
совместные вероятности по всем временным интервалам. Полученные результа­
ты в этих двух случаях могут оказаться существенно различающимися ( см. упраж­
нение 1 4.4). 

Алгоритм поиска наиболее вероятной последовательности с линейными за­
тратами времени все же существует, но это требует дополнительного осмыс­
ления задачи. Он должен быть основан на том же свойстве марковости, которое 
обеспечило построение эффективных алгоритмов фильтрации и сглаживания.  
Идея состоит в том,  чтобы рассматривать каждую последовательность как путь 
в графе, узлами которого являются возможные состояния на каждом временном 
этапе .  Подобный граф для мира задачи с зонтиком представлен на рис. 1 4 . 5 ,  а. 
Рассмотрим задачу поиска наиболее вероятного пути через этот граф, в котором 
значение правдоподобия любого пути представляет собой произведение вероят­
ностей перехода вдоль этого пути и вероятностей фактических наблюдений в ка­
ждом состоянии. 

Давайте сосредоточимся, в частности, на путях, которые достигают состоя­
ния Rain5 = true. Исходя из свойства марковости, можно полагать, что наиболее 
вероятный путь к состоянию Rain5 = true состоит из наиболее вероятного пути к 
некоторому состоянию, достигнутому на этапе 4, за которым следует переход в 
состояние Rain5 = true, а состоянием в момент времени 4, которое станет частью 
пути к состоянию Rain5 = true, будет то, которое максимизирует значение правдо­
подобия этого пути. Иными словами, ➔ существует рекурсивная связь между наи­

более вероятными путями в каждое состояние xt+ 1 и наиболее вероятными путями в 

каждое состояние х,. 
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а) 

6) 

Rain0 Rain5 

true true 

fa/se fa/se 

Umbrella1 true true false true true 

Рис. 14.5. а) Возможные последовательности состояний для переменной Rain1 могут 
рассматриваться как пути через граф возможных состояний на каждом временном 
этапе (состояния представлены прямоугольниками, чтобы избежать путаницы с уз­
лами в байесовской сети). б) Применение алгоритма Витерби к последовательности 
наблюдений за наличием зонтика, [true, true,fa/se, true, true], где данные свидетель­
ства начинают появляться с момента времени 1 .  Для каждого значения t показано 
значение сообщения m 1 : 1> представляющее вероятность наилучшей последователь­
ности, достигающей каждого состояния во время t. Кроме того, для каждого состо­
яния ведущая к нему жирная стрелка задает его наилучшего предшественника, оце­
ниваемого по произведению вероятности предшествующей последовательности и 
вероятности перехода. Наиболее вероятная последовательность определяется про­
хождением по жирным стрелкам в обратном направлении от наиболее вероятного 
состояния в m 1 :S к исходному состоянию, - на рисунке состояния этой последова­
тельности выделены жирным контуром и более темной заливкой 

Это свойство можно использовать непосредственно для построения рекурсив­
ного алгоритма вычисления наиболее вероятного пути при заданных переменных 
свидетельства. Будем использовать рекурсивно вычисленное сообщение т1 :, как 
прямое сообщение f1 1 в алгоритме фильтрации .  Это прямое сообщение определя­
ется следующим образом:5 

s Обратите внимание, что это не совсем те вероятности наиболее вероятных путей 
достижения состояний Х1 с учетом свидетельства, которые являлись бы условными ве­
роятностями maxx 1 1_ 1 P(x 1 :r- J , Х1 1 е 1 : 1), а два вектора, связанных постоянным множите­
лем Р(е1 : 1) . Однако это различие несущественно, поскольку результат операции max не 
зависит от постоянных множителей, - определив m 1 :, подобным образом, мы получили 
немного более простую рекурсию. 
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m 1 : 1 = max P(x 1 : 1- 1 , Х,, е1 : ,) ­
х 1 :1- 1  

Чтобы получить рекурсивное соотношение между m 1 :tt- 1 и m 1 : ,, можно повто­
рить приблизительно те же этапы, которые использовались в уравнении ( 14.5): 

( 14. 11 ) 

где последний член mахх1:н P(x 1 : ,- J , х1, е 1 : 1) - это в точности элемент конкретного 
состояния х1 в векторе сообщения m 1 : i ·  По существу уравнение ( 14. 11) идентично 
уравнению фильтрации ( 14.5) за исключением того, что суммирование по х1 в 
уравнении ( 14.5) здесь заменено максимизацией по х1 и в уравнении ( 14. 1 1) отсут­
ствует константа нормализации о.. Таким образом, алгоритм для вычисления наи­
более вероятной последовательности подобен алгоритму фильтрации: он начинает 
рабmу в момент времени О с априорным распределением m 1 :о = Р<Хо), а заrем про­
ходит в прямом направлении вдоль последоmпельности и вычисляет сообщение m 
на каждом временном этапе, используя уравнение ( 14.11 ). Ход этих вычислений 
представлен на рис. 14.5 , 6. 

В конце последовательности наблюдений сообщение m 1 :t будет содержать ве­
роятность наиболее вероятной последовательности, достигающей каждого из ко­
нечных состояний. Следовательно, теперь можно будет легко выбрать конечное 
состояние наиболее вероятной последовательности в целом (на рис. 14.5, 6 оно 
выделено утолщенной рамкой на этапе 5). Чтобы иметь возможность фактически 
определить оптимальную последовательность, а не просто вычислить ее вероят­
ность, в этом алгоритме необходимо поддерживать указатели от каждого состоя­
ния обратно к наилучшему состоянию, приведшему к нему, - на рис. 14.5, 6 эти 
указаrели показаны жирными стрелками. Тогда фактическую оптимальную после­
довательность можно будет определить, следуя по этим указателям в обратном на­
праалении, начиная от наилучшего конечного состояния. 

Только что описанный алгоритм называется ► алгоритмом Витерби в честь его 
создаrеля Эндрю Витерби. Временная сложность этого алгоритма, как и алгоритма 
фильтрации, линейно зависит от t, т.е. от длины последовательности. Однако, в от­
личие от алгоритма фильтрации, использующего постоянный объем пространства, 
потребность алгоритма Витерби в пространстве также линейно зависит от t. Это 
связано с тем, что в алгоритме Витерби необходимо следить за указателями, опреде­
ляющими наилучшую последоваrельность, ведущую к каждому состоянию. 
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И еще один, последний, практический момент: для алгоритма Витерби суще­
ственной проблемой является возможность потери значимости. На рис. 1 4.5 ,  6 
вероятности на каждом этапе становятся все меньше и меньше, а ведь это лишь 
игрушечный пример. Реальные приложения для анализа ДНК или декодирова­
ния сообщений могут работать с последовательностями в тысячи и миллионы эта­
пов. Одним возможным решением является простая нормализация сообщения m 
на каждом этапе, - подобное изменение масштаба никак не влияет на правиль­
ность расчетов, поскольку max(cx, су) = c-max(x, у). Второе решение заключается 
в повсеместном использования логарифмов вероятностей и замене операций ум­
ножения сложением. И в этом случае правильность расчетов остается неизмен­
ной, поскольку логарифмическая функция монотонна; поэтому max(log x, logy) = 
log max(x, у). 

14.3 . Скрытые марковские модели 
В предыдущем разделе бьmи разработаны алгоритмы формирования времен­

ных вероятностных рассуждений с использованием общей инфраструктуры, неза­
висимой от конкретной формы моделей перехода и моделей восприятия, а также 
независимой от природы состояний и переменных свидетельства. В этом и следу­
ющих двух разделах будут обсуждаться более конкретные модели и приложения, 
иллюстрирующие мощь этих простых алгоритмов, а в некоторых случаях допуска­
ющие и дополнительные усовершенствования. 

Начнем с обсуждения ► скрытой марковской модели, или сокращенно 11ММ 
(Нidden Markov Model). Любая модель НММ - это временная вероятностная мо­
дель, в которой состояние процесса описано с помощью единственной дискрет­
ной случайной переменной. Возможными значениями этой переменной являются 
возможные состояния мира. Пример задачи с зонтиком, обсуждавшийся в преды­
дущем разделе, представляет собой одну из моделей НММ, поскольку в нем при­
меняется лишь единственная переменная состояния, Rain1 • А как поступить, если 
в модели имеется две или более переменных состояния? В этом случае выхода за 
пределы инфраструктуры НММ можно избежагь за счет комбинирования этих пе­
ременных в единственную "мегапеременную", значениями которой являются все 
возможные кортежи значений отдельных переменных состояния. Далее будет по­
казано, что благодаря ограниченной структуре моделей НММ появляется возмож­
ность создавать простые и элегантные маrричные реализации всех основных ал­
горитмов.6 

Хотя в скрытой марковской модели требуется наличие единственной дис­
кретной переменной состояния, в ней нет подобных ограничений в отношении 

6 Читателю, не знакомому с основными операциями над векторами и матрицами, мо­
жет потребоваться обратиться к приложению А, прежде чем продолжить чтение данного 
раздела. 
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переменных свидетельства. Причина в том, что переменные свидетельства всег­
да наблюдаемы, а это означает, что нет необходимости отслеживать какое-либо 
распределение по их значениям. (Если переменная не наблюдается, ее можно про­
сто исключить из модели для данного временного этапа.) В модели может присут­
ствовать много переменных свидетельства, как дискретных, так и непрерывных. 

1 4.3. 1 . Упрощенные матричные алгоритмы 

При наличии лишь единственной дискретной переменной состояния .Х, можно 
определить более сжmую форму представлений модели перехода, модели воспри­
ятия, а также прямых и обраrных сообщений. Предположим, что переменная со­
стояния Х1 имеет значения, обозначенные целыми числами 1, ... , S, где S - количе­
ство возможных состояний. В таком случае модель перехода Р(Х1 1 Х,_ 1 ) 
преобразуется в матрицу Т размером Sx S, где 

Т ii = Р(Х, = J I Хн = 1). 

Таким образом, матрица перехода Т ii содержит вероятности перехода из состо­
яния i в состояние j. Например, если в задаче с зонтиком обозначить состояния 
Rain = true и Rain = fa/se как 1 и 2 соответственно, то матрица перехода для этого 
мира, как он определен на рис. 14.5, будет следующей: 

(
0, 7 0, 3

) Т = Р(Х, I X,-1 ) = 
0, 3 0, 7 

Теперь переведем в маrричную форму модель восприятия. В этом случае, по­
скольку значение переменной свидетельства Е, в момент времени t известно ( обо­
значим его как е1), для каждого состояния необходимо определить лишь то, на­
сколько вероятно, что данное состояние вызовет появление значения е1, т.е. нас 
интересует Р(е, I X, = i) для каждого состояния i. Для удобства с точки зрения мате­
матики поместим эти значения в диагональную ► матрицу наблюдений Ot разме­
ром Sx S для каждого временного интервала t. Иначе говоря, составим маrрицу 01, 

в которой i-e диагональные элементы представлены значениями Р(е1 1 .Х, = 1), а все 
остальные элементы равны О. Например, для задачи с зонтиком в день 1, как пока­
зано на рис. 14.5, было получено значение И1 = true, а в день 3 - U3 = false, поэто­
му имеем следующее: 

о - . 
(
0, 9 О 

) J - о 0, 2 ' (
0, 1 О 

) Оз О 0, 8 
. 

Теперь, если для представления прямых и обраrных сообщений использовать 
векторы столбцов, то все вычисления преобразуются в простые маrрично-вектор­
ные операции. Прямое уравнение ( 14.5) принимает вид 
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f1 :1+ 1 = а О1+ 1Т  т f1 : 1, ( 14 . 1 2) 

а обратное уравнение ( 1 4.9) становится следующим: 

ьk+ 1 :, = тоk+ 1 ьk+2 : 1· ( 14 . 1 3) 

Из этих уравнений видно, что временная сложность прямого-обратного алго­
ритма (см. рис. 1 4.4), применяемого к последовательности длиной t, равна O(fflt), 
поскольку на каждом этапе требуется умножягь вектор с S элементами на матрицу 
размером Sx S. Потребность в пространстве характеризуется величиной O(St), так 
как при проходе в прямом направлении необходимо сохранить в памяти t векторов 
размером S. 

Помимо предоставления элегантного способа описания алгоритмов фильтра­
ции и сглаживания для моделей НММ, такая матричная формулировка откры­
вает возможности для создания улучшенных алгоритмов. Первым из них явля­
ется простой вариант прямого-обратного алгоритма, позволяющий выполнить 
сглаживание с использованием постоянного пространства, независимо от длины 
последовательности. Идея этого алгоритма состоит в том, что для выполнения 
сглаживания в любом конкретном временном срезе k требуется одновременное 
присутствие в памяти и прямого, и обратного сообщений, f1 :k и bk+ i : ,, согласно 
уравнению ( 1 4.8). В прямом-обратном алгоритме это достигается за счет сохра­
нения значений f, вычисленных во время прохода в прямом направлении, чтобы 
они были доступны и во время прохода в обратном направлении. Другой способ 
достижения этой цели заключается в использовании одного прохода, в котором 
и значение f, и значение Ь распространяются в одном и том же направлении. На­
пример, можно добиться распространения "прямого" сообщения f в обратном 
направлении, преобразовав уравнение ( 1 4 . 1 2) таким образом, чтобы оно работа­
ло в другом направлении: 

f1:1 = а '(Т т )- 1 О,�\ f1:нt . 

Эгот модифицированный алгоритм сглаживания действует так, что в нем вна­
чале осуществляется стандартный проход в прямом направлении для вычисле­
ния значения f,:, (при этом все промежуточные результаты уничтожаются), после 
чего выполняется проход в обратном направлении для совместного вычисления 
Ь и f, а затем эти значения используются для вычисления сглаженной оценки для 
каждого интервала. Поскольку требуется только одна копия каждого сообщения, 
потребности в памяти являются постоянными (т.е. независимыми от длины по­
следовательности t). Тем не менее этот алгоритм имеет одно существенное огра­
ничение - в нем требуется, чтобы матрица перехода была обратимой, а модель 
восприятия не имела нулей, иными словами, чтобы каждое наблюдение было воз­
можным в любом состоянии. 

Второе направление, в котором матричная формулировка предоставляет воз­
можности для усовершенствования, - это оперативное сглаживание с постоянным 
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запаздыванием . Тот факт, что сглаживание может быть выполнено при фиксиро­
ванных затратах пространства, наводит на мысль, что может существовать эффек­
тивный рекурсивный алгоритм д11Я оперативного сглаживания, т.е. такой алгоритм, 
временная сложность которого будет независимой от величины запаздывания. Пред­
положим, что запаздывание равно d; это означает, что сглаживание проводится во 
временном срезе t - d и что текущее время равно t. Согласно уравнению ( 1 4 .8), для 
среза t - d потребуется рассчитать значение следующего выражения: 

a f1 : i-d X b,-dt- 1 : 1 · 

Затем, после поступления новых результатов наблюдения, необходимо будет вы­
числить следующее выражение для среза t - d + 1 :  

a f1 : i-dt 1  х b,-dt-2 : 1+ 1 •  

Как можно выполнить эту операцию инкрементно? Прежде всего, можно вычис­
лить f1 : i-dt l из f1 :i-d, используя стандартный процесс фильтрации, в соответствии с 
уравнением ( 1 4 .5). 

Инкрементное вычисление обратного сообщения является более сложной за­
дачей, поскольку не существует простого соотношения между старым обратным 
сообщением Ь,-dt l : i и новым обратным сообщением b,-dt-2 : tt- l ·  Вместо этого рас­
смотрим соотношение между старым обратным сообщением b,-d+ l : t и обратным 
сообщением в начале последовательности, btt- i : i · Для этого d раз применим урав­
нение ( 1 4 . 1 3 ), чтобы получить следующее уравнение : 

Ь1-d+\ : 1  = ( П ТО; ] Ьн 1 : 1 = B1 - d+ l : 1 1 . 
i= t-d+ \ 

( 1 4 . 1 4) 

Здесь матрица B1-d+ 1 :t является произведением последовательности матриц Т и О, 
а 1 - вектор из единиц. Матрицу В можно рассматривать как "оператор преобра­
зования", который преобразует более позднее обратное сообщение в более раннее. 
Аналогичное уравнение остается справедливым для новых обратных сообщений, 
сформированных после поступления результатов следующего наблюдения: 

( /+\ ] Ь1-d+2: 1 + 1 = п ТО; Ь1+2: 1 + 1  = B1-d+ 2 : 1+ 1 l , 
i=t-d+2 

( 1 4 . 1 5 ) 

Изучив выражения в произведениях в уравнениях ( 1 4 . 1 4) и ( 1 4 . 1 5 ), можно уви­
деть, что их связывает между собой простое соотношение: чтобы получить второе 
произведение, достаточно "разделить" первое произведение на первый элемент 
TO,--d+ 1 и умножить на новый последний элемент TOtt- i ·  Поэтому на языке алге­
бры матриц можно записать следующее простое соотношение между старой и но­
вой матрицами В: 

( 1 4 . 1 6) 
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Это уравнение предоставляет способ вычисления инкрементного обновления 
для матрицы В, которая, в свою очередь (в силу уравнения 1 4. 1 5), позволяет вы­
числить новое обратное сообщение b,-d+2:t+I · Полный алгоритм, в котором предус­
матривается хранение и обновление значений f и В, представлен на рис. 1 4.6. 

function FIXED-LAG-SMOOTHING(e1, hmm, d) returns распределение по X,-d 
inputs : е1, текущее свидетельство для временного интервала t 

hmm, скрытая марковская модель с матрицей переходов Т размером S х S 
d, величина запаздывания при сглаживании 

persistent: t, текущее время, исходно равно 1 
f, прямое сообщение Р(Х, 1 е1 :1), исходно hmm.PRIOR 
В, матрица d-этапноrо обратного преобразования, исходно 

единичная матрица 
е1 -d: t, двухсторонний список свидетельств от t - d  до t, исходно пустой 

local variaЫes: 0,-d, 01, диагональные матрицы, содержащие информацию 
модели восприятия 

добавить е1 в конец списка e,-d:1 

01 - диагональная матрица, содержащая P(e, IX,) 
if t > d then 

f - FORWARD(f, е1 -d) 
удалить е1 - d - l из начала списка e,-d:t 

0, -d  - диагональная матрица, содержащая P(e, -d l X, - d) 
в - о;� .,т- 1 вто, 

else B - BTO, 
t - t+ I  
if t > d +  1 then return NORMALIZE(f х В1) else return пустое значение 

Рис. 14.6. Алгоритм сглаживания с постоянным временным запаздыванием на d эта­
пов, реализованный как алгоритм реального времени, который вычисляет новую сmа­
женную оценку после получения данных наблюдения, относящихся к новому времен­
ному интервалу. Обратите внимание, что конечный результат NORМALIZE(fx 81) 
является просто произведением o.fx Ь, сог.ласно уравнению ( 1 4. 1 4) 

1 4.3.2. Пример скрытой марковской модели: 
определение местоположения 

В разделе 4.4.4 была представлена простая форма задачи локализации для 
мира пьmесоса: робот должен был определить свое текущее местоположение при 
наличии у него карты мира и заданной последовательности восприятий и дей­
ствий. В той версии задачи робот обладал единственным недетерминированным 
действием Move и его датчики достоверно сообщали ему о наличии препятствий в 
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направлении на  север, юг, восток и запад. Доверительное состояние робота пред­ставляло собой множество возможных мест, где он мог бы находиться . В данном случае задача будет несколько более реалистичной за счет учета возможного шума в датчиках и формализации идеи о том,  что ро­бот перемещается случайным образом, - с равной вероятностью он мо­жет перейти в любой из соседних пустых квадратов .  Переменная состо­яния х, представляет местоположение робота в дискретном клеточном мире, - областью определения  этой переменной  является множе­ство пустых квадратов, которые мы будем обозначать целыми числами { 1 ,  . . .  , S} . Далее, пусть NEIGHBORS(1) будет множеством пустых квадратов, смеж­ных с квадратом i, и пусть N(l) будет определять размер этого множества. Тог­да модель перехода для действия Move должна говорить нам о том, что после его выполнения робот с равной вероятностью может оказаться в любой сосед­ней клетке: 
р(х - · 1 х - i\ - т - {1 / N(i) если j Е NEIGHBORS(1) t+ J -] , - ,, - ij - 0 в противном случае. 

Мы не знаем, откуда робот начинает движение, поэтому примем равномерное распределение по всем квадрагам, т.е. Р(Х0 = 1) = 1 /S. Для конкретного варианта этого мира, представленного на рис. 4. 7, S = 42, а магрица перехода Т имеет 42 х 42 = 1 764 элемента. Переменная наблюдаемых значений дагчика Е, может принимать 1 6  возможных значений длиной четыре бита, каждый из которых определяет наличие или отсут­ствие препятствия в направлении одной из сторон света в порядке N (север) - Е 
(восток) - S (юг) - W (запад). Например, значение 1 0 1 0 означает, что дагчик сооб­щает о наличии препятствий в направлениях на север и юг, тогда как в направле­нии на восток или запад их нет. Предположим, что в каждом из направлений даг­чик может давать неверный результаг с частотой Е и что ошибки по каждому из направлений происходят независимо друг от друга. В этом случае вероятность по­лучения правильных значений для всех четырех битов будет равна ( 1  - t)4, а веро­ятность получения для всех четырех ошибочных значений - t4 соответственно. Более того, если через dit обозначить расхождение - количество битов, которые не совпадают в истинном значении для квадрата i и фактически полученном вос­приятии е1, то вероятность того, что робот в квадрате i получит от дагчика воспри­ятие е1 будет равна 

Например, вероятность того, что для квадрата с препятствиями в направлении на север и юг дагчик выдаст показание 1 1 1  О, будет равна ( 1  - t )3 t 1 • 



164 Часть rv. Неопределенные знания н рассуждения в условиях неопределенности 

а) Условное распределение для местоположения робота после 
получения восприятия Е1=101 1 

б) У словиое распределение для местоположения робота после 
получения восприятия Е1 = 1 01 1 ,  Е2 = 10 10  

Рис. 14.7. Условное распределение дл,1 местоположения робота. а)  После получения первого восприятия Е1 = 10 1 1  (т.е. препятствия имеются в направлении на север, юг и запад). б) После перемещения в случайно выбранное смежное местоположение и получения второго восприятия Е2 = 10 10  (т.е. препятствия имеются в направлении на север и юг). Цвет заливки каждой из клеток (без штриховки) соответствует веро­ятности того, что робот находится в ней, - чем она темнее, тем вероятность выше. Частота ошибок датчика для каждого бита t = 0,2 
При заданных матрицах Т и О робот может воспользоваться уравнением ( 1 4. 1 2) для  вычисления апостериорного распределения по всем возможным место­положениям, чтобы попытаться определиrь, где он находится. На рис. 1 4 .7 приве­дены два таких распределения - Р(Х1 I E, = 1 0 1 1 ) и P(X2 I E1 = 1 0 1 1 ,  Е2 = 1 0 1 0). Эго тот же самый лабиринт, который был приведен на рис. 4 . 1 8  (раздел 4.4.4), но тогда мы использовали логическую фильтрацию для отыскания местоположений, кото­рые были возможны при условии правильной работы датчика. В данном случае те же самые местоположения все также наиболее вероятны, но уже при зашумлен­ном восприятии, из-за которого теперь у каждого местоположения есть некоторая ненулевая вероятность, поскольку в любом местоположении можно получить от датчика любые значения. 
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В дополнение к фильтрации для оценки своего текущего местоположения ро­бот может использовать и сглаживание (уравнение ( 1 4. 1 3)), что позволит ему уста­новить, где он был в любой заданный момент времени в про1wюм, например когда он начинал движение в момент времени О. Таюке он может использовать алго­ритм Витерби для определения наиболее вероятного пути, по которому он добрал­ся туда, где сейчас находится . На рис. 1 4.8 представлены графики зависимости ошибок локализации и ошибок алгоритма Витерби в определении пути от числа наблюдений для различных значений частоты ошибок даrчика на каждый бит t:. Даже когда t: равно 0,20 - а это означает, что в целом показания даrчика являются ошибочными в 59% случаев, - робот, как правило, оказывается в состоянии опре­делить свое местоположение в пределах двух квадратов уже после 20 наблюдений. Эrот результаr обеспечивается способностью алгоритма интегрировать свидетель­ства во времени и принимаrь во внимание вероятностные ограничения, налагае­мые на последоваrельность местоположений моделью перехода. При t: = О, 1 О или менее робот нуждается лишь в нескольких наблюдениях, чтобы определить, где он находится, и точно установить свой путь. Однако при t:, равном 0,40, и ошибка ло­кализации, и ошибка определения пути по алгоритму Витерби долгое время оста­ются значительными и почти неизменными, а это означает, что фактически робот потерялся . Это происходит потому, что даrчик с частотой ошибки 0,40 дает робо­ту слишком мало информации, чтобы противодействовать потере информации о его местоположении, происходящей от непредсказуемости случайного движения .  
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Рис. 14.8. Производительность НММ-локализации как функция от длины последо­
вательности наблюдений для различных значений частоты ошибки датчика Е: (дан­
ные усреднены по 400 прогонам). а) Ошибка локализации, определяемая как ман­
хеттенское расстояние от истинного местоположения. б) Ошибка в определении 
пути по алгоритму Витерби, определяемая как среднее манхеттенское расстояние 
от состояний на пути, определенном алгоритмом Витерби, до соответствующих со­
стояний на истинном пути 
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В примере, рассматриваемом в этом разделе, переменной состояния является 
физическое местоположение в мире. В других задачах, конечно же, могут анализи­
роваrься другие аспекты мира. В упражнении 14.8 предлагается рассмотреть иную 
версию мира пьmесоса, в которой для робота установлено ограничение - двигагь­
ся в одном направлении до тех пор, пока это будет возможно. Выбрать новое на­
правление он может, только натолкнувшись на препятствие. Для моделирования 
этого робота каждое состояние в модели должно состоять уже из пары перемен­
ных - location (местоположение) и heading (направление). Для среды, показанной 
на рис. 14. 7 и включающей 42 пустых квадрага, это приводит к 1 68 состояниям и 
переходной матрице размером 1 682 = 28 224 элемента - все еще вполне приемле­
мое количество. 

Если добавить возможность присутствия мусора в каждом из 42 квадратов, 
число состояний возрастет до 242, а магрица переходов будет включагь уже более 
1 029 элементов, что превышает любые мыслимые пределы. В общем случае, если 
состояние включает п дискретных переменных с не более чем d значениями для 
каждой, соответствующая НММ-матрица переходов будет иметь размер O(tfn) и 
время вычисления каждого обновления также будет пропорционально O(d2�. 

По этой причине, хотя скрытые марковские модели находят множество при­
менений в самых различных областях - от распознавания речи до молекуляр­
ной биологии, - они принципиально ограничены в способности представлять 
сложные процессы. Согласно терминологии, предложенной в главе 2, в моделях 
НММ используется атомарное представление: состояния мира не имеют внутрен­
ней структуры и просто помечены целыми числами. В разделе 1 4.5 будет показа­
но, как можно использовагь динамические байесовские сети - развернутое пред­
ставление - для моделирования проблемных областей со многими переменными 
состояния. В следующем разделе поясняется, как можно работагь с проблемными 
областями, имеющими непрерывные переменные состояния, что, конечно же, при­
водит к бесконечному пространству состояний. 

14.4. Фильтры Калмана 
Представьте, что вы следите за маленькой птицей, летящей в сумраке плотной 

листвы джунглей:  вы замечаете лишь краткие отрывочные моменты ее движения 
и каждый раз пьпаетесь угадать, где сейчас находится птица и где она появится в 
следующий момент, чтобы ее не потерять. Или вообразите себя операгором радара 
во время Второй мировой войны, напряженно следящим за крошечной блуждаю­
щей вспышкой, появляющийся на экране через каждые l О секунд. А если вернуть­
ся в прошлое еще дальше, вообразите, что вы, как Кеплер, пьпаетесь реконстру­
ировать орбиты движения планет на основании совокупности крайне неточных 
угловых измерений, полученных через нерегулярные и неточно измеренные ин­
тервалы времени. 
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Во всех этих случаях вы выполняете то, что называют фильтрацией : оценку 
значений переменных состояния (здесь это положение и скорость движущегося 
объекта) по зашумленным результатам наблюдений во времени. Если бы эти пере­
менные были дискретными, можно было бы описать систему, воспользовавшись 
скрытой марковской моделью. Но в приведенных примерах переменные являют­
ся непрерывными, поэтому в этом разделе рассматриваются методы обработки не­
прерывных переменных с использованием алгоритма, называемого ► фильтраци­
ей Калмана, по имени одного из его изобретателей - Рудольфа Калмана. 

Например, траектория полета птицы может быть задана шестью непрерывны­
ми переменными в каждый момент времени : тремя - для положения (Х,, fi, Z,) и 
тремя - для скорости (Х, , У, ,  Z, ) . Необходимо также иметь соответствующие 
плотности условных вероятностей для представления модели перехода и модели 
восприятия. Как и в главе 1 3 , здесь будут использоваться линейные гауссовы рас­
пределения. Это означает, что следующее состояние Х,+ 1 должно представлять со­
бой линейную функцию от текущего состояния Х, с добавлением некоторого коли­
чества гауссова шума, - такое условие,  как оказалось,  я вляется весьма 
оправданным на практике. Рассмотрим, например, координаrу Х птицы, игнорируя 
на данный момент все другие координаты. Допустим, что интервал между наблю­
дениями равен Л, и предположим, что в пределах этого интервала птица летит с 
постоянной скоростью. Тогда через каждый интервал ее новое положение можно 
будет определить с помощью уравнения Xt+D = Х, + Х Л. После введения в него га­
уссова шума получим линейную гауссову модель перехода: 

Р(Хнл = Хнл I Х, = х, , Х, = х, ) = N(хнл ; х, + х1Л, cr2 ). 

Структура байесовской сети для системы с векторами положения Х, и скорости 
Х, показана на рис. 1 4 .9. Обратите внимание на то, что это - весьма специфич­
ная форма линейной гауссовой модели.  Общая форма этой модели будет описана 
ниже в этом разделе, - она охватывает самый широкий спектр приложений, дале­
ко выходящий за рамки простейшего примера моделирования движения, приве­
денного в первом абзаце этого раздела. Читателю может потребоваться обратиться 
к приложению А для ознакомления с некоторыми математическими свойствами га­
уссовых распределений. Для наших непосредственных целей наиболее важным из 
них является то, что многомерное гауссово распределение для d переменных за­
дается d-элементным средним µ и матрицей ковариации � размером dx d. 

1 4.4. 1 . Обновление гауссовых распределений 

В главе 1 3  (раздел 1 3 .2 .3)  было описано ключевое свойство семейства линей­
ных гауссовых распределений:  при операциях обновления в байесовской сети 
оно остается замкнутым.  (То есть при любом заданном свидетельстве апостери­
орное распределение остается по-прежнему относящимся к семейству линейных 
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гауссовых распределений.) В этом разделе данное утверждение будет уточнено в 
контексте фильтрации в рамках временной вероятностной модели .  Ниже перечис­
лены требуемые свойства, соответствующие процессу двухэтапноrо вычисления 
результатов фильтрации с помощью уравнения ( 1 4 .5). 

1 .  Если текущее распределение Р(Х1 1 е 1 : 1) является гауссовым, а модель пере­
хода P(Xt+ 1 1 х1) - линейной гауссовой, то прогнозируемое на один этап впе­
ред распределение, заданное уравнением 

Р(Х1+1 1 е 1 : 1 ) = J Р(Х1+1 1 х, )Р(х 1 1  e1 : 1 )dx1 , 
х, ( 1 4 . 1 7) 

также является гауссовым распределением. 
2 .  Если прогнозируемое распределение Р(Х1+ 1 1 е 1 : 1) является гауссовым и мо­

дель восприятия P(et+ 1 1 Xt+ 1 ) является линейной гауссовой, то после обус­
ловливания на основании нового свидетельства следующее обновленное 
распределение, определяемое как 

( 1 4 . 1 8) 

также является гауссовым распределением. 

Рис. 14.9. Структура байесовской сети для линейной динамической системы с пере­
менными, определяющими положение Х1, скорость Х, и результаты измерения по­
зиции z, 

Таким образом, оператор FORWARD для калмановской фильтрации принимает 
на входе гауссово прямое сообщение f1 : ,, заданное с помощью среднего µ1 и ма­
трицы ковариации !:1, и вырабаrывает новое м ногомерное гауссово прямое сооб­
щение fi :r+ I , заданное с помощью среднего µt+ I и матрицы ковариации :Et+ I · Поэто­
му, если начать с гауссова априорного сообщения f1 :о = Р(Хо) = N(�, :Е0) и провести 
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фильтрацию с помощью линейной гауссовой модели, можно получить гауссово 
распределение вероятностей состояний для любых временных срезов. 

Очевидно, что это привлекательный и элегантный результат, но почему он име­
ет такое большое значение? Причина состоит в том, что за исключением несколь­
ких частных случаев, подобных рассматриваемому, +- в процессе фильтрации с 

использованием непрерывных или гибридных (дискретных и непрерывных) сетей выраба­

тываются распределения вероятностей состояний, размеры представления которых 
растут во времени без ограничения. Эrо утверждение нелегко доказать, но в упраж­
нении 14.12 показано, что в простых примерах так и происходит. 

14.4.2. Простой одномерный пример 

Выше уже было сказано, что оператор FORWARD для фильтра Калмана отобра­
жает исходное гауссово распределение на новое гауссово распределение. Приме­
нение этого оператора сводится к вычислению новых значений среднего и матри­
цы ковариации из предыдущих значений среднего и матрицы ковариации. Для 
вывода правила обновления в общем (многомерном) случае требуется большой 
объем выкладок в линейной алгебре, поэтому здесь мы пока остановимся на очень 
простом одномерном случае, а позже будут представлены результаты для общего 
случая. Но даже в одномерном случае вычисления являются довольно трудоемки­
ми, однако авторы считают, что с ними следует ознакомиться, поскольку примени­
мость фильтра Калмана слишком тесно связана с математическими свойствами га­
уссовых распределений. 

Во временной модели, которая будет здесь рассматриваться, представлено слу­
чайное блуждание единственной непрерывной переменной состояния Х,, отсле­
живаемое посредством зашумленных результатов наблюдения z,. Одним из подхо­
дящих реальных примеров может служить показатель "доверия потребителя", 
который может быть промоделирован как переменная, каждый месяц подвергаю­
щаяся случайному изменению с вероятностью, представленной с помощью гаус­
сова распределения, и измеряемая с помощью опроса случайно выбранных потре­
бителей, в котором также вносится гауссов шум формирования выборки. 
Предполагается, что распределение априорных вероятностей является гауссовым 
с дисперсией cr� : 

1 ( <хо- µо)2 ) 
Р(хо ) = о.е 2 � 

(Дпя упрощения в этом разделе мы будем использовать один и тот же символ а для 
обозначения всех констант нормализации.) В модели перехода просто добавляется 
гауссово возмущение постоянной дисперсии cr� к текущему состоянию: 

1 ( <хн1 -х1 )2 ) 

Р(хн1  1 х, )  = о.е 2 
� 
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Модель восприятия предполагает наличие гауссова шума с дисперсией cr� : 
\ ( ( z1 -x1 )2 J 

P(z1 l x1 ) = ae-2 � 

Теперь, с учетом распределения априорных вероятностей Р(Х0), прогнозируе­
мое на один этап распределение можно получить из уравнения ( 1 4 . 1 7): 

1 ( <хгхо )2
) 1 ( <хо -µо)2

) Joo Joo -2 _cr_2_ -2 cr2 
Р( х1 ) = -оо Р( х1 1 хо )Р( хо )dxo = а -оо е х е O dx0 = 

-l[ �(xгxo)2+ cr; (xo-µo )2
] 

Joo 2 cr2cr2 
_ о х  d - а  -оое хо • 

Этот интеграл выглядит довольно сложно. Ключом к его упрощению может 
стать замечание, что экспонента представляет собой сумму двух выражений, ко­
торые квадратично зависят от х0, и поэтому сама экспонента квадратично зави­
сит от х0 • Простой прием, известный как ► дополнение до полного квадрата, 
позволяет переписать любое квадратное уравнение ах2 + Ьх + с как сумму возве-
денного в квадрат терма a(x - 2t)2 и остаточного терма с - �� , который не зави-

сит от х. В данном случае у нас а =  ( cr5 + cr� ) / ( cr5cr� ), Ь = -2( cr5x1 + cr�µo) / ( cr5cr� ) 
и с =  ( cr5xr + cr�µ5 / ( cr5cr� ) . Соответствующий остаточный терм может быть вы­
несен за пределы интеграла, что дает нам следующее уравнение: 

Р(х1 ) � "' -½(,-:: ) [ е -½[ -{x,-,: )' Jdro 

Теперь рассматриваемый интеграл представляет собой обычный интеграл гауссо­
ва распределения по всей области его определения, который равен 1 .  Таким обра­
зом, от квадратного уравнения сохраняется лишь его остаточный терм . Подставив 
обратно выражения для а, Ь и с, а затем упростив, получаем следующее: 

_1( <.xi - µ0)2 ) 
2 2 2 

Р(х1 ) = ае cro + crx . 

Таким образом, распределение, прогнозируемое на один этап, представляет собой 
гауссово распределение с тем же средним µ,о и дисперсией, равной сумме первона­
чальной дисперсии cri и дисперсии перехода cr� . 

Для завершения этапа обновления необходимо обусловить вероятность резуль­
татами наблюдения на первом временном этапе, а именно - z 1 • Согласно уравне­
нию ( 1 4. 1 8), эта операция определяется следующим уравнением: 
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Снова объединим экспоненты и дополним квадрат (упражнение 1 4 . 1 3 ), получив 
следующее: 

( 1 4. 1 9) 

Следовательно, после одного цикла обновления будет получено новое гауссово 
распределение для переменной состояния. 

Из гауссовой формулы, приведенной в уравнении ( 1 4 . 1 9), можно видеть, что 
новые значения среднего и среднеквадрагичного отклонений можно вычислить на 
основе старых значений среднего и среднеквадрагичного отклонений следующим 
образом : 

( 1 4.20) 

На рис .  1 4 . 1 0  показан один цикл обновления фильтра Калмана в одномерном слу­
чае для конкретных значений модели перехода и модели восприятия. 

Пара уравнений ( 14 .20) здесь играет точно такую же роль, как и общее уравне­
ние фильтрации ( 1 4 .5) или уравнение фильтрации для НММ ( 1 4 . 1 2). Но из-за осо­
бого характера гауссовых распределений эти уравнения обладают некоторыми ин­
тересными дополнительными свойствами. 

Во-первых, вычисление нового значения среднего µt+ 1 можно интерпретировагь 
как вычисление взвешенного среднего от новых результатов наблюдения z1+ 1 и 
прежнего значения среднего µ,. Если результагы наблюдения ненадежны, то значе­
ние о-1 увеличивается и больший вес придается старому значению среднего. Если 
же ненадежно старое значение среднего (значение af велико) или процесс крайне 
непредсказуем (велико значение а� ), то больший вес придается результатам на­
блюдения. 

Во-вторых, обрагите внимание, что обновление для дисперсии о-;+1 является 
независимым от результатов наблюдения, поэтому с помощью вычислений мож­
но заранее определить, какой должна быть последовательность значений диспер­
сии. В-третьих, последовагельность значений дисперсии быстро сходится к посто­
янному значению, которое зависит только от а� и о-1 , что существенно упрощает 
дальнейшие вычисления (см .  упражнение 1 4 . 1 4). 
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Рис. 14.10. Этапы цикла обновления фильтра Калмана для случайного блуждания 
с априорной вероятностью, заданной параметрами µ,0 = 0,0 и cr0 = 1 ,5 ,  шумом пере­
хода, заданным как crx = 2,0, шумом восприятия, заданным как crz = 1 ,0, и первым 
результатом наблюдения z1 = 2,5 (это значение представлено звездочкой на оси х). 
Обратите внимание, как предсказание Р(х1 ) сглаживается относительно Р(х0) под 
влиянием шума перехода. Также обратите внимание, что среднее апостериорной ве­
роятности Р(х 1 1 z1) находится немного левее относительно результата наблюдения 
z 1 , поскольку это среднее представляет собой взвешенное среднее от предсказания 
и наблюдения 

14.4.3. Общий случай 

Приведенные выше выводы иллюстрируют ключевое свойство гауссовых рас­
пределений, которое обеспечивает функционирование методов фильтрации Кал­
мана: экспонента находится в квадратичной форме. Эrо свойство относится не 
только к рассмотренному одномерному случаю; полное многомерное гауссово рас­
пределение имеет следующую форму: 

N _l( (x- µ)T гl (x-µ)\ 
(х; µ, L) = ае 2 J • 

Произведение термов в экспоненте указывает, что экспонента также является 
квадратичной функцией от случайных переменных xi в векторе х. Следовательно, 
фильтрация сохраняет гауссов характер распределения вероятностей состояний. 

Прежде всего определим общую временную модель, применяемую в калманов­
ской фильтрации. И модель перехода, и модель восприятия требуют применения 
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линейного преобразования с дополнительным гауссовым шумом. Таким образом, 
получаем следующее: 

Р(хн 1 l х,) = ЛГ(хн1 ; Fх, , l:х ) 

P(z 1 1 х,) = ЛГ(z, ; Нх, ,  Lz ), 
( 1 4 .2 1 )  

где F и Lx - матрицы, описывающие линейную модель перехода и ковариацию 
шума перехода, а Н и Lz - соответствующие матрицы для модели восприятия . 
Теперь уравнения обновления для среднего и ковариации в их полном, ужасающе 
сложном виде приобретают следующий вид: 

µ1+1 = Fµ, + Кнt (zн1 - HFµ, ) 
Lt+I = (I - K1+1H)(Fl:,Fт + Lx ), 

( 1 4.22) 

где Kt+ 1 = (Fl:, F т + Lx)H т (H(Fl:, F т + Lx)H т + Lz)- 1 называется ► калмановской 
матрицей усиления . Хотите - верьте, хотите - нет, но эти уравнения имеют 
определенный интуитивный смысл .  Например, рассмотрим обновление для оцен­
ки значения среднего µ для некоторого состояния. Терм Fµ, представляет прогно­
зируемое состояние в момент времени t + 1 ,  поэтому HFµ, является прогнозируе­
мым результатом наблюдения.  Следовательно, терм zt+ 1 - HFµ, представляет 
ошибку в прогнозируемых результ1Пах наблюдений. Это значение умножается на 
Kt+ 1 для корректировки прогнозируемого состояния, значит, Kt+ 1 представляет со­
бой меру того, насколько ва:жными следует считать новые результаты наблюде­
ния применительно к предсказанию. Как и в уравнениях ( 1 4.20), здесь соблюдает­
ся то же свойство: обновление дисперсии не зависит от результ1Пов наблюдений. 
Поэтому последов1Пельность значений l:, и К, можно вычислить в автономном ре­
жиме и фактический объем вычислений, требуемых во время оперативного слеже­
ния, становится достаточно скромным. 

Дгtя иллюстрации этих уравнений в действии применим их к задаче слежения 
за объектом, движущимся на плоскости Х-У. Переменными состояния являются 
Х = (Х, У, Х ,  У )  т ,  поэтому F, Lx, Н и Lz представляют собой матрицы размером 
4 х 4. На рис. 1 4 . 1 1 ,  а показаны истинная траектория, ряд зашумленных результа­
тов наблюдения и траектория, оцениваемая с помощью калмановской фильтрации, 
вместе с ковариациями, указанными с помощью контуров единичного среднеква­
дратичного отклонения. Процесс фильтрации позволяет весьма успешно следить 
за фактическим перемещением, к тому же, как и предполагалось, дисперсия бы­
стро достигает фиксированной точки. 

С помощью линейных гауссовых моделей можно вывести не только уравнения 
фильтрации, но и уравнения сглаживания. Результаты сглаживания показаны на 
рис. 1 4 . 1 1 ,  6. Обратите внимание, как резко сокращается дисперсия в оценке по­
зиции, за исключением концов траектории (объясните, почему), и насколько более 
гладкой становится оцениваемая траектория. 
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Рис. 14. 1 1 .  а) Результаты калмановской фильтрации для объекта, движущегося по 
плоскости Х-У: истинная траектория (слева направо), ряд зашумленных наблюде­
ний и траектория, оцениваемая с помощью фильтра Калмана. Дисперсия в оценке 
позиции показана с помощью овалов. б) Результаты калмановскоrо сглаживания для 
той же последовательности результатов наблюдения 

1 4.4.4. Применение калмановской фильтрации 

Фильтр Калмана и его модификации применяются во множестве различных приложений. Одним из "классических" приложений является приложение для сле­жения за самолетами и ракетами с помощью радаров. К такому же типу относят­ся приложения, в которых осуществляется акустическое слежение за подводными лодками и наземными транспортными средствами, а также визуальное слежение за транспортными средствами и людьми. К немного более узким областям приме­нения относится использование фильтров Калмана для реконструкции траекто­рии частиц по фотографиям, сделанным в пузырьковой камере, и океанских тече­ний по данным измерений, выполненных на поверхности океана со спутников. Но спектр возможных приложений выходит далеко за пределы простого отслежива­ния движений - к ним относится любая система, характеризующаяся непрерыв­ными переменными состояния и зашумленными результатами измерений. К их числу относятся целлюлозные фабрики, химические установки, ядерные реакто­ры, экосистемы растений и национальные экономики. Тот факт, что калмановскую фильтрацию можно применить к какой-то системе, еще не означает, что результаты этого применения будут действительными или по­лезными. Используемые в этом случае допущения (что модель перехода и модель 
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восприятия относятся к типу линейных гауссовых) на самом деле являются очень 
строгими. В ► расширенном фильтре Калмана (Extended Ка/тап Filter -
► ЕКF) предпринимается попытка преодолеть нелинейности моделируемой си­
стемы. Система является ► нелинейной, если ее модель перехода нельзя описать 
с помощью матричного умножения векторов состояния, как в уравнении ( 14.2 1 ). 
Фильтр EKF действует посредством моделирования системы как локшzьно линей­
ной в области х1, т.е. в такой области, где х1 = µ,, среднему текущему распределе­
нию вероятностей состояния. Такой подход хорошо действует применительно к 
гладким системам с устойчивым поведением и позволяет программе слежения со­
провождать и обновлять такое гауссово распределение вероятностей состояния, 
которое будет приемлемой аппроксимацией истинной апостериорной вероятности. 
Подробный пример использования этого подхода приводится в главе 26. 

А что понимается под системой, которая является "не гладкой" или поведение ко­
торой "неустойчиво"? Формально под этим подразумевается, что отклик системы в 
области, "близкой" ( согласно ковариации I:1) к текущему среднему µ,, проявляет су­
щественную нелинейность. Чтобы понять суть этого описания неформально, рас­
смотрим пример слежения за пгицей, которая летит через джунгли. Иногда создает­
ся впечатление, что птица на высокой скорости направляется прямо на ствол дерева. 
Фильтр Калмана (обычный или расширенный) позволяет получить только гауссо­
во предсказание местонахождения птицы, при том что среднее соответствующего 
гауссова распределения будет находиться напротив центра ствола, как показано на 
рис. 14.12, а. С другой стороны, более разумная модель полета пгицы должна пред­
сказывать ее действия по уклонению от удара о ствол за счет поворота в 1У или иную 
сторону, как показано на рис. 14.8, б. Такая модель является существенно нелиней­
ной, поскольку птица принимает решение об уклонении от удара внезапно, в зави­
симости от того, где именно она находится по отношению к стволу. 

Очевидно, что для работы с примерами, подобными этому, требуется более вы­
разительный язык представления поведения моделируемой системы. В сообществе 
специалистов по теории управления, для которых в таких задачах, как маневры 
самолета по предотвращению столкновения, возникают аналогичные сложности, 
стандартное решение заключается в использовании ► переключательных филь­
тров Калмана. При таком подходе предусмотрена одновременная эксплуатация 
нескольких фильтров Калмана, в каждом из которых используются разные моде­
ли систем, например в одном из них моделируется прямой полет, в другом - рез­
кий поворот налево, а в третьем - резкий поворот направо. При этом использу­
ется взвешенная сумма предсказаний, где вес зависит от того, насколько точно 
данные каждого фильтра совпадают с текущими данными. Как показано в следую­
щем разделе, такой подход представляет собой частный случай общей модели ди­
намической байесовской сети, созданной путем введения дискретной переменной 
состояния "маневра" в сеть, показанную на рис. 14.9. Переключательные фильтры 
Калмана рассматриваются дополнительно в упражнении 14. 12. 
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а) б) 

Рис. 14. 12. Птица, летящая прямо на ствол дерева (вид сверху). а) Фильтр Калма­
на предсказывает местонахождение птицы с использованием единственного га­
уссова распределения, центр которого находится напротив препятствия. б) Более 
реалистичная модель допускает выполнение птицей действий во избежание стол­
кновения, предсказывая, что птица облетит препятствие с той или иной стороны 

1 4.S. Динамические байесовские сети 
В ► динамических байесовских сетях, или DBN (Dynamic Bayesian Network), 

стандартная семантика байесовских сетей расширяется так, чтобы обеспечить 
обработку временных вероятностных моделей такого типа, как описано в разде­
ле 1 4. 1 .  Выше уже рассматривались примеры DBN: сеть в задаче с зонтиком (см. 
рис. 1 4.2) и сеть фильтра Калмана (см. рис. 1 4.9). Вообще говоря, каждый времен­
ной срез динамической байесовской сети может иметь любое количество пере­
менных состояния Х1 и переменных свидетельства Е1• Для упрощения мы будем 
предполагагъ, что эти переменные, связи между ними и их условные распределе­
ния точно копируются от среза к срезу и что сеть DBN представляет марковский 
процесс первого порядка, так что каждая переменная может иметь родительские 
переменные только в собственном временном срезе или в непосредственно пред­
шествующем временном срезе. При таком подходе сеть DBN соответствует байе­
совской сети с неограниченным, бесконечным количеством переменных. 

Должно быть понятно, что любая скрытая марковская модель может быть пред­
ставлена в виде сети DBN с единственной переменной состояния и с единствен­
ной переменной свидетельства. Справедливо также утверждение, что каждая сеть 
DBN с дискретными переменными может быть представлена в виде модели НММ, 
как это пояснялось в разделе 1 4.3 : можно скомбинировагъ все переменные состоя­
ния в сети DBN в одну переменную состояния, значениями которой являются все 
возможные кортежи значений отдельных переменных состояния. Тогда, если ка­
ждая модель НММ представляет собой сеть DBN, а каждая сеть DBN может быть 
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преобразована в модель НММ, то в чем состоит различие между ними? Эrо разли­
чие заключается в том, что ♦ благодаря декомпозиции состояния сложной системы 
но составляющие его переменные сеть DBN позволяет воспользоваться преимущества­
ми разреженности временной вероятностной модели. 

Чтобы пояснить, что это означает на практике, напомним, что в разделе 1 4 .3 
бьmо показано, что представлению НММ для временного процесса с п дискретны­
ми переменными, каждая из которых может иметь до d значений, необходима ма­
трица перехода размером О(d2п) .  С другой стороны, представление в виде сети 
DBN имеет размер О(пd"), если k - максимальное число родителей любой пере­
менной. Другими словами, представление в виде сети DBN требует объема памяти, 
линейно, а не экспоненциально пропорционального количеству переменных. Для 
робота из мира пылесоса с 42 возможными местоположениями, в которых может 
присутствовагь мусор, количество требуемых вероятностей сокращается с 5 х 1 029 

до нескольких тысяч. 
Выше уже объяснялось, что каждая модель с фильтром Калмана может быть 

представлена в виде сети DBN с непрерывными переменными и линейными гаус­
совыми распределениями условных вероятностей (см. рис. 1 4 .9). Из обсуждений в 
конце предыдущего раздела должно быть очевидно, что не каждая сеть DBN мо­
жет быть представлена с помощью модели с фильтром Калмана. В фильтре Кал­
мана текущее распределение вероятностей состояния всегда представляет собой 
единственное многомерное гауссово распределение, т.е .  распределение с един­
ственным "максимумом", расположенным в определенном месте, тогда как сети 
DBN позволяют моделировать произвольные распределения . 

Для многих реальных приложений такая гибкость является существенно важ­
ным аспектом. Рассмотрим, например, текущее местонахождение связки ключей 
некоторого лица. Она может находиться в его кармане, на ночном столике или на 
полке в прихожей, торчагь в замочной скважине входной двери или быть запертой 
в автомобиле. Единственный максимум гауссова распределения, охватывающего 
распределения вероятностей нахождения связки ключей во всех упомянутых ме­
стах, присвоил бы значительную вероятность тому предположению, что ключи на­
ходятся где-то в промежуточной позиции, например висят прямо в воздухе в при­
хожей.  Таким образом, аспекты реального мира, - такие, как целенаправленные 
агенты, препятствия и тупики - приводят к появлению "нелинейности" и по этой 
причине требуют использования сочетаний дискретных и непрерывных перемен­
ных с целью создания приемлемой модели.  

14.5.1. Создание сетей DBN 

Для построения сети DBN необходимо определить три вида информации : рас­
пределение априорных вероятностей по переменным состояния Р(Хо), модель пе­
рехода P(Xt+ 1 1 Х1) и модель восприятия P(Et I Xt) . Чтобы задать модель перехода 
и модель восприятия, дополнительно необходимо определить топологию связей 
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между последовательными срезами, а также между переменными состояния и сви­
детельства. Поскольку предполагается, что модели перехода и восприятия являют­
ся стационарными ( одинаковыми для всех t), удобнее всего задать их для первого 
среза. Например, полная спецификация сети DBN для мира задачи с зонтиком мо­
жет быть задана с помощью сети с тремя узлами, показанной на рис. 1 4 . 1 3 ,  а. На 
основании этой спецификации при необходимости можно будет создать полную 
сеть DBN с неограниченным количеством временных срезов, полученных посред­
ством копирования первого среза. 

� 
ею 

а) 

R1 P(U1 \R1 )  
t 0,9 
f 0,2 

Umbrella1 

BMeter1 

6) 

Рис. 14.13. а) Спецификация распределения априорных вероятностей модели пере­
хода и модели восприятия мя сети DBN задачи с зонтиком. Все последующие сре­
зы являются копиями среза 1 .  б) Простая сеть DBN мя моделирования движения 
робота на плоскости Х-У 

Теперь давайте рассмотрим более интересный пример: наблюдение за роботом 
с питанием от аккумулятора, который движется на плоскости Х-У, - впервые речь 
о нем шла в разделе 1 4. 1 .  Начнем с определения переменных состояния : это пере-
менная положения на плоскости Х, = (Х" У,) и переменная скорости Xr = ( Xr , У, ). 
Предполагается, что для измерения координат положения используется опреде­
ленный метод (возможно, фиксированная видеокамера или бортовая GРS-систе­
ма), позволяющий получить результаты измерений Z1• Положение робота в следу­
ющем временном интервале зависит от текущего положения и скорости, как и при 
использовании стандартной модели с фильтром Калмана. Скорость в следующем 
временном интервале зависит от текущей скорости и уровня заряда аккумулятора. 
Введем переменную Battery1 представляющую фактический уровень заряда акку­
мулятора, родительскими переменными которой являются предыдущий уровень 
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заряда аккумулятора и скорость, а также введем переменную BMeter" которая бу­
дет представлять показания измерения уровня заряда аккумулятора. В результате 
будет получена исходная модель, показанная на рис. 1 4.9, б. 

Более глубокого анализа заслуживает характер модели восприятия для пере­
менной BMeter,. Для простоты предположим, что переменные Battery, и BMeter, 
могут принимать дискретные значения от О до 5. (В упражнении 1 4. 1 9  предлага­
ется связать Э1)' дискретную модель с соответствующей непрерывной моделью.) 
Если этот измеритель всегда дает точные показания, то таблица условных вероят­
ностей P(BMeter, 1 Battery1) должна содержать вероятности 1 ,0 в элементах, распо­
ложенных "вдоль диагонали", и вероятности 0,0 - во всех других элементах. Но в 
действительности в результаты измерения всегда проникает шум. Для непрерыв­
ных измерений может использоваться гауссово распределение с небольшой дис­
персией. 7 Применительно к дискретным переменным, рассматриваемым в данном 
примере, гауссово распределение можно аппроксимировать с помощью распреде­
ления, в котором снижение вероятности ошибки соответствует реальной ситуа­
ции, поэтому вероятность крупной ошибки весьма мала. Далее мы будем исполь­
зовать термин ► rауссова модель ошибки применительно и к непрерывной, и к 
дискретной версиям. 

Любой специалист, имеющий практический опыт работы в области робототех­
ники, компьютеризированного управления процессами или в другой области при­
менения различных форм автоматического сбора информации, охотно подтвердит 
тот факт, что небольшие количества измерительного шума часто не представляют 
серьезной проблемы. Однако реальные датчики могут выходить из строя, и ког­
да это происходит, они далеко не всегда посылают такой сигнал: "Кстати, теперь 
данные, которые я буду вам отправлять, будут взяты с потолка". Вместо этого они 
просто отправляют бессмыслицу. Отказом простейшего типа является ► времен­
ный отказ, при котором датчик время от времени передает бессмысленные дан­
ные. Например, может оказаться, что датчик уровня заряда аккумулятора имеет пе­
чальное свойство давать нулевое показание каждый раз, когда робот ударяется о 
препятствие, даже если аккумулятор полностью заряжен. 

Рассмотрим, что произойдет при возникновении временного отказа, если ис­
пользуется гауссова модель ошибок, не приспособленная к таким отказам. Напри­
мер, предположим, что робот спокойно стоит и наблюдает 20 последовательных 
показаний датчика заряда аккумулятора, равных 5, а затем этот датчик допускает 
временный сбой и передает показание BMeter2 1  = О. К какому выводу относитель­
но значения переменной Battery2 1 приведет нас простая гауссова модель ошибки? 
Согласно правилу Байеса, ответ на этот вопрос зависит и от модели восприятия 

7 Строго говоря, гауссово распределение не совсем подходит, поскольку в нем ненуле­
вая вероятность присваивается большим отрицательным уровням зарядки аккумулятора. 
Иногда для переменных, область определения которых ограничена, лучше подходит бе­
та-распределение. 
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P(BMeter2 1  = О I Batte,y2 1  ), и <Л предсказания P(Batte,y2 1  1 BMeter 1 20). Если вероят­
ность большой ошибки дагчика является значительно менее правдоподобной, чем 
вероятность перехода в состояние Batte,y2 1  = О, даже если последнее весьма не­
правдоподобно, то в распределении апостериорных вероятностей будет присвоена 
высокая вероятность си,уации, что аккумулятор полностью разряжен. 

Если же в момент времени t = 22 будет получено еще одно показание о нулевом 
заряде, то такой вывод станет почти полностью безоговорочным. А после того как 
эror временный <Лказ исчезнет и показания вернутся к 5, начиная с момента t = 23 
и далее во все последующие моменты, то оценка уровня заряда аккумулятора, 
как по волшебству, быстро вернется к 5 .  (Это не означает, что алгоритм полагает, 
что аккумулятор был магически перезаряжен; это физически просто невозможно. 
Вместо этого алгоритм теперь полагает, что аккумулятор никогда не разряжался, и 
крайне маловероятную гип<Лезу о том, что у измерителя уровня заряда аккумуля­
тора произошли две последовательные огромные ошибки, теперь следует считать 
правильным объяснением.) Такой ход событий проиллюстрирован на верхней кри­
вой, приведенной на рис. 14. 1 4, а, К(Л(}рая представляет изменение во времени ма­
тематического ожидания М (см. приложение А) значения переменной Battery, при 
использовании дискретной гауссовой модели ошибки. 
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Рис. 14. 14. а) Верхня.я крива.я представляет траекторию ожидаемого значения пере­
менной Battery, для последовательности наблюдений, состоящей из значений 5 во 
всех случаях, кроме равных нулю показаний в моменты времени t = 2 l и t = 22, когда 
используете.я проста.я гауссова модель ошибки. Нижняя кривая - это траектория, 
при которой результаrы наблюдения остаются на уровне О, начиная с момента вре­
мени t = 2 1 .  б) Тот же эксперимент, но выполненный с использованием модели вре­
менного отказа. Обраrите внимание, что временный отказ преодолевается успешно, 
а постоянный приводит к излишне пессимистической оценке уровня заряда акку­
мулятора 
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Несмотря на последующее восстановление правильных показаний. есть та­
кой момент времени (t = 22), в котором робот принял сообщение о полном разря­
де аккумулятора, а в такой ситуации он, в принципе, должен выдаrь сигнал тре­
воги и отключиться. Таким образом, чрезмерно упрощенная модель восприятия, 
к сожалению, завела робота в тупик. Мораль этой истории состоит в следующем: 
+ для mozo чтобы система правильно обрабатывала отказы датчика, модель воспри­

ятия должна допускать вероятность ezo отказа. 
В модели отказа простейшего вида для даrчика допускается определенная ве­

роятность того, что он может выдаrь полностью неправильное значение, незави­
симо от истинного состояния мира. Например, если измеритель заряда аккумуля­
тора отказывает, выдавая значение О, то можно принять, что 

P(BMeter1 = О I Battery1 = 5) = 0,03 , 

что, очевидно, значительно больше, чем вероятность, присваиваемая при исполь­
зовании простой гауссовой модели ошибки . Назовем соответствующую модель 
► моделью временноrо отказа. Как это может помочь, если придется столкнуть­
ся с показанием датчика, равным О? При условии, что прогнозируемая вероят­
ность полного разряда аккумулятора, согласно полученным до текущего момен­
та времени показаниям, гораздо меньше 0,03, наилучшим обьяснением причины 
наблюдения BMeter2 1  = О будет то, что произошел временный отказ даrчика. Инту­
итивно понятно, что такой подход позволяет рассмаrриваrь уверенность в истин­
ности данных об уровне заряда аккумулятора как имеющую определенную долю 
"инерции", которая обеспечит преодоление временных сбоев в показаниях даrчи­
ка. Верхняя кривая на рис. 1 4.1 О, 6 показывает, что модель временного отказа по­
зволяет преодолеваrь временные отказы без юпастрофического изменения в пред­
ставлениях об истинности данных. 

На этом и закончим обсуждение временных отказов. А что будет, если отказ даг­
чика окажется постоянным? К сожалению, отказы такого рода встречаюrся слишком 
часто. Если дагчик возвратит 20 показаний со значением 5, за которыми последу­
ет 20 показаний со значением О, то применение модели временного отказа дагчика, 
описанной в предыдущем абзаце, приведет к тому, что робот постепенно все же при­
дет к выводу, что его аккумулятор разряжен, тогда как в действительноС1И мог прои­
зойти отказ дагчика. Нижняя кривая, приведенная на рис. 14. 1 О, 6, показывает "тра­
екторию" изменения уверенности в истинноС'IИ показаний даrчика для этого случая. 
Ко времени / = 25 (после получения пяти нулевых показаний дагчика) робот все же 
приходит к выводу, что его аккумулятор разряжен. Безусловно, бьuю бы предпочти­
тельнее, чтобы роб<УГ приобрел уверенность в том, что неисправен измеритель уров­
ня заряда его аккумулятора, - если это действительно более вероятное событие. 

Неудивительно, что для учета постоянных отказов требуется ► модель посто­
янноrо отказа, которая описывает, как даrчик ведет себя при нормальных усло­
виях и после отказа. Дllя этого необходимо дополнить скрытое состояние систе­
мы дополнительной переменной, скажем, ВМВrоkеп, которая описывает состояние 
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измерителя уровня заряда аккумулятора. Постоянство отказа может быть промоде­
лировано дугой, связывающей переменные ВМВrо/rеп0 и ВМВrо/rеп 1 • Такая ► дуга 
постоянства имеет таблицу условных вероятностей, кuгорая задает на каждом вре­
менном интервале малую вероятность отказа, допустим 0,00 1 ,  но определяет, что 
после выхода из строя датчик остается неисправным. Когда датчик исправен, то мо­
дель восприятия для переменной BMeter идентична модели временного отказа, а 
после того как даrчик выходит из строя, эта модель указывает, что значение BMe­
ter всегда будет равно О, независимо от фактического уровня заряда аккумулятора. 

Модель постоянного отказа для даrчика уровня заряда аккумулятора показана 
на рис. 1 4. 1 5, а. Показаrели ее работы при двух последоваrельностях данных (вре­
менный сбой и постоянный отказ) приведены на рис. 1 4. 1 5 , 6. В отношении этих 
кривых необходимо сделаrь несколько замечаний. Во-первых, в случае временно­
го сбоя вероятность того, что датчик вышел из строя, существенно повышается 
после второго показания со значением О, но немедленно падает вновь до нуля по­
сле получения нового результата наблюдения 5 .  Во-вторых, в случае постоянного 
отказа вероятность того, что датчик неисправен, быстро повышается почти до 1 и 
остается на этом уровне. И наконец, как только становится известно, что датчик 
уровня заряда аккумулятора вышел из строя, робот в дальнейшем может руковод­
ствоваться лишь предположением, что его аккумулятор разряжается с "обычной" 
скоростью, - на рисунке это представлено постепенно снижающимися ожидае­
мыми значениями M(Battery1 • • •  ) . 
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Рис. 14.15. а) Фрагмент сети DBN, представляющий переменные состояния датчика 
уровня заряда аккумулятора, необходимые дпя моделирования ситуации постоянно­
го отказа этого датчика. б) Верхние кривые - траектории ожидаемого значения пе­
ременной Battery1 для последовательностей наблюдений, характерных дпя "времен­
ного отказа" и "постоянного отказа". Нижние кривые - траектории вероятностей 
дпя переменной BMBroken для двух указанных последовательностей наблюдений 
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В приведенном описании мы лишь слегка коснулись поверхности проблемы 
представления сложных процессов. Применяемое на практике разнообразие моде­
лей перехода буквально огромно и охватывает такие разные направления, как мо­
делирование эндокринной системы человека и моделирование потока множества 
автомобилей, движущихся по скоростному шоссе. Создание моделей восприятия 
также является обширной самостоятельной областью. Например, динамические 
байесовские сети позволяют моделировать даже такие тонкие явления, как дрейф 
показаний датчика, внезапная раскалибровка или влияние на показания прибора 
внешних условий (таких, как погода). 

1 4.5.2. Точный вероятностный вывод в сетях DBN 

Крапrо рассмоrрев некоторые идеи, касающиеся представления сложных процес­
сов в виде сетей DBN, перейдем к вопросу вероятностного вывода. В определенном 
смысле на этог вопрос уже был получен ответ: динамические байесовские сети пре­
Жде всего являются байесовскими сетями, и нам уже известны алгоритмы выполне­
ния вероятностного вывода в байесовских сетях. При наличии последовагельности на­
блюдений можно построить представление сети DBN в виде полной байесовской сети 
путем повторения временных срезов до тех пор, пока сеть не станет достаrочно боль­
шой, чтобы в ней можно было учесть все наблюдения, как показано на рис. 14.16. Та­
кой метод называется развертыванием. (С формальной точки зрения сеть DBN эк­
вивалентна полубесконечной сети, полученной путем развертывания в одну сторону 
до бесконечности. Но временные срезы, вводимые за пределами последнего наблюде­
ния, не оказывают влияния на вероятностные выводы в пределах периода наблюдения 
и поэтому моrут быть исключены.) После того как сеть DBN развернута, в ней может 
использоваться любой из алгоритмов вероятностного вывода (алгоритм с устранени­
ем переменной, методы кластеризации и т.д. ), описанных в rnaвe 13. 

Ro P(R 1 IR0) Ri P(R2IR)) R2 P(RзlR2) R-,, P\R4:R3 J 
1 0,7 
f 0,3 

t 3,1 f ,3 } 8:1 1 0.7 !' о.з 

Rз P(UзJR3) 84 P1ЩR1 I 
t 8·9 
f ,2 } 0 9  

0'1 ,-

Рис. 14.16. Развертывание динамической байесовской сети: ,lJJIЯ размещения результа­
тов последоваrельности наблюдений Umbrel/a 1 : з  временные срезы дублируются. По­
следующие срезы не влияют на вероятностные выводы в пределах периода наблюдения 
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К сожалению, простое, непродуманное применение развертывания не всегда 
будет достаточно эффективным .  Так, если требуется выполнить фильтрацию или 
сглаживание с использованием длинной последовательности наблюдений е 1 : ,, то 
для представления развернутой сети потребуется пространство O(t), и оно будет не­
ограниченно возрастать по мере добавления новых результатов наблюдений. Более 
того, если просто заново запускать алгоритм вероятностного вывода после каждого 
добавления новых результатов наблюдения, то затраты времени на вероятностный 
вывод при каждом обновлении таюке будут расти пропорционально O(t). 

Еще раз обратившись к разделу 1 4 .2 . 1 ,  можно заметить, что при фильтрации 
достичь постоянных затрат времени и пространства в расчете на каждое обнов­
ление можно, если выполнять вычисления в рекурсивной форме. По сути, обнов­
ление результатов фильтрации в уравнении ( 1 4 .5 )  осуществляется по принципу 
исключения путем суммирования переменных состояния, относящихся к преды­
дущему временному этапу, что позволяет получить распределение для нового вре­
менного этапа. Исключение переменных путем суммирования - это именно то, 
что выполняет алгоритм устранения переменной (см . рис . 1 3 . 1 3 ), и, как оказа­
лось, применение процедуры устранения переменной к переменным во временном 
порядке точно моделирует функционирование рекурсивного обновления резуль­
татов фильтрации в уравнении ( 1 4 .5). В модифицированном алгоритме предусмо­
трено одновременное хранение в памяти не более двух временных срезов: начиная 
со среза О, добавляем срез 1 ,  затем исключаем путем суммирования срез О, по­
сле этого добавляем срез 2, на следующем этапе исключаем путем суммирования 
срез 1 и т.д. Такая организация вычислений позволяет добиться постоянных затрат 
пространства и времени в расчете на каждое обновление результатов фильтрации.  
(Такой же производительности можно достичь путем введения соответствующих 
модификаций в алгоритм кластеризации.)  В упражнении 1 4 .20 предлагается про­
верить это утверЖдение на примере сети для задачи с зонтиком. 

До сих пор речь шла только о преимуществах рекурсивного подхода, но он име­
ет и недостатки: как оказалось, "постоянные" значения временной и простран­
ственной сложности для каждой операции обновления почти во всех случаях экс­
поненциально зависят от количества переменных состояния . В связи с этим в ходе 
осуществления процесса устранения переменной количество факторов возраста­
ет так, что в их состав начинаюr входить все переменные состояния (или, точнее, 
все те переменные состояния, которые имеюr родительские переменные в преды­
дущем временном срезе). Максимальный размер фактора составляет O(dn+�, а сто­
имость обновления измеряется как O(ndn+k), где d - размер области переменных, 
а k - максимальное число родителей для любой переменной состояния. 

Безусловно, такие значения намного меньше по сравнению со стоимостью об­
новления для скрытой марковской модели, пропорциональной O(d2n), но они все 
еще неприемлемы при наличии большого количества переменных. Этот обес­
кураживающий факт означает, что ♦ даже несмотря на то, что сети DBN могут 
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использоваться для представления очень сложных временных процессов с многочисленны­
ми переменными с разрозненными связями между ними, мы не можем эффективно и точ­
но рассуждать об этих процессах. Сама модель DBN, которая представляет априорное 
совместное распределение по всем переменным, может быть разложена на состав­
ляющие ее таблицы условных вероятностей, но обусловленное последовательно­
стью наблюдений апостериорное совместное распределение (т.е. прямое сообще­
ние), как правило, не поддается разбиению на факторы. В общем случае проблема 
неразрешима, поэтому мы вынуждены обращаться к приближенным методам. 

14.5.3. Приближенный вероятностный вывод в сетях DBN 

В разделе 13 .4 были описаны два алгоритма аппроксимации - взвешивание по 
правдоподобию (см. рис. 13 . 18) и метод Монте-Карло на основе цепи Маркова (ал­
горитм МСМС; см. рис. 13 .20). Из этих двух алгоритмов проще всего к контексl)' 
DBN адаптируется первый алгоритм. (Алгоритм фильтрации на базе МСМС крат­
ко описан в разделе "Библиографические и исторические заметки" в конце этой 
главы.) Однако, как будет показано ниже, чтобы получить практически примени­
мый метод, в стандартный алгоритм взвешивания по правдоподобию необходимо 
внести несколько усовершенствований. 

Напомним, что алгоритм взвешивания по правдоподобию работает по принци­
пу осуществления в топологическом порядке выборок в узлах сети, не являющих­
ся узлами свидетельства, и взвешивания каждой выборки с учетом правдоподобия 
того, что она соответствует наблюдаемым переменным свидетельства. Как и в слу­
чае точных алгоритмов, алгоритм взвешивания по правдоподобию можно приме­
нить непосредственно к развернутой сети DBN, однако по мере увеличения длины 
последовательностей наблюдений это приведет к возникновению тех же сложно­
стей, связанных с увеличением требований ко времени и пространству в расчете 
на каждое обновление. Проблема состоит в том, что в стандартном алгоритме ка­
ждая выборка обрабатывается последовательно, по всей сети. 

Вместо этого можно просто пропустить через сеть DBN все N выборок вместе, 
проходя каждый раз через один временной срез. Этот модифицированный алго­
ритм имеет такую же общую форму, как и другие алгоритмы фильтрации, но в нем 
в качестве прямого сообщения используется множество из N выборок. Поэтому 
первое ключевое усовершенствование состоит в ♦ использовании самих выборок в 
качестве приближенного представления распределения вероятностей текущего состо­
яния. Такой подход соответствует требованию обеспечения "постоянных" затрат 
времени в расчете на каждое обновление, хотя само это постоянное значение за­
висит от количества выборок, необходимых для достижения приемлемой аппрок­
симации. Кроме того, нет необходимости развертывать сеть DBN, поскольку в па­
мяти требуется держать только текущий временной срез и следующий временной 
срез. Такой подход называют ► последовательной выборкой по значимости, или 
SIS (Sequential Importance Sampling). 
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В описании метода взвешивания по правдоподобию, приведенному в главе 13 , 
было указано, что точность алгоритма снижается, если переменные свидетельства 
занимают "последние места" в упорядочении переменных, по которым осущест­
мяется выборка, поскольку в таком случае выборки формируются, не испытывая 
какого-либо мияния со стороны свидетельства. 

Взглянув на типичную структуру сети DBN - скажем, сети DBN для задачи с 
зонтиком, предстаменную на рис. 14.16, - можно убедиться, что в действитель­
ности выборка более ранних переменных состояния будет выполняться без уче­
та полученных в дальнейшем свидетельств. На самом деле тщательный анализ 
показывает, что у любой из переменных состояния среди ее предков нет ни одной 
переменной свидетельства ! Поэтому, хотя вес каждой выборки зависит от свиде­
тельства, фактически сформированное множество выборок будет полностью неза­
висимым от него. Например, даже если директор всю неделю каждый день прихо­
дит с зонтиком, процесс формирования выборки по-прежнему может полагать, что 
солнечные дни не кончаются. 

С точки зрения практики это означает, что доля выборок, остающихся доста­
точно близкими к фактическому ряду событий (и, следовательно, имеющих до­
статочно значимый вес), падает экспоненциально с увеличением значения t, т.е. 
длины последовательности наблюдений. Иными словами, чтобы поддерживать за­
данный уровень точности, необходимо увеличивать количество выборок экспонен­
циально в зависимости от t. Учитывая то, что алгоритм фильтрации, работающий 
в режиме реального времени, может использовать лишь ограниченное количество 
выборок, на практике после небольшого количества этапов обновления ошибка 
становится весьма значительной. На рис. 14.19 в конце этого раздела наглядно де­
монстрируется этот эффект для метода SIS при его применении к задаче локализа­
ции в клеточном мире, обсуждавшейся в разделе 14.3 : даже при 100 ООО выборок 
аппроксимация по методу SIS терпит полную неудачу после примерно 20 этапов. 

Очевидно, что требуется найти лучшее решение. Второе важное нововведение 
состоит в том, что ♦ множество выборок следует формировать преимущественно в 
областях пространства состояний, характеризующихся высокой вероятностью. Такой 
подход можно реализовать, отбрасывая все выборки, которые, согласно наблюде­
ниям, имеют очень малый вес, и увеличивая количество выборок, имеющих боль­
шой вес. В результате популяция выборок будет оставаться достаточно близкой к 
реальности. Если выборки рассматривать как информационные ресурсы для мо­
делирования распределения апостериорных вероятностей, то имеет смысл форми­
ровать больше выборок в тех областях пространства состояний, где апостериор­
ная вероятность выше. 

Для решения именно этой задачи предназначено семейство алгоритмов, назы­
ваемых алгоритмами ► фильтрации частиц. (Другим, более ранним, было назва­
ние последовательная выборка по важности с перевыборкой, но по некоторым 
причинам оно не прижилось.) Метод фильтрации частиц действует следующим 
образом: сначала формируется популяция из N выборок, сформированных на 
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основании распределения априорных вероятностей Р(Хо), а затем для каждого 
временного этапа повторяется цикл обновления, как описано ниже.  

1 .  Каждая выборка распространяется в прямом направлении путем формиро­
вания выборки значения переменной следующего состояния х,+ 1 , при этом в 
качестве выборки берется текущее значение х, и используется модель пере­
хода P(Xr+ 1 1 х,). 

2 .  Каждая выборка взвешивается по правдоподобию, назначенному новому 
свидетельству, P(er+ I I хr+ 1 ) -

З .  Эта популяция выборок подвергается перевыборке для формирования но­
вой популяции из N выборок. Каждая новая выборка берется из текущей по­
пуляции; вероятность того, что будет выбрана конкретная выборка, пропор­
циональна ее весу. Новые выборки рассматриваются как не имеющие веса. 

Этот алгоритм во всех деталях представлен на рис. 1 4 . 1 7, а результаты его при­
менения к сети DBN для задачи с зонтиком показаны на рис. 1 4 . 1 8 .  

function PARТICLE-FILTERING(e, N, dbn) returns множество выборок для следующего 
временного этапа 

inputs: е, новое полученное свидетельство 
N, количество выборок, которые должен сформировать алгоритм 
dbn, сеть DBN, заданная распределением априорных вероятностей Р(Х0), 

моделью перехода Р (Х 1 ! Хо) и моделью восприятия Р(Е 1 IX 1 )  
persistent: S, вектор выборок размера N, первоначально формируемый из Р(ХО) 
local variaЬles : W, вектор весов размера N 

for i = 1 to N do 
S[,1 +- выборка из Р(Х 1 1 Хо = S[i]) 
W[z] +- Р(е I Х 1 = S[i]) 

S +- WEIGHTED-SAMPLE-WIТH-REPLACEMENT(N, S, W) 
return S 

// этап 1 
!/ этап 2 
// этап 3 

Рис. 14. 1 7. Алгоритм фильтрации частиц, реализованный как рекурсивная опера­
ция обновления данных о состоянии (множество выборок). Каждая операция фор­
мирования выборок включает формирование выборки значений соответствующих 
переменных временного среза в топологическом порядке, выполняемое во мно­
гом так же, как и в процедуре PRIOR-SAMPLE. Операция WEIGHTED-SAMPLE-WIТH­
REPLACEMENT может быть реализована так, чтобы она выполнялась за ожидаемое 
время O(N). На рисунке номера этапов соответствуют их описанию в тексте 
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Rain1 Raintt1 Rain1+1 Rain1+ 1 
•••• • •• 

[J □ true •••• ••• . 
false • •• 

� [;] • •• • • 

а) Распространение б) Взвешивание в) Повторная выборка 
Рис. 14.18. Цикл обновления алгоритма фильтрации частиц применительно к сети 
DBN для задачи с зонтиком при N = 1 О; показаны популяции выборок в каждом со­
стоянии. а) В момент времени t 8 выборок указывают rain, а 2 выборки - -,rain. Ка­
ждая из них распространяется в прямом направлении путем формирования выборок 
в следующем состоянии через модель перехода. В момент времени t + \ выясняет­
ся, что 6 выборок указывают rain, а 4 выборки - -,rain. б) В момент времени t + 1 
наблюдается -,uтbre/la. Каждая выборка взвешивается с учетом ее правдоподобия 
применительно к этому наблюдению, что на рисунке указывается соответствующим 
размером кружков. в) Формируется новое множество из 1 0  выборок путем случай­
ного выбора со взвешиванием из текущего множества. В результате получено 2 вы­
борки, указывающие rain, и 8 выборок, указывающих -,rain 

Рассмотрев операции во время одного цикла обновления, можно показать, что 
этот алгоритм является согласованным - позволяет получить правильные значе­
ния вероятностей, если N стремится к бесконечности. Предполагается, что форми­
рование популяции выборок начинается с использования правильного представле­
ния прямого сообщения, т.е. f1 :i = Р(Х1 1 е 1 : 1) во время t. Поэтому, записав выражение 
N(x1 1 е 1 : 1) для количества выборок, входящих в состояние х1 после обработки на­
блюдений е1 : i, получаем следующее соотношение для больших значений N: 

(14.23) 

Теперь распространим каждую выборку в прямом направлении, осуществляя 
формирование выборок значений переменных состояния во время t + 1 с учетом 
для каждой выборки значений во время t. Количество выборок, достигающих со­
стояния х1+ 1 из каждого состояния х1, является вероятностью перехода, умножен­
ной на величину популяции х1, поэтому общее количество выборок, достигаю­
щих xt+ 1 , будет равно 

N(хн1 1 е 1 : 1) = I Р(хн1 1 X 1)N(x1 1  е 1 : 1) . 
х, 

Далее выполним взвешивание каждой выборки по ее правдоподобию примени­
тельно к свидетельству во время t + 1. Любая выборка в состоянии х1+ 1 получает 
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вес P(et+ 1 I xt+ 1 ), следовательно, суммарный вес выборок, достигших состояния xt+1 , 
будет 

W(xi+ 1 I е 1 :1+д  = P(ei+ 1  I xi+ 1 )N(xi+ 1 I е 1 : ,) .  

Теперь выполняется этап повторного формирования выборки . Поскольку ка­
ждая выборка тиражируется с вероятностью, пропорциональной ее весу, коли­
чество выборок в состоянии xt+ 1 после повторного формирования выборки про­
порционально суммарному общему весу в состоянии х,+ 1 перед повторным 
формированием, будет таким:  

N(хн 1 l е 1 :н 1 ) /  N = aW(xн1 l e1 : 1+ 1 ) =  

аР(ен 1 1 Хн 1 )N(хн1 1 е1 : 1 ) = 

a P(e1+ 1  l xн 1 )L P(x1+ 1 l x, )N(x, l e 1 : 1 ) = 
х, 

= а NР(ен 1 l хн 1 )L Р(хн 1 l x , )P(x, l e 1 : 1 ) = 
х, 

= а' Р(е1+1 l xн 1 )L P(xн 1 l x , )P(x, l e1 : 1 ) = 
х, 

(согласно 1 4.23) 

(согласно 1 4 .5) 

Поэтому популяция выборок после одного цикла обновления правильно представ­
ляет прямое сообщение во время t = 1 .  

Следовательно, алгоритм фильтрации частиц является согласованным, но яв­
ляется ли он эффективным? Для многих практических примеров ответ на этот 
вопрос будет, по-видимому, положительным:  фильтрация частиц позволяет под­
держивагь хорошую аппроксимацию истинных апостериорных вероятностей с ис­
пользованием постоянного количества выборок. На рис. 1 4 . 1 9  показано, что филь­
трация частиц хорошо работает для задачи локализации в клеточном мире уже 
лишь при тысяче выборок. Она работает и в отношении реальных задач: этот ал­
горитм лежит в основе тысяч приложений, используемых в науке и технике. (Неко­
торые ссылки даны в конце главы, в разделе "Библиографические и исторические 
заметки".) Он справляется с обработкой комбинации дискретных и непрерывных 
переменных, а также нелинейных и негауссовых моделей для непрерывных пере­
менных. При некоторых допущениях - в частности, о том, что вероятности в мо­
дели перехода и модели восприятия не имеют значений О и 1 - также становится 
возможным доказать, что аппроксимация с высокой вероятностью обеспечивает 
ограниченную ошибку, как это показано на рисунке. 

Однако у алгоритма фильтрации частиц есть и недостагки. Посмотрим, как он 
будет выполняться в случае задачи о локализации в мире пылесоса при добавле­
нии информации о мусоре. Из раздела 1 4 .3 .2 вспомним, что это увеличивает раз­
мер пространства состояний задачи до 242 , а это делает точный вероятностный 
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Рис. 1 4. 19. Оценка максимальной нормы ошибки дпя задачи локализации в клеточ­
ном мире (в сравнении с точным вероятностным выводом) дпя алгоритма взвеши­
вания по правдоподобию (метод последовательной выборки по значимости - SIS) 
при 1 00 ООО выборок и дпя алгоритма фильтрации частиц при I ООО выборок. Дан­
ные усреднены по 50 прогонам 

Locationo Location1 

Dirt1 ,o Dirt1 , 1 

Dirt2,o Dirt2, 1 

• • • • • 
Dirt42,o Dirt42, 1 

Рис. 1 4.20. Динамическая байесовская сеть для задачи локализации и одновремен­
ного создания карты стохастического клеточного мира пылесоса с наличием мусо­
ра. Мусор в квадратах сохраняется с вероятностью р, а в чистых квадратах может 
появиться с вероятностью 1 -р. Локальный датчик наличия мусора с вероятностью 
0,9 дает правильные показания дпя того квадрата, в котором робот находится в дан­
ный момент 
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НММ-вывод неосуществимым. В этой задаче робот должен бродить по миру и 
создать карту мира с указанием, где находится мусор. (Это простой пример за­
дачи одновременной локализации и отображения, или SLAM (simultaneous 
localization and mapping), которая будет подробно обсуждаться в главе 26.) Пусть 
переменная Dirti,t определяет наличие мусора в квадрате i в момент времени t и 
пусть переменная DirtSensor1 будет иметь значение true тогда и только тогда, когда 
робот обнаруживает мусор в момент времени t. Будем полагать, что любой задан­
ный квадрат остается замусоренным с вероятностью р, тогда как чистый квадрат 
становится замусоренным с вероятностью 1 -р (а это означает, что каждый ква­
драт содержит мусор в среднем половину времени). Робот имеет датчик наличия 
мусора в его текущем местоположении, дающий правильные показания с вероят­
ностью 0,9. На рис. 1 4.20 представлена соответствующая сеть DBN. 

Для простоты начнем с допущения, что робот имеет не зашумленный датчик 
препятствия, а правильно работающий датчик местоположения. Показатели рабо­
ты алгоритма показаны на рис. 1 4.2 1 ,  а: его оценки наличия мусора даны в срав­
нении с результатами точного вывода. (Скоро будет показано, как точный вывод 
становится возможным.) Для малых значений вероятности сохранности мусора р 
ошибка остается небольшой, но это нельзя считать значительным достижением, 
поскольку для каждого квадрата истинные апостериорные вероятности о наличия 
мусора будут близки к 0,5, если робот не посещал этот квадрат в недавнем време­
ни . Для более высоких значений р мусор сохраняется в целом дольше, так что по­
сещение квадрата дает роботу более полезную информацию, сохраняющую свою 
актуальность на более продолжительный период времени. Возможно, может пока­
заться удивительным тот факт, что при более высоких значениях р алгоритм филь­
трация частиц работает хуже. И он полностью не способен работать при р = 1 ,  
даже несмотря на то, что этот случай кажется самым простым: мусор появляется 
в квадратах в момент времени О и остается в них навсегда, так что после несколь­
ких обходов мира робот должен уже иметь карту местонахождения мусора, близ­
кую к абсолютно точной . Почему алгоритм фильтрации частиц не работает в этом 
случае? 

Как оказалось, теоретическое условие, требующее, чтобы "вероятности в моде­
ли перехода и модели восприятия были строго больше О и строго меньше 1 ", явля­
ется чем-то большим, чем просто математической педантичностью. Вот что про­
исходит: сначала каждая частица исходно содержит 42 предположения из Р(Хо) о 
том, в каких квадратах есть мусор, а в каких - нет. Затем состояние для каждой 
частицы проектируется в прямом направлении во времени в соответствии с моде­
лью перехода. К сожалению, модель перехода для детерминированного располо­
жения мусора является детерминированной: мусор остается именно там, где он 
был. Таким образом, начальные догадки в каждой частице никогда не обновляют­
ся с учетом свидетельств. 
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Рис. 1 4.21 . а) Эффективность работы стандартного алгоритма фильтрации частиц 
при I ООО частиц, представленная среднеквадратической ошибкой в расчетной пре­
дельной вероятности наличия мусора в сравнении с результатами точного вероят­
ностноrо вывода для различных эначений вероятности устойчивости загрязнений р. 
б) Эффективность алгоритма фильтрации частиц Рао-Блэквелла ( l 00 частиц) в срав­
нении с истинной ситуацией как для случая точного определения местоположения, 
так и для случая зашумленного обнаружения стен, но при детерминированном рас­
пределении мусора. Данные усреднены для 20 прогонов 

Вероятность того, что исходные догадки были верны, равна 2-42 или около 2 х 
1 0-1 3, так что исчезающе маловероятно, что среди тысячи (или даже миллиона) ча­
стиц будет хотя бы одна с правильной картой местонахождения мусора. В типич­
ном случае лучшая частица из тысячи будет содержать примерно 32 правильных и 
1 О неправильных догадок, и, как правило, будет только одна такая частица или, 
возможно, несколько. Одна из этих лучших частиц станет доминировать в общей 
вероятности с ходом времени и разнообразие в популяции частиц начнет сокра­
щаться. Тогда, поскольку все частицы согласятся с одной, неправильной картой, 
алгоритм придет к убеждению, что именно эта карта является правильной и никог­
да не изменит этого мнения. 

К счастью, задача одновременной локализации и отображения имеет особую 
струкrуру: обусловленный последовательностью местоположений робота, стаrус 
наличия мусора для отдельных квадратов является независимым. Более конкретно 

Р( Dirt1 ,0:r , . . .  , Dirt42,o: 1 1 DirtSensor1: 1, Wal/Sensori: r , Location1: r )  = 

= П P(Dirt;, o: r l DirtSenso11:1 , Location1 : ,). ( 14.24) 

Это означает, что здесь будет полезно применить статистический прием, по­
лучивший название ► Рао-Блэквеллизация и основанный на простой идее, что 
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точный вывод всегда будет более точным, чем выборки, даже если это только не­
которое подмножество из всех переменных. Для задачи SLAM запустим частицы 
фильтрации в местонахождении робота, а затем для каждой частицы выполним 
точный вероятностный НММ-вывод независимо для каждого квадрата с мусо­
ром, обусловленный последовательностью расположений в этой частице. Таким 
образом, каждая частица содержит выборочное местоположение плюс 42 точных 
предельных апостериорных распределения для 42 квадратов, - точных при до­
пущении, что предполагаемая траектория местоположений, которой следует эта 
частица, является правильной. Эrот подход, называемый ► фильтром частиц Рао­
Блэквелла, без затруднений справляется с ситуацией детерминированного разме­
щения мусора и постепенно строит точную карту местонахождения мусора с ис­
пользованием как правильно работающего датчика местоположения, так и зашум­
ленного датчика препятствия, что и показано на рис. 1 4 .2 1 ,  6. 

Во всех случаях, которые не удовлетворяют тому типу структуры условной не­
зависимости, который проиллюстрирован уравнением ( 1 4.24), метод Рао-Блэквел­
ла не применим. В разделе "Библиографические и исторические заметки" в конце 
главы упоминается ряд алгоритмов, которые в свое время были предложены для 
решения общей задачи фильтрации со статическими переменными. Ни один из 
них не обладает элегантностью и широтой применимости, характерными для ал­
горитма фильтра частиц, но на практике некоторые из них весьма эффективны для 
определенных классов задач. 

Резюме 
В этой главе рассматривалась общая проблема представления и формирования 

рассуждений о вероятностных временных процессах. Основные идеи, изложенные 
в этой главе, следующие. 

• Изменение состояния мира можно учесть, используя множество случайных 
переменных для представления этого состояния в каждый момент времени. 

• Эги представления мoryr быть спроектированы (приблизительно) таким об­
разом, чтобы они удовлетворяли свойству марковости, согласно которому 
будущее не зависит от прошлого, если дано настоящее. В сочетании с пред­
положением о том, что рассматриваемый процесс является стационарным 
(т.е. таким, что его законы не изменяются со временем), это позволяет на­
много упростить представление. 

• Временная вероятностная модель может рассматриваться как содержащая 
модель перехода, описывающую процесс развития, и модель восприятия, 
описывающую процесс наблюдения. 

• Основными задачами вероятностного вывода во временных моделях яв­
ляются фильтрация (оценка состоянии), предсказание, сглаживание и 
определение с помощью вычислений наиболее вероятного объяснения. 
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Каждая из этих задач может быть решена с помощью простых, рекурсивных 
алгоритмов, время выполнения которых линейно зависит от длины рассма­
триваемой последовательности. 

• Более подробно рассматривались три семейства временных моделей: скры­
тые марковские модели, фильтры Калмана и динамические байесов­
ские сети (последняя модель включает две первые в качестве частных слу­
чаев). 

• Если не приняты особые предположения, как при использовании фильтров 
Калмана, точный вероятностный вывод при наличии многих переменных 
состояния становится неосуществимым. На практике алгоритм фильтрации 
частиц и его производные являются достаточно эффективным семейством 
алгоритмов. 

Библиографические и исторические заметки 
Многие важные идеи, касающиеся оценки состояния динамических систем, 

были высказаны математиком К.Ф. Гауссом ( [82 1 ], 1 809), сформулировавшим де­
терминированный алгоритм наименьших квадратов для решения задачи прогнози­
рования орбит небесных тел на основании астрономических наблюдений. Россий­
ский математик А.А. Марков ( [ 1 494], 1 9 1 3) в своих трудах, посвященных анализу 
стохастических процессов, изложил подход, получивший в дальнейшем название 
марковское предположение; он провел оценку свойств марковской цепи первого 
порядка, состоящей из букв текста поэмы "Евгений Онегин". Общая теория мар­
ковских цепей и время их смешивания подробно обсуждаются в работе Левина и 
соавт. [ 1 393]  (2008). 

Важная классификационная работа по фильтрации бьmа выполнена во время 
Второй мировой войны Винером ( [2338], 1 942) для непрерывных временных про­
цессов и Колмогоровым ( [  1 270], 1 941) для дискретных временных процессов. Хотя 
эта работа привела к важным технологическим усовершенствованиям, достигну­
тым в течение следующих 20 лет, в ней использовалось представление данных из 
области определения частот, поэтому многие вычисления оказались весьма гро­
моздкими. Как бьmо показано Питером Сверлингом ( [2 164], 1 959) и Рудольфом 
Калманом ( [ 1 1 75] ,  1960), непосредственное моделирование стохастических про­
цессов с помощью пространства состояний оказалось намного проще. В последней 
статье описывается то, что теперь принято называть фильтром Калмана для пря­
мого вероятностного вывода в линейных системах с гауссовым шумом. Однако ре­
зультаты Калмана ранее уже были получены датским астрономом Торвольдом Ти­
лем ( [220 1 ], 1 880) и русским физиком Русланом Стратоновичем ([2143], 1959). При 
посещении в 1 960 году Исследовательского центра Эймса, принадлежащего НАСА, 
Калман увидел возможность применения этого метода для отслеживания траекто­
рий ракет, в резульппе чего его фильтр нашел применение в миссии "Аполлон". 
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Важнейшие результаты в области сглаживания были получены Раухом и соавт. 
([ 1 862] ,  1 965), а предложенный ими метод, получивший выразительное название 
"метод сглаживания Рауха-Тунга-Стрибеля", все таюке широко применяется и в 
наши дни. Многие ранние результаты исследований были собраны Гелбом ( [827], 
1 974). Бар-Шалом и Фортманн ( [ 1 29], 1 988) предоставили их более современную 
трактовку в байесовском стиле, а также многочисленные ссылки на обширную 
литерmуру по этой теме. Четфилд ( [402] ,  1 989), а также Бокс и соавторы ( [276], 
20 1 6) предложили подход в стиле теории управления к анализу временных рядов. 

Скрытая марковская модель и связанные с ней алгоритмы вероятностного вы­
вода и обучения, включая прямой-обратный алгоритм, были разработаны Баумом 
и Петри ([ 1 43 ] ,  1 966). Алгоритм Витерби впервые бьm предложен его автором в 
[2278] ( 1 967). Аналогичные идеи бьmи также независимо высказаны в сообществе 
специалистов по калмановской фильтрации (Раух и др. [ 1 862], 1 965). 

Прямой-обратный алгоритм бьm одним из основных предшественников более 
общей формулировки алгоритма ЕМ (Демпстер и др. [600], 1 977;  см. также гла­
ву 20). Описание процедуры сглаживания в постоянном пространстве впервые по­
явилось в работе Биндера и соавт. [2 1 7] ( 1 997), так же как и алгоритм, действу­
ющий по принципу "разделяй и властвуй", который предлагается разработать в 
упражнении 1 4.3 . Сrnаживание с постоянным временем и фиксированным отста­
ванием для скрытых марковских моделей впервые было предложено Расселом и 
Норвигом в [ 1 944] (2003). 

Скрытые марковские модели (НММ) уже нашли широкое применение в обра­
ботке естественного языка (Чарняк [393] ,  1 993 ), распознавании речи (Рабинер и 
Цзуанг [ 1 840], 1 993), машинном переводе (Оч и Ней [ 1 703] ,  2003), вычислитель­
ной биологии (Крог и др. [ 1 3 1 4  ], 1 994; Балди и др. [ 1 1 7] ,  1 994 ), финансах и эконо­
мике (Бхар и Хамори [209], 2004) и других областях. Было предложено несколько 
расширений основной модели НММ, например в иерархической НММ (Файн и др. 
[740], 1 998) и многослойной НММ (Оливер и др. [ 1 7 1 1 ] , 2004) струюура вновь вво­
дится в модель, заменяя единственную переменную состояния классической НММ. 

Динамические байесовские сети (Dynamic Bayesian network - DBN) могут рас­
сматриваться как способ разреженного кодирования марковского процесса; впер­
вые они были применены в области искусственного интеллекга Дином и Канадза­
ва ([57 1 ] , 1 989), Николсоном и Бреди ( [ 1 679], 1 992), а также Кьерульфом ( [ 1 236] ,  
1 992). Последняя работа включает описание расширения системы на основе бай­
есовских сетей Hugin с целью поддержки динамических байесовских сетей. Кни­
га Дина и Веллмана [572] ( 1 99 1 ) способствовала популяризации DBN и примене­
ния вероятностного подхода к планированию и контролю в рамках ИИ. Мерфи в 
[ 1 63 7] (2002) предоставил глубокий анализ динамических байесовских сетей. 

Динамические байесовские сети стали популярным выбором для моделирова­
ния различных сложных процессов движения в системах машинного зрения (Ху­
анг и др. [ 1 084], 1 994; Интилл и Бобик [ 1 1 1 4] ,  1 999). Как и скрытая марковская 
модель, сети DBN нашли применение в системах распознавания речи (Цвейг и 
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Рассел [2455] ,  1 998; Ливеску и др. [ 1 435] ,  2003), локализации роботов (Теохарос и др. [2200], 2004) и исследования геномов (Мерфи и Миан [ 1 639], 1 999; Ли и др. [ 1 407], 20 1 1 ). Другие области применения включают анализ жестов (Сук и др. [2 1 47], 20 10), выявление усталости водителя (Янг и др. [2396], 20 1 0), а также мо­делирование городского трафика (Хофлейтнер и др. [ 1 047], 20 1 2). В работе Смита и соавт. [2 1 05 ]  ( 1 997) явно показана связь между моделями НММ и сетями DBN, а также между прямым-обратным алгоритмом и алгоритмом распространения в байесовской сети. Результаты дальнейшего обобщения филь­тров Калмана (и других стаrистических моделей) представлены Ровейсом и Гахра­мани в [ 1 923] ( 1 999). Существуют процедуры для обучения параметров (Биндер и др. [2 1 6] ,  1 997; Гахрамани [844], 1 998) и струюуры (Фридман и др. [792], 1 998) сетей DBN. Байесовск:ие сети с непрерывным временем (Ноделман и др. [ 1 696], 2002) представляют собой дискретный аналог сети DBN с непрерывным време­нем, что исключает необходимость выбора определенной фиксированной длитель­ности временных этапов. Первые алгоритмы формирования выборки для фильтрации (также называемые последовательными методами Монте-Карло) были разработаны в сообществе тео­рии управления Хеншином и Мейном ( [597], 1 969), а идея повторной выборки, яв­ляющаяся центральным элеменrом метода фильтрации частиц, впервые была упо­мянута в российском журнале по теории управления (Зарицкий и др. [2420], 1 975). Позднее этот подход был заново изобретен в стm-истике под названием последова­тельна11 выборка по важности с перевыборк:ой (Sequentia/ Importance samp/ing 
with Resampling- SIR) (Рубин [ 1 927], 1 988; Лю и Чен [ 1426], 1 998), в теории управ­ления как метод фильтрации частиц (Гордон и др. [907], 1 993 ; Гордон [908], 1 994), в области ИИ как выживание приспособленных (Каназава и др. [ 1 1 8 1  ], 1995) и в об­ласти компьюгерноrо зрения как конденсации (Изард и Блейк [ 1 1 1 7] ,  1 996). Статья Каназавы и соавт. [ 1 1 8 1 ]  ( 1 995) содержит предложение улучшения под названием ► разворот свидетельства, cornacнo которому выборка для состояния в момент времени t + 1 обусловливается как состоянием в момент времени t, так и свидетельством в момент времени t + 1 .  Эrо позволяет свидетельству оказывать непосредственное влияние на формирование выборки и способствует уменьше­нию ошибки аппроксимации, что бьшо доказано Дусе в [ 640] ( 1 997) и Лю и Ченом в [ 1 426] ( 1 998). Метод фильтрации частиц нашел применение во многих областях, в том числе в отслеживании сложных закономерностей движений в видео (Изард и Блейк [ 1 1 1 7], 1 996), в прогнозировании на фондовом рынке (Де-Фрейтас и др. [555], 2000) и в диагностике неисправностей у планетоходов (Берма и др. [227 1 ], 2004 ). С момента его изобретения по применению и вариантам этого алгоритма бьши опубликованы десятки тысяч работ. Сейчас большое значение придается масштабируемым реа­лизациям систем на базе параллельно работающих аппаратных средств. Хотя мо­жет показаться, что нет ничего сложного в том, чтобы распределить N частиц сре­ди N вычислительных потоков параллельно работающих процессоров, основной 
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алгоритм требует строго синхронизированного взаимодействия между этими по­
токами на этапе перевыборки (Хендеби и др. [ 1 О 1 О), 20 1 О). Алгоритм каскада ча­
стиц (Пайге и др. [ 1 723), 20 1 5) исключает необходимость подобной синхрониза­
ции, что приводит к значительному ускорению параллельных вычислений. 

Фильтр частиц Ра�Блэквелла был предложен Дусе и соавт. ([642), 2000) и Мер­
фи и Расселом (( 1 640], 2001 ). Его применение на пракrике для решения задач локали­
зации и отображения в области робоrотехники описывается в rnaвe 26. Для решения 
более общих задач фильтрации со стаmческими или ПОlJГИ стаmческими переменны­
ми были предложены и многие другие алгориrмы, включая алгоритм повторной вы­
борки со смещением (Гилкс и Берцуини (856], 200 1 ), алгоркrм Лю-Веста (Лю и Вест 
[ 1427), 200 1 ), фильтр Сторвика (Сторвик (2 1 41 ], 2002), расширенный фильтр параме­
тров (Эрол и др. (696), 20 1 3) и фильтр предполагаемых параметров (Эрол и др. [697), 
20 1 7). Последний представляет собой гибрид алгоритма фильтрации частиц с гораз­
до более старой идеей, называемой ►фильтром предполаrаемой Wiаrвости. В ме­
тоде фильтра предполагаемой плотности принимается допущение, что апостериор­
ное распределение по состояниям в момент времени t принадлежит определенному 
конечно параметризованному семейству. Если этапы проецирования и обновления 
выводят его за пределы этого семейства, распределение проецируется обряrно, чrо­
бы дmъ наилучшее приближение в пределах семейства. Для сетей DBN в алгоркrме 
Бойена-Коллера (Бойен и др. (280), 1999) и алгориrме ►факrорвзоваввой rравицы 
(Мерфи и Вейсс [ 1 64 1  ], 200 1 )  предполагается, что апостериорное распределение мо­
жет быть хорошо аппроксимировано произведением малых факrоров. 

К задаче фильтрации могут быть применены методы МСМС (см. раздел 1 3 .4.2), 
например выборка Гиббса может быть применена непосредственно к разверну­
той сети DBN. Семейство алгоритмов ► частиц МСМС (Андрю и др. [55), 20 1 0; 
Линдстен и др. [ 1 4 1 8], 20 1 4) сочетает в себе алгоритм фильтрации частиц и мето­
ды МСМС, применяемые к развернутой временной модели для генерации вспомо­
гательных распределений МСМС. Хотя в общем случае эти алгоритмы сходятся 
к правильному апостериорному распределению (т.е. как со стагическими, так и с 
динамическими переменными), это автономные алгоритмы. Чтобы избежагь про­
блем увеличения времени обновления по мере роста развернутой сети, в фильтре 
► затухающего МСМС (Марrи и др. [ 1 504 ], 2002) отдается предпочтение форми­
рованию выборок из относительно недавних переменных состояния с вероятно­
стью, уменьшающейся для переменных из более далекого прошлого. 

В книге Дусе и соавт. (64 1 ]  (200 1 )  собрано много важных работ по ► послед� 
нательным алгоритмам Монте-Карло (SMC), среди которых алгориrм фильтра­
ции частиц является наиболее важным. Есть полезные учебные пособия, выпу­
щенные Арулампаламом и соавт. ((79], 2002), а также Дусе и Йохансеном ([643],  
20 1 1  ).  Существует также несколько теоретических работ, касающихся условий, 
при которых методы SMC сохраняюr ограниченную ошибку по отношению к ис­
тинной апостериорной вероятности (Крисе и Дусе (497], 2002; Дел Морал [596], 
2004; Дел Морал и соавт. [595), 2006). 
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Упражнения 
14.1. Покажите, что любой марковский процесс второго порядка может быть перео­

формлен в виде марковского процесса первого порядка с дополненным множе­
ством переменных состояния .  Может ли такое преобразование всегда быть вы­
полнено экономно, т.е. без увеличения количества параметров, необходимых для 
определения модели перехода? 

14.2. В этом упражнении рассматривается, что происходит с вероятностями в мире 
задачи с зонтиком по мере приближения к пределу в длинных временных после­
доваrельностях. 
а) Предположим, что наблюдается нескончаемая последовательность дней, в 

которых директор появляется на работе с зонтиком или без зонтика. Пока­
жите, что по мере того, как эти дни проходят, вероятность дождя в текущий 
день возрастает монотонно в направлении к фиксированной точке. Рассчи­
тайте эту фиксированную точку. 

б) Теперь рассмотрим задачу прогнозирования все дальше и дальше в будущее 
по данным только первых двух наблюдений о наличии зонтика. Вначале рас­
считайте вероятность P(r2+k I щ ,  и2) для k = 1 . . .  20 и нанесите результаты на 
график. Вы обнаружите, что эта вероятность сходится в фиксированной точ­
ке. Рассчитайте точное значение для этой фиксированной точки. 

14.3. В этом упражнении  разрабатывается вариант прямого-обратного алгорит­
ма, приведенного на рис. 1 4.4 (раздел 1 4 .2.2). Требуется вычислить значение 
P(Xk I е 1 : ,) для k = 1 ,  ... , t. Такую задачу можно решить с помощью подхода по 
принципу "разделяй и властвуй". 
а) Для упрощения примем предположение, что значение t является нечетным, 

и допустим, что промежуточная точка определяется выражением h = (t + 1 )/2 . 
Покажите, что значение P(Xk I е 1 : ,) можно вычислить для k = 1 ,  . . .  , h, если 
даны лишь первоначальное прямое сообщение f1 :О• обратное сообщение 
bh+ i : , и свидетельство e 1 :h· 

б) Предоставьте аналогичный результат для второй половины последоваrель­
ности. 

в) Имея результаты выполнения пп .  а и б, можно сформировать рекурсивный 
алгоритм "разделяй и властвуй", вначале выполнив прогон вдоль последова­
тельности в прямом направлении, а затем - в обратном направлении, начав 
от ее конца и сохранив лишь необходимые сообщения в середине и на кон­
цах. Затем алгоритм вызывается на каждой половине последовательности . 
Составьте подробный листинг этого алгоритма. 

г) Определите временную и пространственную сложность алгоритма как функ­
цию от t, длины последовательности . Как изменятся эти результаты, если 
входные данные будут разделены более чем на две части? 

14.4. В разделе 1 4.2.3 была кратко описана некорректная процедура определения 
наиболее вероятной последоваrельности состояний, в которой используется по­
следовательность наблюдений. В этой процедуре предусматривается поиск в 
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каждом временном интервале наиболее вероятного состояния, применение опе­
рации сглаживания и возврат последовательности, в которой собраны эти состо­
яния. Покажите, что при использовании некоторых временных вероятностных 
моделей и последовательностей наблюдений эта процедура возвращает невоз­
можную последовательность состояний (т.е. такую последовательность, что ее 
апостериорная вероятность равна нулю). 

14.5. Уравнение ( 1 4. 1 2) описывает процесс фильтрации для матричной формулиров­
ки НММ. Приведите аналогичное уравнение для расчета правдоподобия, кото­
рое в общем случае было описано в уравнении ( 1 4.7). 

14.6. Рассмотрим миры пьmесоса, представленные на рис. 4. 1 8  (идеальное восприя­
тие) и 1 4.7 (зашумленное восприятие). Предположим, что робот получает такую 
последовательность наблюдений, что при идеальном восприятии существует 
только одно возможное местоположение, в котором он может находиться. Обя­
зательно ли это местоположение будет наиболее вероятным местоположением 
и при зашумленном восприятии с достаточно малой вероятностью шума Е? До­
кажите свое утверждение или предоставьте контрпример. 

14. 7. В разделе 1 4.3 .2 в задаче мира пьшесоса априорное распределение по местопо­
ложениям является равномерным, и модель перехода предполагает равную ве­
роятность перехода к любому соседнему квадрату. Но что, если эти предполо­
жения неверны? Предположим, что начальное местоположение фактически вы­
бирается с равной вероятностью в северо-западном квадранте комнаты, а дей­
ствие на самом деле имеет тенденцию к переходу в юго-восточном направле­
нии. Сохраняя модель НММ неизменной, изучите влияние на точность локали­
зации и точность определения пути при увеличении тенденции перемещения на 
юго-восток для различных значений с 

14.8. Рассмотрим версию мира пьmесоса (раздел 1 4.3 .2), в которой для робота уста­
новлено ограничение двигаться в одном направлении до тех пор, пока это будет 
возможно. Выбрать новое направление (случайным образом) он может, только 
натолкнувшись на препятствие. Для моделирования поведения этого робота ка­
ждое состояние в модели должно состоять из пары переменных - /осаtiоп (ме­
стоположение) и heading (направление). Реализуйте эту модель и посмотрите, 
насколько хорошо теперь алгоритм Витерби позволяет роботу отслеживагь свое 
местоположение. Наложенные на робота ограничения более жесткие, чем в слу­
чае, когда ему позволено случайное блуждание. Значит ли это, что в данном слу­
чае прогноз его наиболее вероятного пути будет более точным? 

14.9. Выше для задачи мира пылесоса (см .  рис. 1 4.7) были предложены три вариан­
та ограничений, налагаемых на возможности перемещения робота-пылесоса: 
1 )  случайное блуждание с равной вероятностью выбора направления; 2) тен­
денция к перемещению на юго-восток, как описано в упражнении 1 4.7; 3)  огра­
ничения, описанные в упражнении 1 4.8 .  Предположим, что сторонний наблю­
датель получает всю последовательность восприятия от робота-пьmесоса, но не 
уверен в том, какой тип ограничений из трех возможных на него наложен. Ка­
кой подход должен использовать наблюдатель, чтобы найти наиболее вероят­
ный путь робота, с учетом поступающей последовательности его восприятия? 
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Реализуйте этот подход и протестируйте его. Насколько ухудшилась точность 
локализации по сравнению со случаем, когда наблюдатель точно знает, какой 
именно вариант ограничений наложен на робота? 

14. 10. Это упражнение связано с фильтрацией в среде без ориентиров. Рассмотрим ва­
риант задачи мира пылесоса, в котором робот находится в пустой комнгге, пред­
ставленной прямоугольной сеткой размером п х т. Местоположение робота 
скрыто, и единственное свидетельство, доступное наблюдателю, поступает от 
зашумленного датчика местоположения, приблизительно определяющего ме­
стоположение робота. Если робот находится в местоположении (х, у), то с веро­
ятностью О, 1 датчик выдаст это правильное местоположение; с вероятностью 
0,05 для каждого он может указать на один из 8 квадратов, непосредственно 
окружающих квадрат (х, у); либо с вероятностью 0,025 для каждого укажет на 
один из 1 6  квадратов, окружающих предыдущие 8, а с оставшейся вероятно­
стью О, 1 может сообщить "нет данных". Наложенные на робота ограничения 
требуют от него выбрагь направление и следовать ему с вероятностью 0,8 на ка­
ждом этапе, а с оставшейся вероятностью 0,2 робот может переключиться на 
случайно выбранный новый курс (или с вероятностью 1 ,0, если наталкивается 
на стену). Реализуйте эту задачу как модель НММ и выполните фильтрацию для 
отслеживания пути робота. Насколько точно можно отслеживать путь робота 
при заданных условиях? 

14.11.  Это упражнение связано с фильтрацией в среде без ориентиров. Рассмотрим ва­
риант задачи мира пылесоса, в котором робот находится в пустой комнаге, пред­
ставленной прямоугольной сеткой размером п х т. Местоположение робота скры­
то, и единственное свидетельство, доступное наблюдггелю, пос,упает от зашум­
ленного дагчика местоположения, приблизительно определяющего местоположе­
ние робота. Если робот находится в местоположении (х, у), то с вероятностью О, 1 
дагчик выдаст это правильное местоположение; с вероятностью 0,05 для каждого 
он может указагь на один из 8 квадрагов, непосредственно окружающих квадрат 
(х, у); либо с вероятностью 0,025 для каждого укажет на один из 1 6  квадратов, 
окружающих предыдущие 8, а с оставшейся вероятностью О, 1 может сообщить 
"нет данных". Наложенные на робота ограничения требуют от него выбрать на­
правление и следоваrь ему с вероятностью 0,7 на каждом этапе, а с оставшейся 
вероятностью 0,3 робот может переключиться на случайно выбранный новый 
курс (или с вероятностью 1 ,0, если нагалкивается на стену). Реализуйте эту зада­
чу как модель НММ и выполните фильтрацию для отслеживания пути робота. 
Насколько точно можно отслеживаrь путь робота при заданных условиях? 

14.12. Часто возникает необходимость осуществлять текущий контроль за системой с 
непрерывным состоянием, поведение которой переключается непредсказуемым 
образом с одного режима на другой в множестве из k различных режимов. На­
пример, самолет, пытающийся избежmъ поражения ракетой, может выполнить 
ряд различных маневров, которые попытается отследить система управления 
ракетой. Представление такой модели переключательного фильтра Калмана 
в виде байесовской сети показано на рис. 1 4.22. 
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а) Допустим, что дискретное состояние S1 имеет k возможных значений и что 
априорная непрерывная оценка состояния Р(Хо) представляет собой много­
мерное гауссово распределение. Покажите, что предсказание Р(Х 1 ) пред­
ставляет собой сочетание гауссовых распределений, т.е. такую взвешен­
ную сумму гауссовых распределений, что веса в сумме составляют 1 .  

б) Покажите, что если текущая оценка непрерывного состояния Р(Х, 1 е 1 :,) пред­
ставляет собой сочетание т гауссовых распределений, то в общем случае об­
новленная оценка состояния P(Xt+ 1 I e 1 :t+J ) будет представлять собой сочета­
ние km гауссовых распределений. 

в) Какой аспект временного процесса представляют веса в сочетании гауссо-
вых распределений? 

Результаты выполнения пп. а и б, вместе взятые, показывают, что объем этого 
представления апостериорных вероятностей беспредельно возрастает даже при 
использовании переключательных фильтров Калмана, которые являются про­
стейшими гибридными динамическими моделями. 

Рис. 14.22. Представление переключательного фильтра Калмана в виде байесов­
ской сети. Переключательная переменная S1 представляет собой дискретную пере­
менную состояния, значение которой определяет модель перехода для непрерывных 
переменных состояния Х1• Для любого дискретного состояния i модель перехода 
P(Xt+ 1 1 Х" Sr-;) представляет собой линейную гауссову модель, так же как и в обыч­
ном фильтре Калмана. Модель перехода для дискретного состояния, P(S1+ 1 1 S1), мо­
жет рассматриваться как матрица по аналогии со скрытой марковской моделью 

14. 13. Дополните недостающий этап вывода уравнения ( 1 4. 1 9) (раздел 1 4.4.2) - пер­
вый этап обновления для одномерного фильтра Калмана. 

14.14. Рассмотрим ход выполнения операции обновления дисперсии в уравнении 
( 14.20) (раздел 14.4.2). 
а) Нанесите на график значения выражения cr; как функции от t при наличии 

различных значений для cr� и cr� . 
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б) Покажите, что эта операция обновления имеет фиксированную точку (
i

, та­
кую, что crl ➔ ri, когда t ➔ оо , и рассчитайте значение а2 • 

в) Дайте качественное объяснение того, что происходит по мере того, как cr� 
➔ О и  cr� ➔ О. 

14.15. Профессор хочет выяснить, достаточно ли спят студенты. Каждый день профес­
сор наблюдает, спят ли студенты на занятиях и красные ли у них глаза. Он раз­
работал следующее теоретическое описание для данной предметной области. 
- При отсутствии наблюдений априорная вероятность того, что студент выспал-

ся, составляет О, 7. 
- Вероятность высшпься в ночь t равна 0,8, если известно, что студент доста­

точно выспался предыдущей ночью, и равна 0,3, если это не так. 
- Вероятность появления красных глаз составляет 0,2, если студент выспался, 

и 0,7, если он не выспался. 
- Вероятность уснуть на занятиях составляет О, 1 ,  если студент выспался, и 0,3, 

если этот не так. 
Исходя из этой информации, постройте динамическую байесовскую сеть, кото­
рую профессор смог бы использовать для фильтрации или прогнозирования на 
основании серии выполненных им наблюдений. Затем переформулируйте ее как 
скрытую марковскую модель, имеющую только одну переменную наблюдения. 
Дайте полные таблицы вероятностей для этой модели. 

14.16. Профессор хочет выяснить, достаточно ли спят студенты. Каждый день профес­
сор наблюдает, спят ли студенты на занятиях и красные ли у них глаза. Он раз­
работал следующее теоретическое описание для данной предметной области. 
- При отсутствии наблюдений априорная вероятность тоrо, что студент выспал-

ся, составляет 0,6. 
- Вероятность высшпься в ночь t равна 0,8, если известно, что студент доста­

точно выспался предыдущей ночью, и равна 0,2, если это не так. 
- Вероятность появления красных глаз составляет 0,2, если студент выспался, 

и 0,7, если он не выспался. 
- Вероятность уснуть на занятиях составляет О, 1 ,  если студент выспался, и 0,3, 

если этот не так. 
Исходя из этой информации, постройте динамическую байесовскую сеть, кото­
рую профессор смог бы использовать для фильтрации или прогнозирования на 
основании серии выполненных им наблюдений. Заrем переформулируйте ее как 
скрытую марковскую модель, имеющую только одну переменную наблюдения. 
Составьте полные таблицы вероятностей для этой модели. 

14.17. Для сети DBN, определенной в упражнении 1 4. 1 5, и при значениях свиде-
тельств 

е 1 = нет красных глаз, нет сна на занятиях 
� = красные глаза, нет сна на занятиях 
е3 = красные глаза, уснул на занятиях 

выполните следующие вычисления (EnoughS\eep - выспался). 
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а) Оценка состояния. Вычислить P(EnoughSleep1 1 е 1 : 1) для каждого t =  1 ,  2, 3 .  
б )  Сглаживание. Вычислить P(EnoughSleep1 1 е 1 : з) для каждого t =  1 ,  2, 3 .  
в) Сравнить отфильтрованные и сглаженные вероятности для t =  1 и t = 2 .  

14. 18. Предположим, что какой-то конкретный студент появляется с красными глаза­
ми и каждый день спит на занятиях. Учитывая модель, описанную в упражне­
нии 1 4. 1 5 , объясните, почему вероятность того, что ученик выспался преды­
дущей ночью, сходится к фиксированной точке, а не продолжает снижаться по 
мере того, как собирается все больше свидетельств за прошедшие дни. Что та­
кое фиксированная точка? Дайте ответ на этот вопрос как численно ( с помощью 
вычислений), так и аналитически . 

14.19. В этом упражнении более подробно анализируется устойчивая к отказам мо­
дель для датчика уровня заряда аккумулятора, показанная на рис. 1 4. 1 5, а (раз­
дел 1 4.5. 1 ). 
а) График на рис. 1 4. 1 5 , б обрывается при t = 32. Дайте качественное описание 

того, что должно произойти по мере стремления t к бесконечности, t ➔ ао , 
если датчик продолжает выдавать показания О. 

б) Предположим, что темперэ:rура окружающей среды влияет на датчик уровня 
заряда аккумулятора таким образом, что по мере возрастания температуры 
временные отказы становятся все более вероятными. Покажите, как с учетом 
этого дополнить структуру сети DBN, приведенную на рис. 1 4. 1 5 , а, и объ­
ясните, какие изменения потребуется внести в таблицы условных вероятно­
стей. 

в) После определения новой структуры сети сможет ли  робот использовать 
показания датчика уровня заряда аккумулятора для вероятностного вывода 
данных о текущей темперэ:rуре? 

14.20. Рассмотрите задачу применения алгоритма устранения переменной к сети DBN 
для задачи с зонтиком, развернутую на три временных среза, в которой исполь­
зуется запрос P(R3 1 и� , и2, и3). Покажите, что сложность этого алгоритма (размер 
наибольшего фактора) является одинаковой независимо от того, устраняются ли 
переменные, касающиеся дождя, в прямом или обрRГном порядке. 





ГЛАВА 1 5  
Вероятностное 

программирование 
В этой главе обсуждается идея универсальных языков для вероятностного 
представления знаний и вероятностного вывода в проблемных областях, ха­
рактеризующихся наличием неопределенности. 

Возможный спектр вариантов представления данных - атомарное, разверну­
тое и струюурное - является постоянной темой в области ИИ. В случае детерми­
нированных моделей алгоритмы поиска допускают только атомарное представле­
ние, методы решения задач удовлетворения ограничений и логика высказываний 
предусматривают развернутое представление, а логика первого порядка и систе­
мы планирования используют преимущества струюурного представления. Выра­
зительная сила, обеспечиваемая струюурным представлением, позволяет созда­
вать модели, несравненно более краткие, чем эквивалентные им струюурные или 
атомарные описания. 

В случае вероятностных моделей байесовские сети, как указывалось в гла­
вах 1 3  и 1 4, являются развернутым представлением задачи: множество случай­
ных переменных является фиксированным и конечным, причем для каждой из них 
определен фиксированный диапазон возможных значений. Этот факт ограничива­
ет применимость байесовских сетей, поскольку представление достаточно слож­
ной проблемной области в виде байесовской сети просто оказывается слишком 
большим. Эrо делает невозможным как создание таких представлений вручную, 
так и их обучение на базе любого разумного количества данных. 

Проблема создания выразительного формального языка для представления ве­
роятностной информации в свое время изучалась некоторыми из величайших умов 
в истории человечества, в том числе Готфридом Лейбницем (независимо создав­
шим математический анализ), Якобом Бернулли (открывшим число е, создавшим 
вариационное исчисление и открывшим закон больших чисел), Огастесом де Мор­
ганом, Джорджем Булем, Чарльзом Сандерсом Пирсом ( одним из ведущих логи­
ков XIX века), Джоном Мейнардом Кейнсом (ведущим экономистом ХХ века) и 
Рудольфом Карнапом (выдающимся философом-аналитиком ХХ века). Несмотря 
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на усилия этих и многих других исследователей решить эrу задачу не удавалось 
ВПЛОТЬ ДО 1990-х ГОДОВ. 

Оrчасти благодаря разработке байесовских сетей в настоящее время уже име­
ются математически элегантные и в высшей степени практичные формальные 
языки, позволяющие создавать вероятностные модели для очень сложных про­
блемных областей. Эrи языки являются универсш,ьными в том же смысле, что и 
машина Тьюринга: они способны представить любую вычислимую вероятност­
ную модель точно так, как машина Тьюринга способна представить любую вычис­
лимую функцию. Кроме того, эти языки включают алгоритмы вероятностного вы­
вода общего назначения, аналогичные непротиворечивым и полным алгоритмам 
логического вывода, подобным правилу резолюций. 

Есть два способа введения необходимой выразительной силы в теорию веро­
ятностей. Первый - с помощью логики: разработать язык, в котором вероятно­
сти определяются по возможным мирам логики первого порядка, а не по возмож­
ным мирам логики высказываний байесовских сетей. Эrот способ обсуждается 
в разделах 15.1 и 15.2, а в разделе 15.3 рассматривается конкретный пример рас­
суждений во времени. Второй способ - обратиться к традиционным языкам про­
граммирования: в них вводятся стохастические элементы - например, случай­
ный выбор, - а программы рассматриваются как определенные вероятностные 
распределения по их собственным путям выполнения. Эrот подход обсуждается 
в разделе 15.4. 

Оба способа приводят к созданию ► языка вероятностноrо программирова­
ния (PPL). В первом случае это будут декларативные языки PPL, имеющие при­
мерно такое же родство с общими языками PPL, как логическое программирова­
ние (глава 9) с общими языками программирования. 

1 5. 1 . Реляционные вероятностные модели 
Вспомним из главы 12, что вероятностная модель определяет множество О воз­

можных миров с вероятностью P(ro) для каждого мира ro. Для байесовской сети 
возможные миры представляют собой присваивания значений переменным, в 
частности для случая булевых переменных возможные миры идентичны мирам 
логики высказываний. 

Тогда можно полагать, что для вероятностной модели первого порядка потре­
буются возможные миры, являющиеся таковыми в логике первого порядка, т.е. 
множество объектов с отношениями между ними и интерпретацией, отображаю­
щей символы констант на объекты, символы предикатов на отношения и симво­
лы функций на функции, определенные на этих объектах (см. раздел 8.2.) Модель 
также должна определять вероятность для каждого из таких возможных миров -
так же, как байесовская сеть определяет вероятность для каждого присваивания 
значений переменных. 
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На минуrу предположим, что нам уже известно, как это можно сделать. Тогда, 
как обычно ( см. раздел 1 2 .2 . 1 ), мы можем получить вероятность любого логиче­
ского высказывания первого порядка ф (фи) в виде суммы по возможным мирам, 
где оно является истинным: 

Р(ф) = P(ro) ( 1 5 . 1 )  
w :ф является истинным в w 

Условные вероятности Р( ф I е) могут быть получены аналогичным образом, по­
этому мы можем, в принципе, задать модели любой вопрос - и получить ответ. 
Пока все очень хорошо. 

Однако здесь есть одна проблема: множество моделей первого порядка бес­
конечно. Это вполне очевидно было продемонстрировано на рис. 8.4 в разде­
ле 8.2 .2, - для удобства он еще раз приведен на рис. 1 5  . 1 ,  а. А это означает, что, 
во-первых, суммирование в уравнении ( 1 5  . 1 )  может оказаться неосуществимым, 
а во�вторых, задача определения полного, согласованного распределения на беско­
нечном множестве миров может оказаться очень трудной. 
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Рис. 1 5. 1 .  а) Некоторые члены множества всех возможных миров для языка с двумя 
символами констант, R и J, и одним бинарным символом отношения, определенные 
в соответствии со стандартной семантикой логики первого порядка. б) Возможные 
миры в семантике базы данных для тех же исходных условий. Интерпретация сим­
волов констант фиксирована, и существует отдельный объект для каждого из этих 
символов 

В этом разделе мы уклонимся от решения данной проблемы, обратившись к се­
мантике базы данных, определенной в разделе 8 .2 .8 .  В семантике базы данных 
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принимается допущение об уникальности имен, - здесь мы принимаем его для 
постоянных символов. Также в этой семантике действует правило замыкания 
проблемной области - в ней не моrут существовать никакие другие объекты, 
кроме именованных. В этом случае можно гарантировать конечность множества 
возможных миров, обеспечив точное соответствие множества объектов в каждом 
мире множеству используемых символов констант, как показано на рис. 5 . 1 ,  б, где 
нет никакой неопределенности в отношении отображения символов на объекты 
или в отношении существующих объектов. 

Модели, определенные подобным образом, мы будем называть ► реляционны­
ми вероятностными моделями, или RPM (Relational Probabllity Mode/). 1 Наибо­
лее существенное различие между семантикой RPM и семантикой базы данных, 
введенной в разделе 8.2.8, заключается в том, что в семантике RPM не делается 
допущения о замкнутости мира, - в вероятностной системе рассуждений мы не 
можем вот так просто предположить, что каждый неизвестный факт обязательно 
является ложным. 

1 5 . 1 . 1 .  Синтаксис и семантика 

Начнем с простого примера: предположим, что владелец книжного интерне­
тет-магазина хотел бы предоставить на своем сайте общие оценки по отдель­
ным книгам на основании отзывов, полученных от его покупателей. Оценка будет 
иметь вид апостериорного распределения по качеству книги на основании име­
ющихся свидетельств. Самое простое решение - построить оценку на основа­
нии среднего по полученным отзывам, возможно, с оценкой дисперсии, опреде­
ляемой с учетом их количества, но в этом случае не принимается во внимание тот 
факт, что некоторые покупатели добрее остальных, а некоторые менее честны, чем 
остальные. Добросердечные покупатели склонны давать высокую оценку даже до­
вольно посредственным книгам, тогда как нечестные покупатели дают очень вы­
сокие или очень низкие оценки по причинам, не связанным с качеством книги, на­
пример им моrут платить за продвижение книг некоторых издателей. 2 

Для единственного покупателя С 1 , давшего оценку единственной книге В 1 , со­
ответствующая байесовская сеть может выглядеть так, как показано на рис. 1 5.2, а. 
(Как и в разделе 9 . 1 ,  выражения с круглыми скобками, такие как Honest( С 1 ), явля­
ются просто произвольными обозначениями, в данном случае - произвольно вы­
бранными именами для случайных переменных.) При наличии двух покупателей 
и двух книг соответствующая байесовская сеть будет выглядеть так, как показано 

1 Название реляционная вероятностная модель было введено Пфеффером в статье 
[ 1 786) (2000) в несколько ином представлении, но положенные в основу идеи те же са­
мые. 

2 Теоретик, специализирующийся на теории игр, моr бы посоветовать нечестным по­
купателям иногда рекомендовать и хорошую книгу от конкурента, просто чтобы избежать 
раскрытия. Подробнее об этом читайте в главе 1 8 . 
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на рис. 1 5 .2, б. Дrrя большего количества книг и покупателей будет весьма непрак­
тично определять подобную байесовскую сеть вручную. 

а) 6) 

Рис. 1S.2. а) Байесовская сеть для одного покупателя С1 , давшего отзыв на одну 
книгу В 1 • Переменная Honest(C 1 ) является булевой, а все остальные переменные 
имеют целочисленные значения в диапазоне от I до 5 . б) Байесовская сеть для двух 
покупателей и двух книг 

К счастью, в этой сети имеется множество повторяющихся структур. Каждая 
переменная Recommendation(c, Ь) (отзыв) в качестве родительских имеет перемен­
ные Honest(c) (честный), Кindness(c) (добрый) и Quality(b) (качество). Более того, 
таблицы условных вероятностей (СРТ) для всех переменных Recommendation(c, Ь) 
идентичны, как и таблицы СРТ для всех переменных Honest(c), и т.д. Сиrуация ка­
жется специально "заточенной" под язык первого порядка. Можно было бы ска­
зать что-то вроде 

Recommendation(c, Ь) ~ RecCPT(Honest(c), Кindness(c), Qua/ity(b)), 

что означает, что отзыв покупателя о книге вероятностно зависит от честности и 
доброты покупателя и качества книги в соответствии с фиксированной таблицей 
условных вероятностей. 

Как и логика первого порядка, модели RPM включают символы констант, функ­
ций и предикатов. Также для каждой функции мы будем использовать ► сигнату­
ру типа, т.е. спецификацию типа каждого ее аргумента и возвращаемого функ­
цией значения . (Если тип каждого объекта известен, с помощью этого механизма 
будут устранены многие паразитные возможные миры, например нам не нужно 
будет беспокоиться о доброте каждой книги, оценке покупателя книгой и т.д.) Дrrя 
проблемной области оценки книг типами являются Customer (покупатель) и Book 
(книга), а сигнатуры типа для функций и предикатов будут следующими. 
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Нonest : Customer ➔ { true,false} 
Кindness : Customer ➔ { 1 ,  2, 3, 4, 5 }  
Quality : Book ➔ { 1 ,  2, 3 ,  4, 5 } 
Recommendation : Customerx Book ➔ { 1 ,  2, 3, 4, 5 }  

Символами констант будут любые фамилии покупателей и названия книг, при­
сутствующие в базе данных владельца магазина. В примере, приведенном на 
рис. 1 5 .2, б, это были С 1 , С2 и В 1 , В2 • 

При заданных константах и их типах, а также функциях и их сигнатурах типа 
► основные случайные переменные в реляционных вероятностных моделях по­
лучают путем создания экземпляра каждой функции с каждой возможной комби­
нацией объектов. Для модели отзывов о книгах в число основных случайных пе­
ременных входят Нonest(C i ), Quality(B2), Recommendation(C 1 , В2) и т.д. Это именно 
те переменные, которые показаны на рис. 15.2, б. Поскольку каждый тип имеет ко­
нечное число экземпляров (благодаря правилу замыкания проблемной области), 
общее количество основных случайных переменных также конечно. 

Для завершения построения реляционной вероятностной модели осталось 
описать зависимости, обусловливающие эти случайные переменные. Для каждой 
функции существует одна формулировка зависимости, в которой каждый аргу­
мент функции является логической переменной (т.е. переменной, которая пробега­
ет по объектам, как в логике первого порядка). Например, следующая зависимость 
утверждает, что для каждого покупателя с априорным распределением вероятно­
стей будет 0,99 для значения true и 0,01 - для значения/а/sе: 

Нonest(c) ~ (0,99; 0,01 ). 

Аналогичным образом можно указать априорные вероятности для доброты каждо­
го покупателя и качества каждой книги, оцениваемых по шкале от 1 до 5: 

Кindness(c) ~ (0,1; 0,1 ; 0,2; 0,3 ; 0,3 ) 
Quality(b) ~ (0,05 ; 0,2; 0,4; 0,2; 0,1 5 ) . 

И наконец, осталось определить зависимость для рекомендаций: для любого по­
купателя с и книги Ь оценка зависит от честности и доброты клиента и качества 
книги: 

Recommendation(c, Ь) ~ RecCPТ(Нonest(c), Кindness(c), Qua/ity(b)), 

где RecCPT - это отдельно определяемая таблица условных вероятностей, вклю­
чающая 2 х 5 х 5 = 50 строк, в каждой из которых по 5 элементов. В качестве иллю­
страции будем полагать, что честный отзыв о книге качества q от покупателя с до­
бротой k будет получен с вероятностью, равномерно распределенной в диапазоне 

[l ч;
k 

J ,  I 1;
k lJ . 
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Семантика реляционной вероятностной модели может быть получена путем 
создания экземпляров этих зависимостей для всех известных констант при задан­
ной байесовской сети ( как на рис. 1 5  .2, 6), определяющей совместное распределе­
ние для случайных переменных модели .3 

Множество возможных миров представляет собой декартово произведение ди­
апазонов всех основных случайных переменных, и, как и для байесовской сети, 
вероятность каждого возможного мира является произведением соответствующих 
условных вероятностей из модели. При наличии С покупателей и В книг в модели 
будет С переменных Honest, С переменных Kindness, В переменных Qua/ity и 
ВС переменных Recommendation, что приводит к 2с5с+в+вс возможным мирам. 
При десяти миллионах книг и миллиарде клиентов это будет примерно 107х 1 01 5  

возможных миров. Благодаря выразительной мощности RPM, полная вероятност­
ная модель по-прежнему будет иметь лишь менее 300 параметров - большинство 
из них будет в табJшце RecCPT. 

Модель можно улучшить утверждением о наличии контекстно специфиче­
ской независимости (см. раздел 1 3 .2 .2), отражающей тот факт, что нечестные 
клиенты игнорируют качество книги, давая ее оценку. Более того, в их решениях 
доброта также не играет никакой роли. Следовагельно, переменная Recommenda­
tion(c, Ь) не зависит от переменных Кindness(c) и Quality(b), если переменная Hon­
est(c) =Jalse: 

Recommendation(c, Ь) ~if Honest(c) then 
HonestRecCPТ(Кindness(c), Quality(b)) 

else (0,4; 0, 1 ; о,о; 0, 1 ; 0,4) . 
Данный вариант описания зависимости очень похож на обычный операгор if-then­
else в языках программирования, но между ними есть ключевое различие: меха­
низму вероятностного вывода необязательно будет известно точное значение ре­
зультата проверки условия, поскольку Honest(c) является случайной переменной. 

Эrу модель, желая сделать ее более реалистичной, можно улучшать бесконеч­
ным количеством способов. Например, можно предположить, что честный поку­
пагель, являющийся поклонником (Fan) автора книги (Author), всегда даст любой 
его книге оценку ровно (Exactly) 5, независимо от ее качества: 

Recommendation(c, Ь) ~if Honest(c) then 
if Fan(c, Author(b)) then Exactly(5) 
else НonestRecCPT(Кindness(c), Quality(b)) 

else (0,4; 0, 1 ;  0,0; 0, 1 ;  0,4) . 

3 Для правильного определения распределения вероятностей RPM должна отвечать 
некоторым техническим условиям. Во-первых, ее зависимости должны быть ацикличе­
скими, иначе полученная байесовская сеть будет включать циклы.  Во-вторых, зависимо­
сти должны быть (обычно) хорошо обоснованными: не должно существовать бесконеч­
ных цепочек предков, которые могут возникнуть из-за рекурсивных зависимостей. 
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И вновь, точный результаr проверки условия Fan(c, Aulhor(b)) будет неизве­
стен, но если читатель выставляет книгам конкретного автора только 5 и не про­
являет особой доброты в остальных случаях, то апостериорная вероятность того, 
что данный читатель является поклонником этого автора, будет весьма высока. Бо­
лее того, апостериорное распределение будет проявлять тенденцию сбрасываrь со 
счетов выставленные этим читателем 5 при оценке качества книг данного автора. 

В этом примере неявно предполагалось, что значение переменной Aulhor(b) из­
вестно для каждой книги Ь, но это может быть и не так. Как система может рас­
суждаrь, скажем, о том, что покупатель С1 является поклонником Author(B2), ког­
да Au1hor(B2) неизвестен? Оrвет состоит в том, что системе, возможно, придется 
рассуждаrь обо всех возможных авторах. Предположим (чтобы упростить ситуа­
цию), что существует только два автора, А I и А2 • Тогда Author(B2) - это случайная 
переменная с двумя возможными значениями, А I и А 2, которая будет родительской 
для переменной Recommendalion(C 1 , В2) . Переменные Fan(C 1 , А 1 ) и Fan(C 1 , А2) 
также будут ее родителями.  Тогда условное распределение для переменной Rec­
ommendation( С 1 , В2) по существу будет представлять собой ► мультиплексор ( пе­
реключатель), в котором родительская переменная Aulhor(B2) будет действовать 
как управляющий элемент, определяющий, какая из переменных, Fan(C1 , А 1 ) или 
Fan(C1 , А2), действительно окажет влияние на оценку книги. Фрагмент эквива­
лентной байесовской сети показан на рис. 1 5 . 3 .  Неопределенность в значении пе­
ременной Author(B2), влияющая на зависимую от нее структуру в сети, является 
примером ► релиционной неопределенности. 

Рис. 1S.3. Фрагмент эквивалентной байесовской сети для RPM задачи об оценке 
книг, когда автор книги В2 неизвестен (переменная Author(B2)) 

В случае, если вам интересно, как система сможет установить, кто является ав­
тором книги В2, рассмотрим ситуацию, когда три других покупаrеля являются по­
клонниками автора А 1 ( и не имеют никаких других общих любимых авторов) и все 
они дали книге В2 оценку 5, несмотря даже на то, что большинство других покупа­
телей находят ее довольно мрачной. В этом случае весьма вероятно, что именно А 1 
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является автором книги В2 • Проведение достаточно сложных рассуждений, подоб­
ных этому, простейшей моделью RPM всеrо из нескольких строк - инrриrующий 
пример тоrо, как в этой модели вероятностное влияние распространяется по сети 
взаимосвязей между объектами. По мере тоrо как добавляется больше зависимо­
стей и больше обьектов, общая картина, выражаемая апостериорным распределе­
нием, часто становится все яснее и отчетливее. 

15.1.2. Пример: рейтинг уровня мастерства игрока 

Для многих игр, по которым проводятся соревнования, разработана числовая 
шкала оценки уровня мастерства игроков, которую иногда называют ► рейтин­
rом. Возможно, самым известным из них является рейтинг Эло для игроков в шах­
магы, согласно которому уровень типичною начинающеrо оценивается пример­
но в 800 баллов, а рейтинг чемпиона мира, как правило, чуть выше 2800. Хотя 
рейтинги Эло строятся на статистической основе, они обладают и некоторыми 
специальньrми элементами. Байесовскую схему рейтинга можно разработагь сле­
дующим образом: каждый игрок i имеет основной уровень мастерства Ski/1(1) и в 
каждой игре g он проявляет фактическую результативность Performance(i, g), ко­
торая может отличаться от его основного уровня. Победителем в игре g является 
игрок, чья результативность в этой игре была лучше. Представленная в виде RPM, 
соответствующая модель будет выглядеть следующим образом. 

Skil/(1) ~ Лf(µ, cr2) 
Performance(i, g) ~ N(Skil/(1), [32) 
Win(i,j, g) = If Game(g, i,J) tben (Performance(i, g) > Performance(j, g)) 

Здесь [32 является дисперсией фактической результагивности игрока в любой кон­
кретной игре относительно его основного уровня мастерства. При заданном мно­
жестве игроков и игр, а также результатов некоторых игр механизм вероятност­
ного вывода RPM может вычислить распределение условных вероятностей для 
уровня мастерства каждоrо игрока и вероятною исхода любой новой игры, кото­
рая может быть проведена. 

Для командных игр в первом приближении можно предположить, что общая 
результагивность команды t в игре g представляет собой сумму индивидуальных 
показагелей производительности игроков команды t: 

TeamPerformance(t, g) = LiEt Performance(i, g). 

Даже несмотря на то, что индивидуальные показагели результагивности игро­
ков не видны механизму определения рейтинга, уровни мастерства игроков все же 
можно оценить по результатам нескольких игр, если состав команды меняется от 
игры к игре. Система оценки Microsoft TrueSkil l™ использует эrу модель вместе 
с эффективным алrоритмом приблизительного вероятностного вывода для обслу­
живания сотен миллионов пользовагелей каждый день. 
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Подобную модель можно разработать различными способами. Например, мож­
но предположить, что слабые игроки имеюr более высокую дисперсию в своей ре­
зультативности, можно включить в модель показатели роли игрока в команде или 
даже рассмотреть различные конкретные типы результпивности и навыков - на­
пример, в защите и нападении, - чтобы получить возможность улучшать состав 
команды и повысить точность прогнозирования. 

15.1.3. Вероятностный вывод в реляционных 
вероятностных моделях 

Наиболее прямолинейный подход к выполнению вероятностного вывода в мо­
делях RPM - это просто построить эквивалентную байесовскую сеть при задан­
ных известных символах констант, принадлежащих к каждому типу. При наличии 
В книг и С покупателей определенная выше базовая модель может быть построе­
на с помощью простых циклов, как показано ниже.4 

for Ь = 1 to В do 
добавить узел Qualityь, не имеющий родителей, с априорными 

вероятностями (0,05;  0,2 ; 0,4; 0,2; 0, 1 5 ) 
for с = 1 to С do 

добавить узел Honestc, не имеющий родителей, с априорными 
вероятностями (0,99; 0,0 1 ) 

добавить узел Kindnessc, не имеющий родителей, с априорными 
вероятностями (0, 1 ;  0, 1 ;  0,2; 0,3 ; 0,3 ) 

for Ь = 1 to В do 
добавить узел Recommendationc,b с родителями Honestc, Кindnessc, Qualityь 

и условным распределением RecCPТ(Honestc, Кindnessc, Qualityь) 
Этот метод называется ► обоснованием или ► развертыванием и является 

точным аналогом метода пропозиционализации в логике первого порядка (раз­
дел 9. 1 . 1 ). Очевидным недостатком в этом случае является то, что результирующая 
байесовская сеть может оказаться очень большой. Кроме того, если имеется много 
кандидатов объекrов с неизвестным отношением или функцией - например, неиз­
вестный автор В2, - то некоторые переменные в сети мoryr иметь много родителей. 

К счастью, часто можно избежать генерации всей неявной байесовской сети . 
Как было показано при обсуждении алгоритма устранения переменной (раз­
дел 1 3 .3 .2), каждая переменная, которая не является предком какой-либо перемен­
ной запроса или переменной свидетельства, не имеет отношения к запросу. Кро­
ме того, если запрос является условно независимым от некоторой переменной с 

4 В нескольких статистических пакетах этот код рассматривается как определяющий 
RPM, а не просто как построение байесовской сети для выполнения вывода в RPM. Од­
нако в этом представлении упускается важная роль синтаксиса в RPM: без синтаксиса с 
четкой семантикой невозможно узнать структуру модели из данных. 
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учетом свидетельства, то эта переменная также не имеет отношения к запросу. Та­
ким образом, последовательно проходя по модели, начиная с переменных запроса 
и свидетельства, можно определить множество только тех переменных, которые 
имеют отношение к запросу. И только эти переменные необходимо конкретизиро­
вать для создания потенциально небольшого фрагмента неявной байесовской сети. 
Вероятностный вывод в этом фрагменте даст тот же самый ответ, что и вывод по 
всей неявной байесовской сети. 

Другой подход к повышению эффективности вероятностного вывода строится 
на наличии в развернутой байесовской сети повторяющихся подструюур. Имеется 
в виду, что многие из тех факторов, которые были построены в процессе устране­
ния переменной (и аналогичных видов таблиц, построенных алгоритмами класте­
ризации) будут идентичны, и эффективные схемы их кеширования позволяют до­
стичь ускорения работы систем до трех порядков для крупных сетей. 

Далее, алгоритмы вероятностного вывода МСМС обладают некоторыми ин­
тересными свойствами при их применении к моделям RPM с реляционной нео­
пределенностью. Алгоритм МСМС работает путем построения выборок полных 
возможных миров, поэтому в каждом состоянии реляционная струюура будет пол­
ностью известна. В приведенном выше примере в каждом состоянии, сформиро­
ванном алгоритмом МСМС, значение переменной Author(B2) будет определено, и 
поэтому другие потенциальные авторы уже не будут родительскими узлами для 
книги В2 • Значит, для алгоритма МСМС реляционная неопределенность не при­
водит к увеличению сложности сети, - вместо этого процесс МСМС включает в 
себя переходы, изменяющие реляционную струюуру, а следовательно, и струюу­
ру зависимостей развернутой сети. 

И наконец, в некоторых случаях может оказаться возможным избежать обос­
нования всей модели в целом. Системы доказательства теорем резолюции и ло­
гического программирования избегают пропозиционализации посредством кон­
кретизации логических переменных только тогда, когда это необходимо, чтобы 
позволить логическому выводу дойти до конца. Иначе говоря, они поднимают 
процесс логического вывода выше уровня обоснования пропозициональных вы­
сказываний, что позволяет каждому поднятому этапу выполнить раб01)' многих 
этапов обоснования. 

Эта же идея может быть применена и при вероятностном выводе. Например, в 
алгоритме устранении переменной поднятый фактор может представлять все мно­
жество факторов обоснования, присваивающих вероятности случайным перемен­
ным в модели RPM, где эти случайные переменные различаются только симво­
лами констант, использованных для их построения. Детальное обсуждение этого 
метода выходит за рамки этой книги, но соответствующие ссылки приведены в 
конце главы, в разделе "Библиографические и исторические заметки". 
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1 5 .2. Вероятностные модели с открытой вселенной 
Выше утверждалось, что семантика базы данных является подходящей для си­

туаций, в которых нам точно известно множество существующих релевантных 
объектов и мы можем идентифицировать их однозначно. (В частности, все наблю­
дения в отношении объекта правильно ассоциируются с символом константы, ко­
торый его именует.) Однако во многих ситуациях реального мира эти предполо­
жения оказываются несостоятельными. Например, в розничной книготорговле код 
I SBN (Jnternational Standard Book Number) может использоваться как символ кон­
станты для именования каждой из книг, даже при тех условиях, что данная "логи­
ческая" книга (например, "Унесенные ветром" Маргарет Митчелл) может иметь 
несколько кодов ISBN, соответствующих изданиям в твердом переплете, в мягкой 
обложке, с крупным шрифтом, переизданиям и т.д. Имеет смысл объединить от­
зывы по всем таким кодам ISBN для одной и той же книги, но розничный книго­
торговец не может знать наверняка, какие именно коды ISBN относятся к разным 
вариантам ее издания. (Обратите внимание, что здесь речь не идет об отдельных 
экземплярах книги, что может потребоваться в случае продажи подержанных книг, 
продажи автомобилей и т.д.) Еще хуже то, что каждый покупатель идентифици­
руется по его лоrину - идентификатору входа в систему, но нечестный покупа­
тель может завести себе тысячу подобных лоrинов ! В области компьютерной безо­
пасности эти множественные идентификаторы называются ► сивиллами (syblls), 
а их использование с целью запутать систему репутации называется ► атакой Си­
виллы. 5 В результате даже простое приложение в виде относительно четко опре­
деленной интерактивной проблемной области включает как ► неопределенность 
существования (чем являются реальные книги и покупатели, выступающие как 
источник наблюдаемых данных), так и ► неопределенности идентичности (какие 
логические термы действительно ссылаются на один и тот же объект). 

Феномены неопределенности существования и неопределенности идентично­
сти выходят далеко за рамки проблемной области интернет-книготорговли. На са­
мом деле они почти всеохватывающи. 

• Любая видеосистема не знает, что находится (и вообще что-то есть) за бли­
жайшим углом, и не может знать, является ли объект, который она видит в 
настоящее время, тем же самым, который она видела несколько минут назад. 

• Система распознавания текста не знает заранее о тех сущностях, которые 
будут представлены в тексте, и должна выполнять рассуждения о том, явля­
ются ли такие слова, как "Мэри", "д-р Смит", "она", "его кардиолог" и "его 
мать", относящимися к одному и тому же объекту. 

• Аналитик разведки, охотящийся на шпионов, никогда не знает, сколько 
на самом деле есть шпионов, и может только догадываться, относятся ли 

5 Название "Сивилла" происходит от известного описанного в литературе случая мно­
жественного расстройства личности. 
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разные псевдонимы, номера телефонов и визуальные наблюдения к одному 
и тому же человеку. 

И действительно, большая часть человеческого познания, кажется, построена 
на том, что объекты существуют и есть возможность связаrь наблюдения - кото­
рые почти никогда не приходят с прикрепленными к ним уникальными идентифи­
ка-горами - с гипотетическими объектами в мире. 

Таким образом, мы должны иметь возможность определить ► вероятноетную 
модель с открытой вселенной ( Ореп Universe Probabllity Model - ► OUPM) 
на основе стандартной семантики логики первого порядка, как показано на 
рис. 1 5 . 1 ,  а. Язык для моделей OUPM предоставляет возможность легко описы­
вать такие модели, гарантируя при этом уникальное, совместимое распределение 
вероятностей по бесконечному пространству возможных миров. 

1 5 .2. 1 . Синтаксис и семантика 

Основная идея состоит в том, чтобы понять, как обычную байесовскую сеть и 
модель RPM реализоваrь так, чтобы они определяли уникальную вероятностную 
модель, а заrем передаrь это представление в окружение первого порядка. По сути, 
байесовская сеть генерирует каждый возможный мир, событие за событием, в то­
пологическом порядке, определяемом струК'l)'рой сети, где каждое собьпие пред­
ставляет собой присваивание значения переменной. Модель RPM расширяет Э1)' 
схему до целых множеств событий, определяемых возможными конкретизациями 
логических переменных в заданном предикаге или функции. Модели OUPM идут 
еще дальше, допуская этапы порождения, на которых к возможному создаваемому 
миру добавляются объекты, количество и тип которых могут зависеть от объек­
тов, которые уже находятся в этом мире, а также от их свойств и отношений. Ина­
че говоря, генерируемым событием является не присвоение значения переменной, 
но само существование объектов. 

Одним из способов сделаrь это в модели OUPM является использование специ­
ального ► оператора # (number statement), определяющего условное распределе­
ние по некоторому числу объектов различного типа. Например, в проблемной об­
ласти отзывов о книгах может потребоваться отличаrь покупателей (реальные 
люди) от их логинов - идентификагоров для входа в систему. (На самом деле 
отзывы в системе связаны именно с логинами, а не с покупаrелями ! )  Предполо­
жим (для упрощения), что число покупаrелей представлено случайной величиной 
от 1 до 3, а количество книг - случайной величиной от 2 до 4 (обе эти величины 
с равномерным распределением): 

#Customer ~ Uniformlnt(1, 3) 
# Book ~ Uniformlnt(2, 4). 

( 1 5 .2) 
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Также ожидается, что у честного покушrгеля будет только один личный иденти­
фикатор для входа в систему, а у нечестных покупателей идентификаторов может 
быть от 2 до 5: 

#LoginlD(Owner = с) ~  if Honest(c) then Exactly(l ) 
else Uniformlnt(2, 5). ( 15.3) 

Этот оперЮ'Ор # определяет распределение по количеству идентификаторов входа 
в систему, для которых покупатель с является владельцем ( Owner). Функция Own­
er называется ► функцией источника, поскольку она указывает, откуда пришел 
каждый объект, сгенерированный данным оперЮ'Ором #. 

В примере из предыдущего абзаца используется равномерное распределение 
по целым числам от 2 до 5 с целью указать, сколько может быть лоrинов у не­
честного покупателя. Это конкретное распределение ограничено, но в общем 
случае априорного ограничения на количество объектов может и не быть. В ка­
честве распределения по неотрицательным целым числам чаще всего исполь­
зуется ► распределение Пуассона. Это распределение имеет один параметр л, 
указывающий ожидаемое количество объектов, а случайная переменная Х, под­
чиняющаяся распределению Пуассона с параметром · л, будет иметь следующее 
распределение: 

Р(Х = k) = лkе-л/k! . 

Дисперсия для распределения Пуассона также равна л, так что стандартное от­
клонение cr = ✓л . Это означает, что для больших значений л данное распределе­
ние является узким по сравнению со значением среднего µ; например, если коли­
чество муравьев в муравейнике моделируется по распределению Пуассона со 
средним значением один миллион, то стандартное отклонение составит всего ты­
сячу или О, 1 %. Для больших чисел часто имеет больше смысла использовать 
► дискретное логнормальное распределение, которое является наиболее подхо­
дящим, когда логарифм количества объектов имеет нормальное распределение. 
Особенно интуитивно понятна форма, которую называют ► распределением по 
порядку величины, - в ней используются десятичные логарифмы, поэтому рас­
пределение ОМ(З, 1) будет иметь среднее значение 1 03 и стандартное отклонение 
в один порядок по размерности, т.е. основная часть всей массы вероятностей по­
падает между 102 и 104 • 

Формальные семантики моделей OUPM начинаются с определения объектов, 
населяющих возможные миры. В стандартной семантике типизированной логи­
ки первого порядка объекты являются просто нумерованными токенами с типом. 
В моделях OUPM каждый объект представлен историей его генерации; напри­
мер, объект может быть "четвертым идентификатором входа седьмого покупа­
теля". (Причина такого слегка причудливого построения вскоре станет ясна.) 
Для типов без функций происхождения - например, типов Customer и Book 
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в уравнении ( 1 5  .2) - созданные объекты будут иметь пустое происхождение. 
Например, (Customer, , 2) относится ко второму покупателю, сгенерированно­
му по соответствующему оператору #.  Для операторов # с функциями происхож­
дения - например, как в уравнении ( 1 5  . 3 )  - в каждый созданный объект запи­
сывается его происхождение; так, объект (LoginlD, (Owner, (Customer, , 2 ) ) , 3 ) 
представляет собой третий идентификатор входа, принадлежащий второму по­
купателю. 

В моделях OUPM ► переменные # определяют, сколько существует объектов 
каждого типа с каждым возможным происхождением в каждом возможном мире. 
Следовательно, запись #Login/D ( Owner, ( customer" 2 ) )  (w) = 4 означает, что в мире w 
покупатель 2 имеет 4 идентификатора входа. Как и в реляционных вероятностных 
моделях, основные случайные переменные определяют значения предикатов и 
функций для всех кортежей объектов, поэтому Нonest ( customer, ,  2 ) ( w) = true означа­
ет, что в мире w клиент 2 честен. Каждый возможный мир определяется значения­
ми всех переменных # и основных случайных переменных. Мир может быть сге­
нерирован на основании модели посредством выборки в топологическом порядке. 
На рис. 1 5 .4 показан соответствующий пример. Вероятность мира, построенного 
таким образом, является произведением вероятностей для всех выбранных значе­
ний, в данном случае - 1 ,2672 х l 0- 1 1

• Теперь становится понятно, почему каждый 
объект содержит историю своего происхождения : эта особенность обеспечивает, 
что каждый мир можно будет построить в точности по одной последовательности 
генерации. Если бы это было не так, вероятность мира представляла бы собой гро­
моздкую комбинаторную сумму по всем возможным последовательностям генера­
ции, по которым его создавали. 

Вероятностные модели с открытой вселенной моrут иметь бесконечно много 
случайных переменных, поэтому в полную теорию включены нетривиальные те­
оретико-мерные соображения. Например, операторы # с распределением Пуассо­
на или с распределением по порядку величины допускают неограниченное коли­
чество объектов, что ведет к неограниченному количеству случайных переменных 
для свойств и отношений между этими объектами.  Более того, модели OUPM мо­
rут иметь рекурсивные зависимости и бесконечные типы (целые числа, строки и 
т.д.). Наконец, требование хорошей сформированности модели запрещает цикли­
ческие зависимости и бесконечно удлиняющиеся цепочки предшественников, по­
скольку в общем случае наличие этих условий делает задачу неразрешимой, но 
некоторые синтаксически достаточные условия, тем не менее, могут быть легко 
проверены. 
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Переменная 

#Customer 
#Book 
Honest ( Customer, , \ ) 
Honest(customer"2) 
К indness ( Customer, , \ ) 
Kindness(customer, ,2) 
Quality (Book" 1 )  
Quality (Book"2) 
Quality(Book"3) 
#LoginJD (Owncr, ( Customer" 1 ) )  
#LoginJD (Owncr, ( Customer"2 ) )  
Recommendation (Login!D, ( Owncr, ( Customer, , \ ) ) ,  1 ) ,  (Book, , 1 ) )  
Recommendation (LoginlD, (Owncr, (Customer, , 1 )  ) ,  1 ) , (Book, ,2) ) 
Recommendation (LoginlD, (Owner, (Customer, , 1 ) ) , 1 ) , (Book, ,3 ) )  
Recommendation (Login!D, (Owner, ( Cu�·tomer, ,2) ) ,  \ ) ,  (Book, , \ ) )  
Recommendation(Login!D, (Owner, (Customer, ,2) ) ,  1 ) , (Book, ,2) ) 
Recommendation (LoginlD, (Owner, (Customer, ,2) ) , 1 ) , (Book, ,3 ) )  
Recommendation (Login!D, ( Owner, ( Customer, ,2) ) ,2) , (Book, , 1 ) )  
Recommendation(Login!D, (Owner, ( Customer, ,2) ) ,2) , (Book, ,2) ) 
Recommendation(LoginlD, (Owner, (Customer, ,2) ) ,  1 ) , (Book, ,3 ) )  

Значение 

2 
3 
true 
false 
4 

3 
5 

2 

2 
4 
5 
5 
5 
1 

5 
5 

Вероятность 

0,3333 
0,3333 
0,99 
0,0 1 
0,3 
0, 1 
0,05 
0,4 
0, 1 5  
1 ,0 
0,25 
0,5 
0,5 
0,5 
0,4 
0,4 
0,4 
0,4 
0,4 
0,4 

Рис. 15.4. Один конкретный мир в модели OUPM задачи об отзывах о книгах. Пере­
менные # и основные случайные переменные приведены в топологическом поряд­
ке вместе с выбранными для них значениями и вероятностями для этих значений 

15 .2.2. Вероятностный вывод в моделях с открытой вселенной 

Из-за потенциально огромного, а иногда и неограниченного размера неявной 
байесовской сети, соответствующей типичной модели OUPM, полное ее развер­
тывание с последующим выполнением точного вывода будет весьма непрактич­
ным. Вместо этого следует рассмотреть приближенные алгоритмы вывода, такие 
как МСМС (см. раздел 1 3.4.2). 

Грубо говоря, для моделей OUPM алгоритм МСМС будет исследовать про­
странство возможных миров, определенных с помощью множеств объектов и от­
ношений между ними, как показано на рис. 1 5. 1 ,  а. В этом пространстве переход 
между соседними состояниями не может лишь изменять отношения и функции, но 
также должен добавлять или удалять объекты и изменять интерпретацию симво­
лов констант. Даже если каждый возможный мир может быть сколь угодно огром­
ным, вероятностные вычисления, необходимые на каждом этапе - будь то выбор­
ка Гиббса или алгоритм Метрополиса-Гастингса, - будут полностью локальными 
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и в большинстве случаев потребуют лишь постоянного времени. Так происходит 
потому, что вероятностные соотношения между соседними мирами зависят от 
подrрафа постоянного размера, охватывающего только те переменные, значения 
которых изменяются. Более того, логический запрос в каждом посещаемом мире 
может оцениваться инкрементно, обычно за постоянное время для каждого мира, 
вместо того чтобы пересчитываться с нуля. 

Некоторые особые соображения следует привести в отношении того факта, что 
типичная модель OUPM может иметь возможные миры бесконечного размера. 
В качестве примера рассмотрим модель многоцелевого слежения за самолетами 
(ее код приведен ниже, на рис. 1 5 .9: функция Х(а, t), обозначающая состояние са­
молета а в момент времени t, соответствует бесконечной последовательности пе­
ременных для неограниченного числа воздушных судов на каждом этапе. По этой 
причине алгоритм МСМС для формирования выборок моделей OUPM определяет 
возможные миры не полностью, а вместо этого использует частичные миры, каж­
дый из которых соответствует непересекающемуся множеству полных миров. Ча­
стичный мир является минимальной независимой конкретизацией6 подмножества 
релевантных переменных, т.е. включает предков переменных свидетельства и за­
проса. Например, переменные Х(а, t) для значений t, больших, чем время послед­
него наблюдения (или время запроса, в зависимости от того, что больше), будут 
несущественны, поэтому алгоритм может рассматривать только конечный участок 
бесконечной последовательности. 

1 5 .2.3. Примеры 

Стандартный "вариант использования" моделей OUPM включает три элемен­
та: собственно модель, свидетельство (известные факты в рассматриваемом сце­
нарии) и запрос, который может быть представлен любым выражением, возможно, 
со свободными логическими переменными. Ответом является совместное услов­
ное распределение для каждого возможного множества подстановок для свобод­
ных переменных при заданном свидетельстве согласно модели. 7 Каждая модель 
включает в себя объявления типов, сигнатуры типов для предикатов и функций, 
один или более операторов # для каждого типа и один оператор зависимости для 
каждого предиката и функции. (В приведенных ниже примерах объявления и сиг­
натуры будут опущены там, где их смысл будет очевиден.) Как и в моделях RPM, 
в операторах зависимости используется синтаксис i f- then-else для обработки за­
висимостей, зависящих от контекста. 

6 Независимая (self-supporting) конкретизация множества переменных - это такая 
конкретизация, в которой родители каждой переменной в множестве также находятся в 
этом множестве. 

7 Как и в случае языка Prolog, может существовать бесконечно много множеств под­
становок неограниченного размера. Разработка исследовательских интерфейсов для 
представления таких ответов - интересная задача из области визуализации. 
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Соответствие ссыпок на литературу 

В Интернете можно найти миллионы технических отчетов и статей о научных 
исследованиях, представленных в виде файлов PDF. В конце таких документов, как 
правило, присуrствует раздел под названием "Литерmура" (References) или "Библио­
графия" (ВiЬ/iography), содержащий некоторое количество ссылок - символьных 
строк определенного формаrа, - предоставляющих читателю информацию о рабо­
тах, имеющих отношение к данной теме. Эrи строки могуr быть найдены и извле­
чены из РDF-файлов с целью создания некоторого представления, своего рода базы 
данных, предназначенного для установления связей между стаrьями и исследова­
телями по авторству и предоставляемым ссьmкам. Подобное представление своим 
пользователям предоставляют, например, системы CiteSeer и Google Scholar, - их 
внуrренние алгоритмы обеспечивают поиск документов, извлечение из них ссылок 
и идентификацию тех реальных документов, на которые эти ссьmки указывают. Все 
это является достаточно трудной задачей, потому что ссьmки не содержат каких-ли­
бо идентификаторов обьекrов и могуr содержать любые ошибки - синтаксические 
и орфографические, в отношении пунюуации и содержания. Чтобы наглядно проил­
люстрироваrь это утверждение, ниже приведен относительно простой пример: два 
реальных варианта ссьmки на один и тот же документ. 

1 .  [Lashkari et al 94] Collaborative Interface Agents, Yezdi Lashkari, Мах Metral, 
and Pattie Maes, Proceedings of the Twelfth National Conference оп Articial 
lntel l igence, МIТ Press, Cambridge, МА, 1 994. 
[Лашкари и др. 94} Агенты с сов.местным интерфейсам, Йезди Лашкари, Макс 
Метрал и Патти Мэйс, Материш,ы двенадцатой Национш,ьной конференции 
по искусственному интемекту, МЛ' Press, Кембридж, Мш:сачусетс, 1994. 

2. Metral М. Lashkari, У. and Р. Maes. CollaЬorative interface agents. In Conference 
of the American Association for Artificial Intell igence, Seattle, WA, August 1 994 . 
Метрш, М, Лашкари Й и П. Мэйс. Агенты с совместным интерфейсом. На 
конференции Американской ассоциации искусственного интеллекта, Сиэтл, 
штат Вашингтон, август 1994. 

Ключевой вопрос касается идентичности: это ссылки на одну и ту же или на 
разные стаrьи? Оrвечая на этот вопрос, даже эксперты расходятся во мнениях или 
вообще отказываются принимать решение, уrверждая, что рассуждения в усло­
виях полной неопределенности неизбежно будуr существенной частью решения 
этой проблемы. 8 Специальные подходы - такие, как методы, основанные на изме­
рении текстуального сходства - часто с треском проваливаются в подобных си,у­
ациях. Например, в 2002 году система CiteSeer сообщала о более чем 1 20 различ­
ных книгах, совместно написанных Расселом и Норвигом. 

8 Оrвет на этот вопрос - да, это один и тот же документ. "Национальная конференция 
по искусственному интеллеК'I)'" - это еще одно название конференции AAAI. Двенадца­
тая конференция проходила в Сиэтле, тогда как ее материалы были изданы в Кембридже. 



Глава 1 5. Вероятностное программирование 223 

Чтобы решить эту задачу с использованием вероятностного подхода, для дан­
ной проблемной области нужно определить порождающую модель. Иначе гово­
ря, нас интересует, как такие строки ссылок появляются в мире. Процесс их появ­
ления начинается с исследователей, которые имеют собственные имена. (Нам не 
нужно беспокоиться о том, как появились сами исследователи; нам достаточно вы­
разить свою неуверенность в том, сколько их существует.) Эти исследователи пи­
шут некоторые статьи, которые имеют названия; далее другие люди ссылаются на 
эти статьи, объединяя имена авторов и названия статей (с ошибками) в текст ссыл­
ки в соответствии с некоторой грамматикой. Основные элементы этой модели по­
казаны на рис. 1 5  .5 ,  она охватывает случай, когда у статьи есть только один автор. 9 

При заданных только строках ссылок как свидетельстве вероятностный вывод 
в этой модели с целью получения наиболее вероятного объяснения данных приво­
дит к частоте ошибок, которая в 2-3 раза ниже, чем на сайте CiteSeer (Пасула и др. 
[ 1 7  4 1  ], 2003 ). Процесс вывода также проявляет форму коллективного, основанно­
го на знаниях устранения двусмысленности: чем больше ссылок на определенную 
статью, тем точнее анализируется каждая из них, поскольку в ходе анализа прихо­
дится согласовывать факты о статье. 

type Researcher, Paper, Citation 
random String Name(Researcher) 
random String Title (Paper) 
random Paper PubCited(Citation) 
random String Text(Citation) 
random Boolean Professor(Researcher) 
origin Researcher Author(Paper) 

#Researcher ~ ОМ(3, 1 )  
Name(r) ~ NamePrior() 
Professor(r) ~ Воо/еап(О,2) 
#Paper(Author = r) ~ if Professor(r) then OM( l ,5 ;  0,5) else OM( l ;  0,5) 
Пtle(p) ~ PaperТitlePrior() 
CitedPaper(c) ~ UniformChoice( {Paper р} ) 
Text(c) ~ HMMGrammar(Name(Author(CitedPaper(c))), Тitle(CitedPaper(c))) 

Рис. 15.5. Модель OUPM для извлечения информации о ссылках на литературные 
источники. Дпя упрощения в модели предполагается, что у каждой статьи только 
один автор, и опускаются детали моделей грамматики и обработки ошибок 

9 Случай с несколькими авторами будет иметь такую же общую структуру, но немно­
го сложнее. Части модели, которые не показаны - NamePrior, rTitlePrior и HMMGram­
mar, - являются традиционными вероятностными моделями. Например, NamePrior 
представляет собой комбинацию из категориального распределения по действительным 
именам и модели буквенных триграмм (см. раздел 23 . 1 )  для обработки имен, которые ра­
нее не встречались; обе были обучены на базе данных переписи населения США. 
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Мониторинr испытаний ядерноrо оружия 

Проверка соблюдения договора о полном запрете испытаний ядерного ору­
жия требует выявления всех происходящих на нашей планете сейсмических собы­
тий с магнитудой, которая выше установленного минимума. Соответствующая ко­
миссия ООН развернула сеть дагчиков - Международную систему мониторинга 
(lnternational Monitoring System - IMS), при этом программное обеспечение для 
автомаrической обработки ПОС'I)'Пwощих данных, разработанное на основании ре­
зультатов 100-летних исследований в области сейсмологии, характеризуется уров­
нем ошибок обнаружения около 30%. Система NET-VISA (Арора и др. [75], 20 1 3), 
построенная на базе модели OUPM, позволяет значительно сократить количество 
ошибок. 

В модели NET-VI SA (рис. 15 .6) соответствующая геофизическая модель вы­
ражена напрямую. Она описывает распределение по числу событий в заданный 
интервал времени (большинство из которых имеют естественное происхожде­
ние), также как и по их продолжительности, магнитуде, глубине и местоположе­
нию. Местоположения естественных событий характеризуются распределени­
ем в соответствии с пространственной априорной вероятностью, которая была 
обучена (как и другие элементы модели) на основании исторических данных. 
Техногенные события по правилам договора предполагаются равномерно рас­
пределенными по поверхности Земли. На каждой станции s каждая фаза р (тип 
сейсмической волны) в событии е дает либо О, либо 1 обнаружений (сигналы 
выше порога) .  Вероятность обнаружения зависит от магнитуды и глубины собы­
тия, а также от его расстояния от станции. Обнаружение "ложной тревоги" также 
происходит в соответствии с параметром скорости, установленным для конкрет­
ной станции. Измеренное время прибытия, амплитуда и другие свойства обна­
ружения d для реального события зависят от свойств инициирующего события и 
его удаления от станции. 

После обучения модель работает непрерывно. Свидетельства состоят из обна­
ружений (90% из которых являются ложными тревогами), извлеченных из необра­
ботанных данных IMS о форме сигнала, и запрос обычно запрашивает наиболее 
вероятную историю событий, или бюметень, с учетом имеющихся данных. Ре­
зультаты пока обнадеживают; например, в 2009 году в автоматическом бюллете­
не SELЗ ООН было пропущено 27,4% из 27 294 событий в диапазоне магнитуд 
3-4, тогда как система NET-VISA пропустила только 11, 1 %. Более того, сравне­
ние с плотными региональными сетями показывает, что система NET-VI SA обна­
руживает на 50% больше реальных событий, чем приводится в заключительных 
бюллетенях, подготовленных экспертами ООН по сейсмоанализу. Система NET­
VISA также имеет тенденцию связывать больше обнаружений с заданным собы­
тием, что приводит к более точным оценкам местоположения (рис. 1 5 . 7). С 1 янва­
ря 201 8 года система NET-VISA была развернута как часть системы мониторинга 
за соблюдением договора о запрете ядерных испытаний ООН. 
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#SeismicEvents ~ Poisson(T * ле) 
Time(e) ~ UniformReal(0, Т) 
EarthQuake(e) ~ Boolean(0,999) 
Location(e) ~ if Earthquake(e) then Spatia/Prior() else UniformEarth () 
Depth(e) ~ if Earthquake(e) then UniformReal(0, 700) else Exactly(0) 
Magnitude(e) ~ Exponential(/og( I O)) 
Detected(e, p, s) ~ Logistic(weights (s, p), Magnitude(e), Depth(e), Dist(e, s)) 
#Detections(site = s) ~ Poisson(T * лJ(s)) 
#Detections(event = e, phase = р, station = s) = if Detected(e, p, s) then 1 else О 
Onsetnme(a, s) if (event(a) = null) then ~ UniformReal(0, Т) 

else = nтe(event(a)) + GeoТТ(Dist(event, s), Depth(event(a)), phase(a)) 
+ Laplace(µ,(s), a,(s)) 

Amplitude(a, s) if (event(a) = null) then ~ NoiseAmpModel(s) 
else = AmpModel(Magnitude(event(a)), Dist(event(a), s), Depth(event(a)), 

phase(a)) 
Azimuth(a, s) if (event(a) = null) then ~ UniformRea/(0, 360) 

else = GeoAzimuth(Location(event(a)), Depth(event(a)), phase(a), Site(s)) 
+ Laplace(0, a0(s)) 

Slowness (a, s) if (event(a) = пи//) then ~ UniformRea/(0, 20) 
else = GeoS/owness(Location (event(a)), Depth(event(a)), phase(a), Site(s)) 

+ Laplace(0, a8(s)) 
ObservedPhase(a, s) ~ Categorica/PhaseModel(phase(a)) 

Рис. 1 5.6. Упрощенная версия модели NET-VISA 

Несмотря на поверхностные различия,  два приведенных выше примера струк­
турно схожи: есть неизвестные объекты (статьи, землетрясения), генерирующие 
восприятия в соответствии с некоторыми физическими процессами (предостав­
ление ссылок, сейсмическое распространение). Эти восприятия являются неод­
нозначными в отношении их происхождения, но когда для нескольких восприя­
тий предполагается, что их происхождение связано с одним и тем же неизвестным 
объектом, свойства этого объекта могут быть установлены более точно. 

Та же структура и шаблоны рассуждений подходят и для таких областей, как 
удаление дубликатов в базах данных и понимание естественного языка. В одних 
случаях получение вывода о существовании объекта предполагает группировку 
восприятий в нечто более общее - процесс, напоминающий задачу кластериза­
ции в машинном обучении. В других случаях объект может вообще не генериро­
вать восприятий и все же обнаруживать свое существование в результатах вероят­
ностного вывода, - как произошло, например, когда тщательные наблюдения за 
движением планеты Уран привели к открытию планеты Нептун. Существование 
ненаблюдаемых объектов следует из тех эффектов, которые они оказывают на по­
ведение и свойства наблюдаемых объектов. 
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Рис. 15.7. а) Вверху: пример сейсмической волны, зарегистрированной в Алис­
Спринrс, Австралия. Внизу: формы волны после обработки с целью определения 
времени прибытия сейсмических волн. Темные штрихи (выше) - автоматически 
обнаруженные моменты прибытия, светлые штрихи (ниже) - моменты истинного 
прибытия. б) Оценки местоположения ядерного испытания в КНДР от 12 февраля 
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20 1 3  года: бюллетень ООН (светлый треугольник вверх.у слева); результаты систе­
мы NET-VISA (серый квадрат в центре). Вход в подземный испытательный полигон 
(черный символ "х" ниже по центру) находится на расстоянии 0,75 км от оценки си­
стемы NET-VISA. Тонкие конrуры показывают условное распределение местополо­
жения в модели NET-VISA 

1 5 .3. Отслеживание состояния сложного мира 
В главе 1 4  проблема отслеживания состояния мира уже рассматривалась, но 

обсуждались только случаи атомарных представлений (модель НММ) и развер­
нутых представлений (сети DBN и фильтры Калмана). Такой подход имеет смысл 
для миров с единственным наблюдаемым объекrом, например с одним пациентом 
в палате интенсивной терапии или с одной птицей, летящей в лесу. В этом разде­
ле мы рассмотрим, что происходит, когда наблюдения генерируют два или более 
объекrов. То, что, собственно, отличает этот случай от обычной прежней оценки 
состояния, состоит в том, что теперь существует вероятность неопределенности 
в отношении того, какой из объекrов какое наблюдение генерирует. Эrо проблема 
неопределенности идентичности, впервые упомянутая в разделе 1 5.2, и в этом 
случае она рассматривается уже во временном контексте. В литературе по теории 
управления ее называют проблемой ► ассоциации данных, т.е. задачей связыва­
ния данных наблюдений с объектами, ответственными за их генерацию. Хотя мы 
можем рассматривать это как еще один пример вероятностного моделирования с 
открытой вселенной, на практике эта проблема достяrочно важна, чтобы выделить 
для ее обсуждения собственный раздел. 

1 5 .3. 1 . Пример: многоцелевое отслеживание 

Проблема ассоциации данных первоначально изучалась в контексте радиоло­
кационного слежения за несколькими целями, когда отраженные импульсы обна­
руживались через фиксированные интервалы времени с помощью вращающейся 
антенны радара. На каждом временном этапе на экране могли появляться сра­
зу несколько вспышек, но прямого наблюдения за тем, какие вспышки в момент 
времени t соответствуют каким вспышкам в момент времени t - 1 ,  не было. На 
рис. 1 5.8, а приведен простой пример с двумя вспышками на каждом из пяти вре­
менных этапов. Каждая вспышка отмечена номером этапа, на котором он появил­
ся, но никакой дополнительной идентифицирующей информации нет. 

Предположим, что на данный момент точно известно, что вспышки генери­
руют два самолета, А I и А2 • В терминологии моделей OUPM А I и А2 являются 
► гарантированными объектами и это означает, что они гарантированно суще­
ствуют и являются различными объектами. Более того, в нашем случае никаких 
других объектов нет. (Другими словами, в отношении самолетов этот сценарий 
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соответствует семантике базы данных, которая предполагается в моделях RPM.) 
Пусть их истинными позициями будут Х(А 1 , t) и Х(А2 , t), где t является неотри­
цательным целым числом, индексирующим моменты обновления показаний дат­
чика. Будем предполагать, что первое наблюдение поступает в момент време­
ни t = 1, а в момент времени О априорным распределением для местоположения 
каждого самолета будет lniJXO. Исключительно для упрощения также предполо­
жим, что каждЬIЙ самолет движется независимо в соответствии с известной мо­
делью перехода, например с линейной гауссовой, которая используется в филь­
тре Калмана (см . раздел 14.4). 
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Рис. 15.8. а) Наблюдения местоположения обьектов в 2D-пространстве, сделанные 
на протяжении пяти временных этапов. Каждое наблюдение представлено вспыш­
кой с отметкой о временном этапе, когда оно имело место, но объект, который стал 
причиной его появления, никак не отмечен. б) и с) Возможные гипотезы о движении 
наблюдаемых объектов. д) Гипотезы для случая, в котором могут иметь место лож­
ные тревоги, сбои обнаружения и появление/исчезновение объекта 

Последним элементом является модель восприятия; опять же, примем линей­
ную гауссову модель, когда самолет в положении х производит на экране рада­
ра вспышку Ь, причем наблюдаемая позиция этой вспышки на экране Z(b) явля­
ется линейной функцией от х с добавлением гауссова шума. Каждый самолет на 
каждом временном этапе генерирует ровно одну вспышку, поэтому вспышка в 



Глава 15. Вероятностное проrраммирование 229 

качестве родителей имеет самолет и этап времени. Таким образом, опустив пока 
априорные вероятности, нашу модель можно определить следующим образом. 

guaranteed Aircraft А 1 , А2 

Х(а, t) ~ if t =  О then lnitX() else N(F Х (а, t - 1 ), �х) 
#Вlip(Source = а, nте = t) = 1 
Z(b) ~ N(Н Х (Source(b), Пте(Ь)), �) 

Здесь F и �:r являются матрицами, описывающими линейную модель перехода и 
ковариацию шума перехода, а Н и I:z являются соответствующими маrрицами для 
модели восприятия (см. раздел 14.4.3). 

Ключевым различием между этой моделью и стандартным фильтром Калма­
на является то, что здесь имеется два объекта, влияющие на показания даrчика 
(вспышки). Это означает, что на любом заданном временном этапе существует 
неопределенность в отношении того, какой объект производит какое показание 
датчика. Каждый возможный мир в этой модели включает в себя ассоциацию -
определяемую значениями всех переменных Source(b) для всех временных эта­
пов - между самолетами и вспышками. Две возможные гипотезы ассоциации по­
казаны на рис. 15.8, б и в. В общем случае для п обьектов и Т временных этапов 
существует (n !)r способов ассоциации вспышек и самолетов - невероятно боль­
шое число. 

Описываемый до этого момента сценарий включал п известных объектов, rене­
рирующих п наблюдений на каждом временном этапе. Реальные приложения ас­
социации данных, как правило, намного сложнее. Часто пос,упающие наблюдения 
включают в себя ► ложные тревоrи (также известные как ► помехи), которые не 
были вызваны реальными объектами.  Также может произойти ► сбой обнаруже­
ния, означающий, что наблюдение от реального объекта не пос,упило. Наконец, 
могут появляться новые обьекты, а прежние исчезать. Все эти явления, создающие 
еще больше возможных миров, о которых следует побеспокоиться, проиллюстри­
рованы на рис. 15 .8, д. Соответствующая модель OUPM приведена на рис. 15 .9. 

По причине ее практической важности как для гражданских, так и для воен­
ных приложений по проблеме многоцелевого отслеживания и ассоциации данных 
были написаны десятки тысяч стаrей. Авторы многих из них просто пытались 
разработать сложные маrематические детали вероятностных расчетов для модели, 
приведенной на рис. 15.9 или для ее более простых версий. В каком-то смысле это 
не нужно, если выразить данную модель на языке вероятностного программиро­
вания, поскольку механизм вероятностного вывода общего назначения корректно 
выполнит любые матемаrические расчеты для любой модели, включая и Э'I)'. Бо­
лее того, уточнения сценария ( формирование полета; объекты, движущиеся в не­
известном направлении; объекты, совершающие взлет или посадку, и т.д.) могут 
быть реализованы небольшими изменениями в модели без новых маrемаrических 
выводов и сложного программирования. 
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#Aircraft(Entry'Лme = t) ~ Poisson(Лa) 
Exits(a, t) ~ if InFlight(a, t) then Boolean(ae) 
InFlight(a, t) = (t = EntryTime(a)) V (lnFlight(a, t - 1 ) Л -,Exits(a, t - 1 )) 
Х(а, t) ~ if t = Entry'Лme(a) then InitX() 

else if InFlight(a, t) then .N(F Х(а, t - 1 ), Ех) 
#Вlip(Source = а, Т,те = t) ~ if InFlight(a, t) then Bernoulli(DetectionProb(X(a, t))) 
#Вliр('Лте = t) ~ Poisson(ЛJ) 
Z(b) ~ if Source(b) = null then UniformZ(R) else .N(H X(Source(b), Т,те(Ь)), Ez) 

Рис. 1 5.9. Модель OUPM для радиолокационного слежения за несколькими целя­
ми с обработкой ложных тревог (помех), сбоев обнаружения, а также появления и 
исчезновения самолетов. Частота, с которой новые самолеты появляются в сцене, 
есть Ла, тогда как вероятность на этап времени, что самолет покинет сцену, есть Ое· 
Ложные тревоги (т.е. вспышки, не связанные с самолетами) появляются в простран­
стве с равномерным распределением с нормой Л/ на этап времени. Вероятность 
того, что самолет будет обнаружен (т.е. произведет вспышку), зависит от его теку­
щего местоположения 

С практической точки зрения основная проблема таких моделей - сложность 
вероятностного вывода. Как и для всех вероятностных моделей, вероятностный 
логический вывод означает устранение суммированием всех переменных, отлич­
ных от переменных запроса и свидетельства. При фильтрации в моделях НММ 
и сетях DBN есть возможность устранить суммированием переменные состоя­
ния от 1 до t - 1 с помощью простого приема динамического программирования. 
Для фильтров Калмана также есть возможность воспользоваться особыми свой­
ствами гауссианов. Однако в случае ассоциации данных сиrуация сложнее. Здесь 
нет (известных) эффективных точных алгоритмов, - по той же причине, по ко­
торой их нет для переключающих фильтров Калмана (см. раздел 1 4.4.4): филь­
трация распределения, описывающего совместное распределение по номерам и 
расположениям самолетов на экране на каждом временном этапе, заканчивается 
как смесь экспоненциально большого множества распределений, по одному для 
каждого варианта выбора последовательности наблюдений, назначаемого каждо­
му самолеrу. 

В ответ на сложность точного вывода уже использовалось несколько прибли­
женных методов. Самый простой подход состоит в том, чтобы на каждом времен­
ном этапе выбрать одно "лучшее" присваивание при известных прогнозируемых 
положениях объектов на текущий момент. Это присваивание связывает наблю­
дения с объектами и позволяет обновить путь каждого объекта и сделать пред­
сказание на следующий временной этап. Для выбора "лучшего" присваивания 
чаще всего используется метод так называемого ► фильтра ближайmеrо сосе­
да (nearest-neighbor filter), в котором раз за разом выбирается ближайшая пара из 
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предсказанного положения и наблюдения, которая и добавляется в присваивание. 
Фильтр ближайшего соседа успешно работает, когда объекты достаточно хорошо 
разделены в пространстве состояний, а неопределенность прогноза и ошибка на­
блюдения невелики, - другими словами, когда нет возможности возникновения 
путаницы.  

Когда имеет место значительная неопределенность в отношении правильного 
присваивания, лучшим подходом будет выбор того присваивания, которое макси­
мизирует совместную вероятность текущих наблюдений при заданных предска­
занных позициях. Эту задачу можно эффективно решить с помощью ► венгер­
ского алгоритма (Кун [ 1 320],  1 955 ), даже несмотря на то, что на каждом новом 
временном этапе потребуется делать выбор из п! возможных присваиваний. 

Любой метод, фиксирующий одно наилучшее назначение на каждом временном 
этапе, с треском проваливается в более сложных условиях. В частности, если алго­
ритм фиксирует неправильное назначение, прогноз на следующий временной этап 
может оказаться существенно неверным, что приведет к еще более неправильному 
присваиванию, и т.д. Подходы с формированием выборок могут оказаться гораздо 
более эффективными. Алгоритм фильтрации частиц (см. раздел 14 . 5 . 3 )  при его 
применении для ассоциации данных работает способом поддержки большого на­
бора возможных текущих присваиваний.  Алгоритм МСМС исследует простран­
ство истории присваиваний; например, рис. 1 5 . 8, 6 и в могут быть возможными 
состояниями в пространстве состояний алгоритма МСМС и могут изменить его 
мнение в отношении предыдущих решений о присваивании. 

Один очевидный способ ускорения вероятностного вывода на основе исполь­
зования выборок в задачах многоцелевого отслеживания заключается в исполь­
зовании приема Рао-Блэквеллизации, обсуждавшегося в разделе 1 4 . 5 . 3 .  При 
заданной конкретной гипотезе ассоциации для всех объектов расчеты фильтра­
ции для каждого объекта, как правило, можно выполнить точнее и эффектив­
нее в сравнении с формированием выборок для м ногих возможных последова­
тельностей состояний для объектов.  Например, для модели, представленной на 
рис. 1 5 .9, вычисление фильтрации означает просто запуск фильтра Калмана для 
последовательности наблюдений, присвоенной заданному предполагаемому объ­
екту. Более того, при переходе от одной гипотезы ассоциации к другой, заново 
провести расчеты потребуется только для тех объектов, у которых изменились 
ассоциированные с ними наблюдения. Современные методы ассоциации данных 
по алгоритму МСМС способны обрабатывать многие сотни объектов в режиме 
реального времени, давая при этом хорошее приближение к истинным апостери­
орным распределениям .  
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1 5.3.2. Пример: мониторинг дорожного движения 

На рис. 1 5. 1 О приведены два изображения, полученные с двух камер видео­
наблюдения на автостраде в Калифорнии, расположенных далеко друг от друга. 
В этом приложении нас интересуют два вопроса: оценка времени, необходимо­
го в текущих условиях дорожного движения для перемещения из одного места 
в другое по системе автострад, и измерение спроса, т.е. как много транспортных 
средств проезжает между любыми двумя точками в системе в определенное вре­
мя суток и в определенные дни недели. Обе цели требуют решения задачи ассоци­
ации данных на обширной территории с большим количеством видеокамер и де­
сятками тысяч транспортных средств, наблюдаемых за один час. 

а) б) 

Рис. 15.10. Изображения с камер видеонаблюдения на въезде (а) и выезде (б) с опре­
деленного участка длиной около двух миль на шоссе 99 в Сакраменто, штат Кали­
форния. Автомобиль, взятый в рамку, был идентифицирован на изображениях с обе­
их камер 

При визуальном наблюдении ложные тревоги (помехи) могут быть вызваны 
движущимися тенями, автомобилями с прицепом, отражением в лужах и так да­
лее, а сбои обнаружения могут возникнуть из-за тумана, темноты, отсутствия ви­
зуального контраста или в тех случаях, когда один автомобиль заслоняет другой. 
Транспортные средства постоянно въезжают на автостраду и покидают ее в раз­
личных точках, которые могут не контролироваться. Кроме того, внешний вид 
любого конкретного транспортного средства может резко различаться для раз­
ных камер (в зависимости от условий освещения и ракурса этого транспортного 
средства на изображении), а модель перехода может изменяться при возникно­
вении пробки или ее ликвидации. Наконец, в плотном транспортном потоке при 
достаточно далеко расположенных камерах наблюдения ошибка предсказания 
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в модели перехода для автомобиля, движущегося от одной камеры к другой, бу­
дет гораздо больше, чем при обычной дистанции между транспортными сред­
ствами . Несмотря на эти проблемы, современные алгоритмы ассоциации дан­
ных достигли значительных успехов в оценке параметров дорожного движения 
в реальных условиях . 

Корректная ассоциация данных является важнейшим условием для отслежи­
вания состояния мира, поскольку нет никакого иного способа объединения мно­
гих наблюдений любого заданного объекта. Когда объекты в мире взаимодей­
ствуют друг с другом в сложных видах деятельности, понимание мира требует 
объединения механизмов ассоциации данных с реляционными вероятностными 
моделями и вероятностными моделями с открытой вселенной, обсуждавшимися 
в разделе 1 5 .2 .  В настоящее время это одна из наиболее активных областей ис­
следований в ИИ. 

15.4. Программы как вероятностные модели 
Многие вероятностные языки программирования были построены на пони­

мании того факта, что вероятностные модели могут быть определены с помо­
щью выполняемого кода на любом языке программирования, в который встроен 
источник случайности. Для таких моделей возможные миры являются трассами 
выполнения, а вероятность любой такой трассы - это вероятность случайного 
выбора, необходимого для реализации этой трассы. Языки PPL, созданные по­
добным образом, наследуют всю выразительную силу языка, положенного в их 
основу, включая сложные структуры данных, рекурсию и, в некоторых случаях, 
функции более высокого порядка. Многие языки PPL фактически универсальны 
в вычислительном отношении: они могут представлять любое распределение ве­
роятностей, которое может быть взято из вероятностной машины Тьюринга, ко­
торая останавливается. 

1 5 .4. 1 . Пример: чтение текста 

Этот подход к вероятностному моделированию и вероятностному выводу мы 
проиллюстрируем с помощью задачи написания программы, способной считывать 
размытый текст. Этот тип моделей может использоваться для прочтения текста, ко­
торый был смазан, запачкан, размыт водой или сильно поврежден из-за старения 
бумаги, на которой напечатан. Их также можно создавать для взлома некоторых 
видов защиты типа САРТСНА. 

На рис. 1 5 . 1 1 приведена генерирующая программа, содержащая два компонен­
та: а) код генерации последовательности букв; б) подпрограмму генерации иска­
женного, размытого образа этих букв с использованием готовой графической би­
блиотеки. На рис. 1 5  . 1 2, а представлены примеры изображений, полученных при 
двенадцати обращениях к функции GENERATE-IMAGE. 
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function GENERATE-IMAGE() returns изображение с несколькими буквами 
letters +-- GENERAТE-LEПERS( l  0) 
return RENDER-NoISY-IMAGE(/etters, 32, 128) 

function GENERATE-LEТТERS(л) returns вектор букв 
п ~ Poisson(л) 
letters +-- [] 
for i = 1 to п do 

letters [i] ~ UnifonnChoice( {а, Ь, с, . . .  } ) 
return letters 

funcdon RENDER-NoISY-IMAGE(/etters, width, height) returns зашумленное 
изображение последовательности букв 

clean_image +-- RENDER(letters, width, height, text_top = l O, text_lefl = 1 0) 
noisy_image +-- [] 
noise_variance ~ UnifonnReal(O, 1 ;  1 ) 
for row = 1 to width do 

for со/ = 1 to height do 
noisy_image[row, со/] ~ N(clean_image[row, со/] , noise_variance) 

return noisy_image 

Рис. IS. 1 1 .  Генерирующая программа для вероятностной модели с открытой вселен­
ной, выполняющей распознавание графических символов. Эта генерирующая про­
грамма создает размытые изображения, содержащие некоторую последовательность 
букв, посредством генерации самой последовательности, ее рендеринга в 2D-изо­
бражения и внесения дополнительного шума для каждого пикселя 
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Рис. IS. 12. а) Двенадцать искаженных изображений, полученных при выполнении 
генерирующей программы, показанной на рис. 15 .11. Количество букв, их выбор, 
количество дополнительного шума и специфический пиксельный шум - все это 
элементы проблемной области вероятностной модели. б) Двенадцать искаженных 
изображений, полученных при выполнении генерирующей программы, показанной 
на рис. 15. 1 5. Использование марковской модели для генерации букв обычно дает 
последовательности букв, которые легче произносить 
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15.4.2. Синтаксис и семантика 

Понятие ► генерирующая программа (generative program) относится к вы­
полняемой программе, в которой каждый случайный выбор определяет случай­
ную переменную в связанной с ней вероятностной модели. Давайте мысленно, 
шаг за шагом, проследим ход выполнения программы, осуществляющей слу­
чайный выбор. Пусть Х; - случайная переменная, соответствующая i-му слу­
чайному выбору, сделанному программой, а х;, как обычно, будет обозначать 
возможное значение переменной Х;. Назовем множество w = {х; }  ► трассой вы­
полнении (execution trace) генерирующей программы; фактически это последо­
вательность возможных значений для случайных выборов. Однократный запуск 
программы приводит к генерированию одной такой трассы, отсюда и термин "ге­
нерирующая программа". 

Пространство всех возможных трасс выполнения Q можно рассматривать 
как выборочное пространство вероятностной модели, определенное генериру­
ющей программой. Распределение вероятностей по трассам можно определить 
как произведение вероятностей каждого отдельного случайного выбора: P(w) = 
П; Р(х; l x 1 , • • •  хн) - Это аналогично распределению по мирам в модели OUPM. 

Концептуально просто преобразовать любую модель OUPM в соответствую­
щую генерирующую программу. Эга генерирующая программа выполняет случай­
ный выбор для каждого оператора # и значения каждой базовой случайной пере­
менной, существование которой подразумевается в соответствии с операторами #. 
Основная дополнительная работа, которую генерирующая программа также долж­
на выполнить, заключается в создании структур данных, представляющих объ­
екты, функции и отношения в возможных мирах модели OUPM. Эги структуры 
данных будут созданы автоматически механизмом вероятностного вывода модели 
OUPM, поскольку в модели OUPM предполагается, что каждый возможный мир 
является моделью структуры первого порядка, тогда как в типичном языке PPL та­
ких предположений не делается. 

Изображения на рис. 1 5  . 1 2  можно использовать для расширения интуитивно­
го понимания распределения вероятностей P(Q): на них видны различные уровни 
шума, а на менее зашумленных изображениях также заметны последовательности 
букв различной длины. Пусть w 1 - это трасса, соответствующая изображению в 
верхнем правом углу на рис. 1 5 . 1 2, а, содержащему буквы ocflwe. Если развер­
нуть трассу w 1 в байесовскую сеть, она будет иметь 4 1 04 узла: 1 узел - для пе­
ременной п, 6 узлов - для переменных /etters[i], 1 узел - для переменной дис­
персии шума noise _ variance и 4096 узлов - для переменных, представляющих 
пиксели в изображении с шумом noisy_image. Таким образом, мы видим, что эта 
генерирующая программа определяет вероятностную модель с открытой вселен­
ной: число случайных выборов, которые она делает, исходно не ограничено, в дей­
ствительности оно зависит от значения случайной величины п. 
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15.4.3. Результаты вероятностного вывода 

Давайте применим эту модель для интерпретации изображений букв, кото­
рые были ухудшены добавлением шума. На рис. 1 5. 1 3  показано анализируемое 
изображение с добавленным шумом вместе с результатами трех независимых 
прогонов алгоритма МСМС. Для каждого прогона приведен рендеринг букв, со­
держащихся в трассе после остановки цепи Маркова. Во всех трех случаях ре­
зультатом является последовательность букв unce rta inty, что ясно указывает 
на то, что апостериорное распределение сильно сконцентрировано на правиль­
ной интерпретации. 

а) 

6) 

1 unce r t a inty J 
1 uncertainty 1 
1 uncertainty J 

Рис. 1 5. 13. а) Зашумленное входное изображение. б) Результаты вероятностно­
го вывода, полученные с помощью трех трасс, каждая по 25 итераций алгоритма 
МСМС - тех же, что и в случае рис. 1 5 . 1 1 .  Обратите внимание, что процесс веро­
ятностного вывода правильно определяет последовательность букв 

Теперь давайте еще больше ухудшим текст, размыв его настолько, что лю­
дям будет очень трудно его прочитать, - это хорошо видно на рис. 1 5. 1 4, а. На 
рис. 1 5  . 1 4, б показаны результаты вероятностного вывода для этого более слож­
ного входного изображения. На этот раз, хотя вероятностный вывод в алгоритме 
МСМС, по-видимому, не сомневается в правильном количестве букв (как и долж­
но быть), первая буква ошибочно идентифицируется как q, а также имеет место 
неопределенность в отношении пяти из десяти остальных букв. 

На данный момент у нас есть много возможных способов интерпретации ре­
зультатов. Вполне возможно, что вероятностный вывод в алгоритме МСМС хоро­
шо смешался и полученные результаты верно отражают истинное апостериорное 
распределение при заданных модели и изображении. В этом случае неопределен­
ность в некоторых буквах и ошибка в первой букве неизбежны. Чтобы получить 
лучшие результаты, нам может потребоваться улучшить текстовую модель или 
снизить уровень шума. Также может быть, что вероятностный вывод в алгоритме 
МСМС не смешался должным образом: если запустить 300 цепочек для 25 тысяч 
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или 25 млн итераций, можно будет найти совсем другое распределение результа­
тов, возможно, указывающее, что первой буквой с большей вероятностью являет­
ся u, а не q. 

а) 

qnuc i tain ty 
б) �-��О_!_�] 

1 qncuf t a intv 1 

1 unce r t a inty 
в) 1 u.ncs i t a inty 1 

[__�I_:l_chf t s inty] 
Рис. 15. 1 4. а )  Очень зашумленное входное изображение. б) Результаты трех трасс 
вероятностного вывода по 25 итераций алгоритма МСМС - тех же, что и в случае 
рис. 1 5 . 1 1 .  в) Результаты трех трасс вероятностного вывода улучшенной модели, ис­
пользующей буквенные биrраммы (см. раздел 1 5 .4.4). Обе модели демонстрируют 
неоднозначность в результатах, но результаты последней модели отражают свой­
ственное ей априорное знание о вероятных последов�пельностях букв 

Выполнение большего вероятностного вывода может быть связано с увеличе­
нием затрат и увеличением времени ожидания. Более того, не существует надеж­
ного теста на сходимость вероятностного вывода по методу Монте-Карло. Можно 
было бы попытаться улучшить алгоритм вероятностного вывода, возможно, разра­
ботав лучшее вспомогательное распределение для алгоритма МСМС или исполь­
зуя текстовые подсказки на изображении, чтобы предложить лучшие начальные 
гипотезы. Подобные улучшения требуют дополнительного обдумывания, реали­
зации и отладки. Третий вариант - улучшить модель. Например, можно было бы 
включить в нее определенные знания об особенностях английских слов, - ска­
жем, таких, как вероятность появления определенных пар букв. В следующем раз­
деле мы рассмотрим именно этот вариант. 

15.4.4. Улучшение генерирующей программы путем 
включения в нее марковской модели 

Вероятностные языки программирования являются модульными, что суще­
ственно упрощает поиск возможностей улучшения базовой модели. На рис. 15 . 1 5  
показана генерирующая программа для улучшенной модели, которая генерирует 
буквы как единую последовательность, а не независимо друг от друга. Эта гене­
рирующая программа использует марковскую модель, которая выбирает каждую 
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очередную букву с учетом предыдущей буквы с переходными вероятностями, 
установленными на основании опорного списка английских слов. 

function GENERATE-MARКOV-LEТТERS(л) returns вектор букв 
п ~ Poisson(>..) 
/etters +- [] 
/etter_probs +- MARКOV-INIТIAL{) 
for i = I to п do 

/etters [ i] ~ Categorica/ ( /etter _probs) 
/etter _probs +- MARKOV-TRANSIТЮN(/etters [i]) 

return letters 
Рис. 15. 15. Генерирующая программа для улучшенного оптического распознавания 
символов, генерирующая последовательность букв с использованием модели бук­
венных биграмм, в которой частоты появления пар букв оцениваются на основании 
опорного списка английских слов 

На рис. 1 5 . 1 2, б представлены двенадцать образцов изображений, полученных с 
помощью этой генерирующей программы. Обратите внимание, что буквенные по­
следовательности значительно больше похожи на английские слова в сравнении с 
теми, которые представлены на рис. 1 5 . 1 2, а и были сгенерированы программой, 
приведенной на рис. 15 . 1 1 .  На рис. 1 5  . 1 4, в показаны результаты вероятностного 
вывода этой модели Маркова, примененной к изображению с высоким уровнем 
шума. Интерпретации более точно соответствуют генерирующей трассе, хотя все 
еще существует некоторая неопределенность. 

15.4.5. Вероятностный вывод в генерирующих программах 

Как и в случае моделей OUPM, точный вывод в генерирующих программах 
обычно слишком затратен или просто невозможен. С другой стороны, легко уви­
деть, как можно выполнить выборку с отклонением : запустить программу, со­
хранить только те трассы, которые согласуются со свидетельством, и подсчитать 
различные ответы на запрос, найденные на этих трассах. Взвешивание по правдо­
подобию также реализуется очевидным образом : для каждой генерируемой трас­
сы следим за ее весом путем умножения вероятностей всех значений, наблюдае­
мых вдоль этой трассы . 

Метод взвешивания по правдоподобию работает хорошо только тогда, когда 
данные достаточно вероятны в соответствии с моделью. В более сложных случаях 
хорошим вариантом для выбора обычно является алгоритм МСМС. При примене­
нии к вероятностным программам алгоритм МСМС включает выборку и измене­
ние трасс выполнения. Многие из соображений, сделанных в отношении моде­
лей ОУПМ, применимы и в этом случае. Кроме того, при выполнении алгоритма 
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следует проявлять осторожность в отношении изменения трассы выполнения; на­
пример, если изменить результат выполнения оператора if, вся оставшаяся часть 
этой трассы может стать недействительной. 

Дальнейшие улучшения в вероятностном выводе возможны по нескольким на­
правлениям работы. Некоторые улучшения могут привести к фундаментальным 
сдвигам в классе проблем, которые разрешимы для заданного языка PPL, даже в 
принципе. Такой эффект может дать, например, поднятый вероятностный вывод, 
описанный ранее для моделей RPM. Во многих случаях универсальный алгоритм 
МСМС слишком медленный, и необходимы специальные вспомогательные рас­
пределения, позволяющие быстро смешать процесс вероятностного вывода. 

В последних работах в области языков PPL в центре внимания было стремле­
ние сделать проще для пользователей определение и использование таких вспомо­
гательных распределений, благодаря которым эффективность РРL-вывода могла 
бы соответствовать тем пользовательским алгоритмам вывода, которые были раз­
работаны для конкретных моделей. 

Многие перспективные подходы направлены на снижение накладных расходов 
на вероятностный вывод. Идея компиляции, которая описывалась для байесовских 
сетей в разделе 1 3 .4.3 ,  может применяться и к вероятностному выводу в моделях 
OUPM и PPL, - как правило, в результате достигается ускорение расчетов на два­
три порядка. Также были сделаны предложения по разработке специш�изированно­
го оборудования для некоторых типов алгоритмов, таких как передача сообщений 
и МСМС. Например, в аппаратном обеспечении для методов Монте-Карло исполь­
зуются низкая точность вероятностных представлений и массовое распараллели­
вание коротких процессов, что позволяет получить выигрыш в 1 00-1 О ООО раз в 
скорости выполнения расчетов и энергосбережении. 

Методы, основанные на обучении, также могут дать существенные улучшения 
в скорости. Например, ► адаптивные вспомогательные распределения могут 
постепенно научиться генерировать такие вспомогательные распределения алго­
ритма МСМС, которые будут приняты с достаточной степенью вероятности и бу­
дут достаточно эффективны для изучения вероятностного ландшафта модели с 
целью обеспечения быстрого смешивания. Также возможно обучать модели глу­
бокого обучения (см. главу 21 ) для представления вспомогательных распределе­
ний при выборке по значимости, используя синтетические данные, полученные из 
базовой модели. 

В целом можно ожидать, что любое формальное математическое представле­
ние, выстроенное поверх языков программирования общего назначения, будет 
способствовать преодолению барьера невычислимости, и это справедливо для 
языков PPL. Однако если учесть, что выполнение базовых программ неизбеж­
но будет тормозить необходимость ввода данных наблюдений и выполнения всех 
случайных выборов, не сделают ли эти дополнительные требования задачу веро­
ятностного вывода неразрешимой? Как оказалось, ответ на этот вопрос - "да", 
но только для вычислительных моделей с бесконечной точностью непрерывных 
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случайных переменных. При этих условиях оказывается возможным написание вычислимой вероятностной модели, в которой вероятностный вывод сталкивает­ся с проблемой останова. С другой стороны, в случае чисел конечной точности и гладких вероятностных распределений, обычно используемых в реальных прило­жениях, вероятностный вывод остается разрешимой задачей. 
Резюме 

В этой главе рассматривались выразительные средства представления для ве­роятностных моделей, основанные как на логике, так и на компьютерных про­граммах. • В реляционных вероятностных моделях (RPM) вероятностные модели определяются на мирах, полученных с использованием семантики базы данных для языков первого порядка. Эти модели подходят для случая, когда все объекты и их идентичности известны с уверенностью. • При заданной модели RPM объекты в каждом возможном мире соответству­ют символам констант в модели, а базовыми случайными переменными яв­ляются все возможные экземпляры символов предикатов с объектами, заме­няющими каждый аргумент. Следовательно, множество возможных миров конечно. • Модели RPM представляют собой очень сжатые модели для миров с боль­шим количеством объектов и позволяют справиться с неопределенностью в отношениях. • Вероятностные модели с открытой вселенной (OUPM) строятся на осно­ве полной семантики логики первого порядка, что допускает присутствие в них новых видов неопределенности, таких как неопределенность идентич­ности и неопределенность существования. • Генерирующие программы - это представления вероятностных моделей, включая и модели OUPM, в виде выполняемых программ на вероятност­ном языке программирования, или языке PPL. Генерирующая програм­ма формирует распределение по трассам выполнения программы. Языки PPL обычно обеспечивают универсш,ьную выразительную силу для вероят­ностных моделей. 
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Библиографические и исторические заметки 
В своих работах Гальперин ([945] ,  1 984) и Хаусон ( [ 1 078], 2003 ) пересказыва­

ют долгую историю попыток соединения вероятности и логики, начиная с книги 
Лейбница "Nouveaux Essais", вышедшей в 1 704 году. В этих попытках обычно 
предполагалось присоединение вероятностей непосредственно к логическим вы­
сказываниям. Первым строгим подходом была пропозициональная ► вероятност­
ная лоrика Гайфмана (Гайфман [805] ,  1 964). Идея заключалась в том, что вероят­
ностное утверждение Р( ф) � р я вляется ограничением на распределение по 
возможным мирам - так же, как обычное логическое высказывание является 
ограничением на сами возможные миры. Любое распределение Р, удовлетворяю­
щее ограничению, является моделью - в стандартном логическом смысле - ве­
роятностного утверждения, и одно вероятностное утверждение влечет за собой 
другое всякий раз, когда модели первого утверждения являются подмножеством 
моделей второго. 

В рамках такой логики можно доказать, например, что Р( а л �) � Р( а ::::} �). 
Удовлетворяемость множеств вероятностных утверждений можно определить в 
пропозициональном случае с помощью линейного программирования (Гальперин 
[945], 1 984; Нильссон [ 1 689] , 1 986). Таким образом, мы имеем "логику вероятно­
сти" в том же смысле, что и "временную логику": как логическую систему, специ­
ализированную для вероятностных рассуждений. 

Чтобы применить вероятностную логику к таким задачам, как доказательство 
интересных теорем в теории вероятности, требовался более выразительный язык. 
Гайфман в [804] ( 1 964) предложил вероятностную логику первого порядка с воз­
можными мирами, являвшимися модельными структурами первого порядка, и с 
вероятностями, прикрепленными к высказываниям (без функций) логики первого 
порядка. Скотт и Краусе ( [20 1 4], 1 966) расширили результаты Гайфмана, разрешив 
бесконечную вложенность кванторов и бесконечные множества высказываний. 

В области ИИ прямым следствием этих идей стало появление проrрамм веро­
ятностной лоrики (Лукашевич [ 1 464] ,  1 998), в которых диапазон вероятностей 
прикреплялся к каждому хорновскому выражению первого порядка, а логический 
вывод выполнялся путем решения задачи линейного программирования, как это 
было предложено Гальпериным. Ранее Гальперин ([95 1 ], 1 990) и Бахус ([96], 1 990) 
также заинтересовались подходом Гайфмана, исследуя некоторые из базовых про­
блем представления знаний, но уже с точки зрения ИИ, а не теории вероятностей 
или математической логики. 

В подобласти ► вероятностных баз данных также используются логические 
высказывания, помеченные вероятностями (Далви и др. [ 5 1 9] ,  2009), но в этом слу­
чае вероятности прикреплены непосредственно к кортежам данных в базе. (В ИИ 
и статистике вероятность прикрепляется к общим отношениям, тогда как наблю­
дения рассматриваются как неопровержимые свидетельства.) Хотя вероятностные 
базы данных позволяют моделировать сложные зависимости, на практике в таких 
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системах чаще всего можно обнаружить использование предположений о глобаль­
ной независимости кортежей. 

Прикрепление вероятностей к высказываниям очень затрудняет определение 
полных и непротиворечивых вероятностных моделей. Каждое неравенство огра­
ничивает лежащую в основе вероятностную модель, заключая ее в полупростран­
ство в многомерном пространстве вероятностных моделей. Сочетание утверж­
дений соответствует пересечению ограничений. Обеспечить, чтобы пересечение 
давало единственную точку, совсем непросто. В действительности основной ре­
зультат Гайфмана ([804], 1 964) является конструкцией единственной вероят­
ностной модели, требующей : а) вероятности для каждого возможного базового 
высказывания; б) вероятностных ограничений для бесконечно большого числа вы­
сказываний, стоящих под квантором существования. 

Одно решение этой проблемы состоит в разработке частичной теории и ее по­
следующем "завершении" путем выбора одной канонической модели из допу­
стимого множества. Нильссон в [ 1 689] ( 1 986) предложил выбирать модель мак­
симальной энтропии, совместимой с заданными ограничениями. Паскин ([ 1 740] , 
2002) разработал "вероятностную логику с максимальной энтропией" с ограни­
чениями, представленными в виде весовых коэффициентов ( относительных ве­
роятностей), прикрепленных к выражениям первого порядка. Такие модели часто 
называют марковским логическими сетями, или MLN (Ричардсон и Доминrос 
[ 1 878], 2006), и они уже стали популярным выбором для приложений, связанных 
с реляционными данными. Подходы с максимальной энтропией, включая MLN, 
в некоторых случаях могут давать неиmуитивные результаты (Милх [ 1 57 1 ] , 2006; 
Джайн и др. [ 1 1 26], 2007; [ 1 1 25], 20 1 О). 

В начале 1 990-х годов исследомгели, работавшие над сложными приложениями, 
отметили ограничения в выразительности байесовских сетей и разработали различ­
ные языки для написания "шаблонов" с логическими переменными, из которых за­
тем можно было автомаrически строить крупные сети для каждого экземпляра зада­
чи (Бриз [296], 1 992; Веллман и др. [23 1 8], 1 992). Наиболее важным таким языком 
был BuGs (Bayesian inference Using Gibbs Sampling, - байесовский вывод с исполь­
зованием выборки Гиббса), объединявший байесовские сети с нотацией ► индек­
сированных случайных переменных, принятой и в стаrистике (Гилкс и др. [855], 
1 994; Луни и др. [ 1 466], 20 1 3). (В языке BUGS индексированная случайная перемен­
ная выглядит как Х[zl, где i имеет определенный целочисленный диапазон.) 

Эrи языки для замкнутых миров унаследовали ключевое свойство байесовских 
сетей : каждая правильно сформированная база знаний определяют уникальную, 
непротиворечивую вероятностную модель. Другие языки для замкнутых миров 
опирались на репрезентативные средства и возможности логического вывода ло­
гического программирования (Пул [ 1 808], 1 993; Сато и Камея [ 1 98 1 ], 1 997; Кер­
стинг и др. [ 1 2 1 8], 2000) и семантических сетей (Коллер и Пфеффер [ 1 265], 1 998; 
Пфеффер [ 1 786], 2000). 
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Исследования в области вероятностных моделей с открытой вселенной имеют 
несколько истоков. В стаrистике проблема ► связывания записей возникает в тех 
случаях, когда записи данных не содержат стандартных уникальных идентифика­
торов; например, в различных ссылках на эту книгу ее первого автора могут упо­
минаrь как "Стюарт Дж. Рассел" или "С. Рассел", или даже "Стюарт Рассел", но 
при этом есть и другие авторы с именем "С. Рассел". 

Сотни компаний существуют исключительно для решения проблем с запися­
ми в финансовых, медицинских, переписных и других данных. Вероятностный 
анализ восходит к работе Данна ([663] ,  1946). Модель Фелледжи-Сунтера ([72 1], 
1969), которая по существу является наивным байесовским классификагором, при­
меняемым для согласования, по-прежнему доминирует в текущей практике. Нео­
пределенность идентичности также рассмаrривается в задаче многоцелевого от­
слеживания (Ситтлер [2080], 1964), суть которой схематически представлена в 
разделе 15.3. 1. 

В области ИИ до начала 1990-х годов полагалось, что датчики могут предо­
ставлять только логические высказывания с уникальными идентификагорами для 
объектов, поскольку именно так было в случае робота Shakey. Изменения при­
шли из области понимания естественного языка, когда Чарняк и Голдмен ([396], 
1992) предложили вероятностный анализ кореферентности для случая, когда два 
лингвистических выражения (например, "Обама" и "президент") могут относить­
ся к одной и той же сущности. Хуанг и Расселл ([ 1085], 1998), а также Пасула и 
соавr. ([ 1742], 1999) разработали метод байесовского анализа неопределенности 
идентичности для наблюдения за дорожным движением. Позднее Пасула и соавr. 
([ 17 4 1  ] ,  2003) разработали комплексную порождающую модель для авrоров, ста­
тей и строк ссылок, включая неопределенность как ссылочную, так и идентично­
сти, и продемонстрировали высокую точность по извлечению сведений о цитиро­
вании. 

Первым формальным языком для вероятностных моделей с открытой вселен­
ной был BLOG (Милх и др. [ 1572] ,  2005; Милх [ 157 1], 2006), который поставлял­
ся с (очень медленным) движком МСМС-алгоритма вероятностного вывода об­
щего назначения. Ласки ([ 1357], 2008) описывает другой язык моделирования с 
открытой вселенной, называемый ► байесовскими сетями с многими сущностя­
ми (Multi-Entity Bayesian Networks - ► МЕВN). Глобальная сейсмическая систе­
ма мониторинга NET-VISA была описана в этой главе благодаря работе Ароры и 
соавт. [75] (20 13). Рейтинговая система Эло была разработана в 1959 году Арпа­
дом Эло ([685], 1978), но по сути это то же самое, что и модель Case V Терстоу­
на ([2214 ] ,  1927). Модель TrueSkill от Microsoft (Гербрих и др. [ 1 О 14 ] ,  2007; Мин­
ка и др. [ 1580], 20 18) основана на байесовской версии Эло Марка Гликмана ([868], 
1999) и в настоящее время работает на базе языка PPL системы Infer.NET. 

Ассоциация данных при многоцелевом отслеживании впервые бьша описана в 
вероятностном окружении Ситтлером ([2080], 1964). Первым практическим алго­
ритмом для масштабных задач бьш алгоритм МНТ - "Multiple Hypothesis Tracker" 
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(Рейд [ 1 867], 1 979). Важные публикации по этой теме были собраны Бар-Шаломом 
и Фортманном ( 1 988) и Бар-Шаломом ( 1 992). Разработка алгоритма МСМС для за­
дачи ассоциации данных бьmа выполнена Пасулой и соавг. ([ 1 7  42], 1 999), применив­
шими его к задачам наблюдения за дорожным движением. Ох и соавт. ([ 1 708], 2009) 
предоставили более формальный анализ и результаты экспериментальных сравне­
ний с другими методами. Шульц и соавт. ( [2008], 2003) описывают подход к реали­
зации ассоциации данных, основанный на методе фильтрации частиц. 

Ингемар Кокс проанализировал сложность задачи ассоциации данных (Кокс 
[486], 1 993 ; Кокс и Хингорани [487], 1 994) и привлек к этой теме внимание сооб­
щества компьюrерного зрения. Он таюке отметил применимость венгерского алго­
ритма, характеризующегося полиномиальным временем, к задаче поиска наиболее 
вероятных назначений, которая в сообществе отслеживания долгое время счита­
лась неразрешимой. Сам этот алгоритм бьm опубликован Куном ( [ 1 320], 1 955) на 
основании переводов работ, опубликованных в 1 93 1  году двумя венгерскими ма­
тематиками, Денесом Кенигом и Йено Эгервари. Однако основная теорема была 
выведена ранее и впервые упоминалась в неопубликованной латинской рукописи 
знаменитого мягематика Карла Густава Якоба ( 1 804-1 85 1  ). 

Идея о том, что вероятностные программы могут также представлять слож­
ные вероятностные модели, бьmа предложена Коллером и соавт. ( [ 1 267], 1 997). 
Первым рабаrающим языком PPL был IBAL Ави Пфеффера ( [ 1 783], 200 1 ;  [ 1 787], 
2007), основанный на простом функциональном языке. Язык BLOG можно рассма­
триваrь как декларативный язык PPL. Возможность соединения декларативного 
и функционального языков PPL исследовалась Макаллестером и соавт. ( [ 1 526], 
2008). Язык CНURCH (Гудман и др. [900], 2008) является языком PPL, построенным 
на базе языка Scheme; в нем впервые бьmа реализована идея совмещения с уже 
существующим языком программирования. В CНURCH также представлен первый 
МСМС-алгоритм вероятностного вывода для моделей со случайными функциями 
высшего порядка, что вызвало интерес у сообщества когнитивных наук как способ 
моделирования сложных форм обучения человека (Лейк и др. [ 1 342], 20 1 5). Языки 
PPL также связаны с интересными методами в теории вычислимости (Аккерман и 
др. [ 1 2] ,  20 1 3 )  и исследованиями в области языков программирования. 

В 20 1 0-х годах появились десятки языков PPL, построенных на базе широкого 
диапазона языков программирования. Язык Figaro, основанный на языке Scala, ис­
пользовался в широком диапазоне разнообразных приложений (Пфеффер [ 1 785], 
20 1 6). Язык Gen (Кусумано-Тоунер и др. [509], 20 1 9), основанный на языках Julia и 
TensorFlow, использовался в системах машинного восприятия реального времени 
наряду с байесовской струюурой обучения для анализа данных временных рядов. 
Языки PPL, построенные на основе струюур глубокого обучения, включают язык 
Pyro (Бингам и др. [2 1 8], 20 1 9) (построен на базе системы PyTorch) и язык Edward 
(Тран и др. [2225] ,  20 1 7) (построен на базе языка TensorFlow). 

Было предпринято немало усилий, чтобы сделать вероятностное программиро­
вание доступным для большего числа людей, таких как пользователи баз данных 
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и электронных таблиц. Язык Tabular (Гордон и др. [903] ,  2014) представляет со­
бой язык описания реляционной схемы с интерфейсом, подобным электронной 
таблице, реализованный поверх языка Infer.NET. Язык BayesDB (Саад и Мансин­
гха [ 1951 ], 2017) предоставляет пользователям возможность комбинирова:rь веро­
ятностные программы и делать запросы к ним с помощью языка, подобною SQL. 

Вероятностный вывод в вероятностных программах обычно полагается на при­
ближенные методы, поскольку точные алrоритмы не масштабируются до уров­
ня моделей тех видов, которые способны представлять языки PPL. Языки с зам­
кнутым миром, такие как BUGS, LIВBI (Мюррей [1643], 2013) и STAN (Карлентер и 
др. [375], 2017), обычно работают путем построения полной эквивалентной бай­
есовской сети, а затем запускают в ней вероятностный вывод: выборку Гиббса -
в случае языка BUGS, последовательный метод Монте-Карло - в случае языка 
LIВBI и гамильтониан Монте-Карло - в случае языка SтAN. Программы на этих 
языках можно читать как инструкции по построению базовой байесовской сети. 
Бриз в работе [296] ( 1992) показал, как, учитывая запрос и свидетельство, генери­
ровать только соответствующий случаю фрагмент всей сети. 

Работа с базовой байесовской сетью означает, что возможные миры, посеща­
емые алгоритмом МСМС, представлены вектором значений переменных в бай­
есовской сети. Идея прямого отбора возможных миров первою порядка принад­
лежит Расселу ( [1941], 1999). На языке FACТORIE (Маккаллум и др. [1528], 2009) 
возможные миры в процессе работы алrоритма МСМС представлены в стандарт­
ной системе реляционной базы данных. В этих же двух статьях предлагается ин­
крементальная переоценка запросов как способ избежать полной оценки запросов 
в каждом возможном мире. 

Методы вероятностного вывода, построенные на использовании базовых элемен­
тов, являются аналогами самых ранних пропозициональных методов логического 
вывода первого порядка (Девис и Путнам [544], 1960). В логическом выводе как 
приложения доказательства теорем резолюции, так и системы логического програм­
мирования полагаются на принцип подъема (см. раздел 9.2), чтобы избежmъ созда­
ния экземпляров логических переменных, не являющихся необходимыми. 

Пфеффер и соавт. ( [1784], 1999) предложили алгоритм устранения перемен­
ной, в котором каждый вычисленный фактор кешируется для повторного исполь­
зования при последующих вычислениях, включающих те же отношения, но иные 
объекты, тем самым реализуя некоторые вычислительные преимущества подъема. 
Первый действительно поднятый алгоритм вероятностного вывода являлся фор­
мой алгоритма устранения переменной и был описан Пулом в [1809] (2003), а за­
тем улучшен Сальво Бразом и соавт. ([562], 2007). Дальнейшие успехи, в том чис­
ле случаи, когда некоторые совокупные вероятности могут бьпь вычисленными в 
замкнутой форме, были описаны Милхом и соавт. ( [1573],  2008), а также Кисински 
и Пулом ([ 1 23 1  ], 2009). В настоящее время существует довольно хорошее понима­
ние, когда подъем возможен, а также его сложности (Грибков и др. [922], 2014; Ка­
земи и др. [ 1 204 ], 20 1 7). 
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Методы ускорения вероятностного вывода приходят из разных направлений ис­
следований, как это было отмечено в начале главы. В нескольких проектах изуча­
лись более сложные алгоритмы в сочетании с методами построения компилято­
ров и/или обученных вспомогаrельных распределений. В системе LIВBI (Мюррей 
[ 1 643], 20 1 3) впервые введен вероятностный вывод по методу частиц Гиббса для 
вероятностных программ; реализован один из первых трансляторов вероятностно­
го вывода, с поддержкой GPU для массовых параллельных SMC, и предусмотре­
но использование языка моделирования для определения пользоваrельских вспо­
могательных распределений алгоритма МСМС. Резульппы изучения компиляции 
вероятностного вывода также представлены Вингейтом и соавт. ([23 59], 20 1 1 ), 
Пейджем и Вудом ([ 1 722], 20 1 4), Ву и соавт. ([239 1 ], 20 1 6). В работах Кларе и со­
авт. ([442], 20 1 3), Хура и соавт. ([ 1 1 00], 20 1 4), а также Кусумано-Тоунера и соавт. 
((509], 20 1 9) демонстрируются методы статического анализа для преобразования 
вероятностных программ в более эффективные формы. Язык PICTURE (Кулкарни 
и др. ( 1 324], 20 1 5) является первым языком PPL, предоставляющим пользовате­
лям возможность применять обучение с помощью предварительных выполнений 
генерирующих программ для тренировки быстрых восходящих вспомогаrельных 
распределений. Ли и соавт. ([ 1 368], 20 1 7) описывают использование методов глу­
бокого обучения для эффективной выборки по важности в PPL. На практике ал­
горитмы вероятностного вывода для сложных вероятностных моделей часто ис­
пользуют несколько методов для различных подмножеств переменных в модели. 
Мансингка и соавт. (( 1 489], 20 1 3) подчеркнули важность идеи о программах веро­
ятностного вывода, которые будут применять различную тактику вероятностного 
вывода к подмножествам переменных, выбранных в процессе выполнения вывода. 

Сборник, отредактированный Гетуром и Таскаром ([842] ,  2007), включает в 
себя много важных стаrей о вероятностных моделях первого порядка и их исполь­
зовании в машинном обучении. Статьи о вероятностном программировании появ­
ляются в маrериалах всех крупных конференций по вопросам машинного обуче­
ния и вероятностных рассуждений, в том числе NeurIPS, ICML, UAI и AISTATS. 
Регулярные семинары по языкам PPL проводятся в рамках конференций NeurIPS 
и POPL (Principles of Programming Languages), а в 20 1 8  году бьmа проведена пер­
вая международная конференция по вероятностному программированию -
International Conference оп ProbaЬilistic Programming (ICPP). 



ГЛАВА 1 6  
Принятие простых решений  

В этой главе показано, как агент должен принимать решения, чтобы полу­
чать то, что ему необходимо, по крайней мере насколько это возможно и в 
среднем количестве случаев. 

В этой главе речь пойдет о том, как теорию полезности можно объединить с те­
орией вероятности, чтобы получить агента, действующего на основе теории при­
нятия решений, т.е. arefffa, способного принимать рациональные решения, исходя 
из своих убеждений и целей. Такой агент сможет принимать решения в условиях, 
в которых неопределенность и противоречивость целей не позволят логическому 
агенту найти какое-либо решение. Агент, действующий на основе цели, способен 
лишь на бинарную оценку: отличить хорошее состояние (цель) от плохого состоя­
ния (не цель), тогда как агент, действующий на основе теории принятия решений, 
способен оцениваrь состояния в непрерывном диапазоне значений и имеет воз­
можность выбраrь лучшее состояние, даже когда наилучше состояние недоступно. 

В разделе 1 6 . 1  обсуждается основной принцип теории принятия решений -
максимизация ожидаемой полезности. В разделе 1 6 .2 показано, что модель пове­
дения любого рационального агента можно построить, определив функцию полез­
ности, которую он будет максимизироваrь. В разделе 1 6 .3 подробно обсуждаются 
характерные особенности функций полезности и, в частности, их связь с отдель­
ными величинами, такими как деньги . В разделе 1 6 .4 показано, как обращаrься с 
функциями полезности, которые зависят от нескольких величин. В разделе 1 6 . 5  
описывается реализация систем принятия решений, в частности - рассмаrрива­
ется формальный подход, называемый сетями принятия решений (известный 
также под названием диаграммы влияния). Такие сети представляют собой рас­
ширение байесовских сетей за счет включения в них действий и показаrелей по­
лезности. В разделе 1 6 .6 объясняется, как агент, действующий на основе теории 
принятия решений, может рассчитать стоимость приобретения новой информации 
для улучшения своих решений. 

В то время как в разделах 1 6. 1- 1 6.6 предполагается, что агент всегда действует 
на основании заданной, известной ему функции полезности, в разделе 1 6. 7 это пред­
положение ослабляется. Мы обсудим последствия неопределенности предпочтений 
со стороны машины, наиболее важным из которых является уважение к людям.  
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1 6. 1 . Сочетание убеждений и желаний в условиях 
неопределенности 

Мы начнем с агента, который, как и все агенты, должен принять решение. Ему 
доступны некоторые действия а. В отношении его текущего состояния может иметь 
место неопределенность, поэтому предположим, что агент назначил вероятность 
P(s) каждому возможному текущему состоянию s. Также у него может существо­
вmъ неопределенность в отношении результатов действий: модель перехода задана 
как P(s1 1 s, а), т.е. вероятность того, что действие а в состоянии s позволит достичь 
состояния s1 • Поскольку в первую очередь нас интересует достижение результата s1

, 

для вероятности достижения состояния s1 за счет выполнения действия а в текущем 
состоянии мы будем использовать сокращенное обозначение P(RESULT(a) = s1) .  Эта 
вероятность и модель перехода связаны следующим образом: 

P(RESULT(a) = s') = L P(s)P(s1 1 s, а). s 

Теория принятия решений в своей простейшей форме связана с осуществлени­
ем выбора среди действий, основанных на желательности получения немедленных 
результатов их выполнения, при этом предполагается, что среда является эпизо­
дической в смысле, определенном в разделе 2.3.2. (Это предположение смягчает­
ся в главе 17.) Предпочтения агента определяются ► функцией полезности, U(s), 
которая присваивает состоянию единственное числовое значение, определяющее, 
насколько оно желательно. ► Ожидаемая полезность действия с учетом свиде­
тельства, EU(a), - это просто среднее значение полезности всех возможных исхо­
дов, взвешенных по вероятности того, что этот исход будет иметь место: 

EU(a) = L P(REsuп(a) = s')U(s'). 
s' 

( 16.1) 

Принцип максимальной ожидаемой полезности (Maximum Expected Utility ­
► MEU) гласит, что рациональный агент должен выбирать действие, которое мак­
симизирует ожидаемую полезность для агента: 

action = argmaxa EU(a). 
В некотором смысле принцип MEU может рассматриваться как определение 

всего искусственного интеллекта. Все, что должен делать интеллектуальный агент, 
сводится к вычислению различных количественных величин, определению макси­
мальной полезности по своим действиям и осуществлению этих действий. Но ска­
занное не означает, что тем самым проблема искусственного интеллекта решена 
по определению! 

Принцип MEU формализует общее представление о том, что интеллектуальный 
агент всегда должен "поступать правильно", но не дает никаких рекомендаций о 
том, как это можно реализовать. Для оценки распределения вероятностей P(s) для 
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всех возможных состояний в мире, охватываемых в P(RESULТ(a) = s1), требуются 
восприятие, обучение, представление знаний и вероятностный вывод. Собственно 
вычисление P(REsuLТ(a) = s1) также требует построения причинной модели мира. 
Может потребоваrься рассмотреть много действий, а вычисление результирующей 
полезности U(s') может само по себе потребовагь дальнейшего поиска или планиро­
вания, поскольку агент не способен определить, насколько хорошим является состо­
яние, пока не узнает, чего он сможет достичь из эroro состояния. Система ИИ, дей­
ствующая от имени человека, может не знагь истинной функции полезности именно 
для человека, а значит, может иметь место неопределенность относительно значе­
ния И. Поэтому теория принятия решений - это вовсе не панацея, позволяющая ре­
шить все проблемы искусственного интеллекта, но она предоставляет истоки основ­
ных математических конструкций, достагочно общих для определения задачи ИИ. 

Понятно, что принцип MEU связан с идеей показагелей производительности, 
представленной в главе 2. Эrа основная идея очень проста. Рассмотрим различ­
ные среды, действия в которых могут привести к получению агентом заданной 
истории восприятий, и предположим, что может быть спроектировано несколько 
разных агентов. • Если агент максимизирует функцию полезности, правильно отра­
жающую показатели производительности, то этот агент достигнет наивысших воз­

можных значений показателей производительности (усредненных по всем возможным 

вариантам среды). Эrо определение является также главным обоснованием для са­
мого принципа MEU. Хотя на первый взгляд такое заявление может показаться 
тавтологией, фактически оно воплощает в себе очень важный переход от внешне­
го критерия рациональности к внутреннему критерию, функции полезности. Мера 
производительности дает оценку для истории - некоторой последовательности 
состояний, а значит, она применяется ретроспективно, уже после того, как агент 
завершил выполнение данной последовательности действий. Функция полезно­
сти применяется непосредственно к следующему состоянию, поэтому ее можно 
использоваrь для пошагового руководства действиями. 

1 6.2. Основы теории полезности 
Интуитивно понятно, что принцип максимальной ожидаемой полезности 

(MEU) можно выбраrь в качестве разумной основы для принятия решений, но во­
все не очевидно, что это единственный рациональный способ. В конце концов, 
почему именно максимизации средней полезности следует придавать такое зна­
чение? Что плохого в том, если агент будет максимизировать взвешенную сумму 
кубов возможных полезностей или попытается минимизироваrь наихудшие воз­
можные потери? Сможет ли агент действовать рационально, просто выражая свои 
предпочтения между состояниями и не присваивая им числовых значений? На­
конец, почему вообще должна существовать функция полезности с требуемыми 
свойствами? Давайте посмотрим. 
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16.2.1. Ограничения, налагаемые на рациональные 
предпочтения 

На эти вопросы можно ответить, записав некоторые ограничения, налагаемые 
на предпочтения, которые должен иметь рациональный агент, а затем показав, что 
принцип MEU можно вывести из этих ограничений. Для описания предпочтений 
агента будем использовагь следующую нотацию. 

Для агента вариант А предпочтительнее, чем В 
Агент безразличен к выбору между вариантами А и В 
Агент предпочитает вариант А варианту В или 
безразличен к выбору между ними 

Теперь напрашивается очевидный вопрос: к какого рода понятиям относятся А 
и В? Эrо могут быть состояния мира, но гораздо чаще существует неопределен­
ность в отношении того, что действительно предлагается. Например, пассажир 
авиакомпании, которому на выбор предлагают "спагетти" или "вареную курицу", 
не знает, что скрывается под фольгой. 1 Спагетти могут быть вкусными или ока­
заться застывшей слипшейся массой; курица может представлять собой сочный 
кусок или оказаться разваренной до неузнаваемости. Множество результагов каж­
дого действия можно воспринимать как ► лотерею, а само действие рассматри­
вагь как ее билет. Лотерея L с возможными исходами S 1 , • • • , Sn, которые имеют ме­
сто с вероятностями р 1 , • • •  , Рт записывается как 

L = [р1 , S1 ; P2, Sz; . . .  Рт Sп]. 
В общем случае каждым результатом лотереи может быть атомарное состояние 

или другая лотерея. Основная проблема теории полезности состоит в том, чтобы 
понять, как предпочтения между сложными лотереями связаны с предпочтениями 
между состояниями, лежащими в основе этих лотерей. Чтобы решить эту пробле­
му, перечислим шесть ограничений, которые должны всегда соблюдаться. 

• ► Обязательность. Если даны две лотереи, то рациональный агент должен 
либо предпочесть одну другой, либо рассматривать их обе как одинаково 
предпочтительные. Эrо означает, что агент не может избежагь принятия ре­
шений. Как бьmо указано в разделе 1 2.2.3, отказ делать ставку подобен отка­
зу позволить времени двигаться: 

Из (А >-- В), (В >-- А) или (А ~ В) выбирается точно одно. 
• ► Транзитивность. При наличии трех лотерей, если агент предпочитает ло­

терею А лотерее В й лотерею В лотерее С, он должен предпочесть лотерею А 
лотерее С: 

1 Мы приносим извинения читателям, чьи местные авиалинии больше не предлагают 
питание на дальних рейсах. 
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(А >- В) Л (В >- С) ⇒ (А >- С). 
• ► Непрерывность. Если некоторая лотерея В находится в порядке предпо­

чтений между лотереями А и С, то существует некоторая вероятность р того, 
что рациональный агент будет безразличен к тому, чтобы определенно вы­
брагь лотерею В или лотерею, результагом которой является лотерея А с ве­
роятностью р и лотерея С с вероятностью 1 -р: 

А >- В >- С  ⇒ 3 р [р, А ; 1 - р, С] ~ В. 
• ► Заменяемость. Если агент безразличен к выбору между двумя лотереями, 

А и В, то агент безразличен и к выбору между двумя более сложными лоте­
реями, которые являются одинаковыми, за исключением того, что в одной 
из них подставлена лотерея В вместо лотереи А. Такое свойство сохраняется 
независимо от вероятностей и от других результатов в лотереях: 

А ~ В ⇒ [р, А;  1 - р, С] ~ [р, В; 1 - р, С]. 

Если в этой аксиоме заменить >- символом ~, она также будет верна. 
• ► Монотонность. Предположим, что две лотереи имеют два одинаковых ре­

зультага, А и В. Если агент предпочитает состояние А состоянию В, то агент 
должен предпочесть лотерею, которая имеет более высокую вероятность для 
состояния А (и наоборот): 

А >- В ⇒ (р > q {=} [р, А; 1 - р, В] >- [q, А;  1 - q, В]) .  
• ► Декомпонуемость. Сложные лотереи можно свести к простым, исполь­

зуя законы вероятностей.  Это свойство получило название "правило «эко­
номии количества ставок»", поскольку согласно ему две последовагельные 
лотереи могут быть сжагы в одну эквивалентную лотерею2 (как показано на 
рис. 1 6. 1 ,  6): 

[р, А; 1 - р, [q, В; 1 - q, С]] ~ [р, А; ( 1 - p)q, В; ( 1  - p)( l - q), С] . 

Эти ограничения известны как аксиомы теории полезности . Каждую аксио­
му можно обосновать, показав, что нарушающий ее агент в определенных ситуа­
циях будет демонстрировать явно нерациональное поведение. Например, можно 
обосновагь свойство транзитивности, заставив агента с нетранзитивными пред­
почтениями отдать нам все свои деньги. Предположим, что этот агент имеет не­
транзитивные предпочтения А >- В >- С >- А, где А, В и С - товары, которые 
можно свободно обменивать. Если агент в настоящее время имеет А, то можно 
предложить ему обменять наше С на его А плюс один цент. Агент предпочита­
ет С и поэтому согласится совершить эту сделку. Далее можно предложить ему 

2 Можно учесть саму привлекательность игры на деньги, включив события игры в 
описание состояния; например, действие "взять с собой 1 О долл . и сделать ставку" может 
рассматриваться как более предпочтительное, чем "взять с собой 1 О долл. и не сделать 
ставку". 
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обменять наше В на его С при тех же условиях и забрать у него еще один цент. 
Наконец, аналогичным образом предлагаем ему обменять А на В и возвраща­
емся в исходную ситуацию за исключением того, что агент отдал нам три цен­
та (рис. 1 6 . 1 ,  а). Теперь можно продолжить повторение этого цикла до тех пор, 
пока у агента вообще не останется денег. Очевидно, что в этом случае агент дей­
ствовал нерационально. 

а) 

эквивалентно 

�

А 

�
в 

( l- p)( l- q) С 

б) 

в 

с 

Рис. 16. 1 .  а) Нетранзитивные предпочтения А >-- В >-- С >-- А могут привести к нера­
циональному поведению: цикл из трех повторяющихся обменов, каждый из кото­
рых обходится в один цент. б) Графическая иллюстрация аксиомы декомпонуемости 

16.2.2. Рациональные предпочтения ведут к полезности 

Обратите внимание, что аксиомы теории полезности в действительности явля­
ются аксиомами о предпочтениях - в них ничего не говорится о функции полез­
ности. Но на самом деле из этих аксиом полезности можно вывести важные след­
ствия, приведенные ниже (доказательство представлено в работе Фон Неймана и 
Моргенштерна [2282] ( 1 944)). 

• Наличие функции полезности . Если предпочтения агента подчиняются ак­
сиомам полезности, то существует функция И, такая, что И(А) > И(В) тогда и 
только тогда, когда А предпочтительнее, чем В, и И(А) = И(В) тогда и только 
тогда, когда агент безразличен к выбору между А и В: 

И(А) > И(В) # А >-- В и И(А) = И(В) # А ~ В. 
• Ожидаемая полезность лотереи. Полезность лотереи равна сумме произве­

дений вероятности каждого результата на полезность этого результаrа: 

И([р 1 , S1 ; . . .  ; рп, Sп]) = "i; p;U(S;) , 
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Другими словами, как только определены вероятности и полезности всех воз­
можных результирующих состояний, полезность сложной лотереи, охватывающей 
эти состояния, становится полностью определенной. Поскольку результатом неде­
терминированного действия является лотерея, из этого следует, что агент может 
действовать рационально - т.е. в соответствии с его предпочтениями - только 
путем выбора действий, который максимизирует ожидаемую полезность в соот­
ветствии с уравнением ( 1 6. 1  ). 

В приведенных выше теоремах утверждается, что (в предположении о соблю­
дении ограничений на рациональные предпочтения) функция полезности суще­
ствует для любого рационального агента. Однако эти теоремы не утверждают, 
что такая функция полезности является единственной. В действительности легко 
увидеть, что поведение агента не изменится, если его функцию полезности U(S) 
преобразовать следующим образом: 

U(S) = aU(S) + Ь, ( 1 6.2) 

где а и Ь - константы и а > О; это положительное аффинное преобразование.3 Дан­
ный факт уже был отмечен в главе 5 (раздел 5.5 . 1 )  для азартных игр для двух игро­
ков, здесь же показано, что это преобразование применимо ко всем видам сцена­
риев принятия решений, 

Как и в играх, в детерминированной среде агенту требуется только ранжиро­
вание предпочтений по состояниям - сами числовые величины не имеют зна­
чения. Это называется ► функцией ценности или ► порядковой функцией по­
лезности. 

Важно помнить, что из существования функции полезности, описывающей по­
ведение агента по выбору предпочтений, вовсе необязательно следует, что агент 
явно максимизирует эту функцию полезности в собственных рассуждениях. Как 
было показано в главе 2, рациональное поведение может быть выработано мно­
гими различными способами. Рациональный агент может быть реализован даже с 
использованием поиска в таблице функций, когда количество возможных состоя­
ний достаточно мало. 

Наблюдая за поведением рационального агента, можно достаточно узнать о 
функции полезности, чтобы составить представление о том, чего агент действи­
тельно пытается достичь (даже если агент сам этого не знает). К данной теме мы 
еще вернемся в разделе 1 6.7. 

3 В этом смысле полезность напоминает температуру: значение температуры в граду­
сах Фаренгейта в 1 ,8 раза больше значения температуры в градусах Цельсия плюс 32, но 
переход от одной шкалы к другой не делает объект горячее или холоднее. 
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1 6.3. Функции полезности 
Функции полезности отображают лотереи на действительные числа. Мы знаем, 

что они должны подчиняться аксиомам обязательности, транзитивности, непре­
рывности, заменяемости, монотонности и декомпонуемости. И это все, что мож­
но сказать о функциях полезности? Строго говоря, да: агент может иметь любые 
предпочтения, какие пожелает. Например, он может предпочесть держать на своем 
банковском счете количество долларов, выражаемое простым числом: в этом слу­
чае, если у него на сче,у 1 6  долл., 3 долл. он должен куда-то деть. Это может ка­
заться необычным, но это нельзя назвать иррациональным. Агент вправе предпо­
честь "зубастый" форд Pinto выпуска 1 973 года сверкающему новому мерседесу. 
Агент может предпочитать иметь на сче,у количество долларов, выражающееся 
простыми числами, только когда он владеет автомобилем Pinto, а когда в его соб­
ственности мерседес, он может выбр�пь другое предпочтение: иметь больше дол­
ларов, чем меньше. К счастью, предпочтения реальных агентов обычно носят бо­
лее систем�пический характер и поэтому с ними легче иметь дело. 

16.3. 1. Оценка полезности и шкалы полезности 

Если наша цель - построить систему, реализующую теорию принятия реше­
ний, которая будет помог�пь человеку принимать решения или действоВ1Пь от его 
имени, сначала необходимо выяснить, что представляет собой функция полезности 
человека. Этот процесс, чаще всего называемый ► выявлением предпочтений, 
включает предоставление человеку возможности выбора и использование наблю­
даемых предпочтений для выявлеция лежащей в его основе функции полезности. 

Уравнение ( 1 6.2) говорит, что для полезности не существует абсолютной шка­
лы, тем не менее имеет смысл установить некоторую шкалу, которая позволит за­
писывать и сравнивать полезности для любой конкретной задачи. Шкала может 
быть создана посредством фиксации полезности любых двух конкретных исхо­
дов, - так же, как была принята шкала измерения температуры по Цельсию за 
счет фиксации на точке замерзания и на точке кипения воды. Как правило, фикси­
руются полезность "наилучшего возможного выигрыша" при U(S) = ит и "наихуд­
шей возможной катастрофы" при U(S) = и.1 . (Обе эти величины должны быть ко­
нечными.) Для ► нормализованных полезностей используют шкалу с и.1 = О и 
ит = 1 .  При такой шкале футбольный фанат в Англии может назначить полез­
ность 1 для команды Англии, выигравшей Кубок мира, и полезность О - для ко­
манды Англии, не прошедшей квалификационный отбор. 

При заданной шкале полезности между и.1 и ит можно оценить полезность 
любого конкретного выигрыша S, попросив агента выбр�пь между S и ► стандарт­
ной лотереей [р, ит ; (1 -р), и.1 ] . Значение вероятности р будет уточняться до тех 
пор, пока агенту не станет безразличен выбор между S и стандартной лотереей. 
При принятии нормализованной полезности полезность S будет задаваться 
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значением р. Повторив эти действия для каждого возможного выигрыша, можно 
определить полезность для всех лотерей, включающих эти выигрыши. Предполо­
жим, например, что необходимо узнагь, как наш фуrбольный болельщик из Англии 
расценивает результlrГ, когда команда Англии выйдет в полуфинал, а ЗЮ"СМ проигра­
ет. Сравним этот результlrГ со стандартной лотереей с вероятностью р выиграть ку­
бок и вероятностью 1 - р для позорной неспособности пройти даже квалификаци­
онные игры. Если при р = 0,3 у болельщика наблюдается равнодушие, то 0,3 - это 
значение полезности для случая достижения полуфинала и проигрыша. 

В медицинских, транспортных, экологических и других задачах принятия ре­
шения на карrу часто ставится жизнь людей.  (Да, есть вещи, более важные, чем 
победа команды Англии на Всемирном чемпионате.)  В таких случаях как и.1 на­
значается значение, соответствующее немедленной смерти (или в действительно 
худшем случае - многих смертей). ♦ Несмотря на то что никто не обладает пра­
вом устанавливать цену человеческой жизни, это факт, что компромиссы по вопросу о 
жизни и смерти принимались и принимаются постоянно. Самолеты отправляются на 
полный капитальный ремонт с некоторыми интервалами, а не после каждого вы­
лета. Автомобили производятся таким образом, чтобы обеспечить некий компро­
мисс между стоимостью и вероятностью выживания при несчастном случае. Все 
мы миримся с таким уровнем загрязнения воздуха, который убивает четыре мил­
лиона человек в год. 

Как это ни парадоксально, но отказ определить стоимость человеческой жизни 
в виде денежной суммы может означать, что жизнь является недооцененной. Росс 
Шахтер описывает государственное агентство, заказавшее исследование по про­
блеме удаления асбеста из школ. Проводившие исследование аналитики, на кото­
рых было возложено принятие решения, установили определенную стоимость в 
долларах для жизни ребенка школьного возраста и в конце исследования пришли 
к заключению, что рациональным выбором в данной сиrуации будет принятие мер 
по удалению асбеста. Заказавшее исследование агентство, морально возмущенное 
самой идеей денежной оценки жизни, немедленно отклонило отчет, а затем про­
сто отказалось от удаления асбеста, этим неявно утверждая, что ценность жизни 
ребенка ниже, чем оценка, которую приняли аналитики. 

В настоящее время несколько органов правительства США, в том числе Агент­
ство по охране окружающей среды, Агентство контроля пищевых продуктов и ме­
дикаментов, а также Министерство транспорта, используют показатель ► стати­
стической стоимости жизни для определения затрlrГ и выгоды от регулирования 
и вмеш1rГельств. Типичные значения этого показателя в 20 1 9  году составляли при­
мерно 1 О млн долл . 

Были предприняты некоторые попытки выяснить, какую ценность сами люди 
придают своей жизни.  Одна общая "валюта", используемая в медицинском анали­
зе и анализе безопасности, - это ► микроморт, вероятность смерти один на мил­
лион. Если вы спросите людей, сколько они готовы заплатить, чтобы избежать это­
го риска - например, избежать игры в русскую рулетку с револьвером, имеющим 
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миллион стволов, - их отвег будет включагь достаточно большие суммы, возмож­но, на уровне десятков тысяч долларов, но их фактическое поведение отражает го­раздо более низкую денежную стоимость для микроморта. Например, в Великобритании принято, что поездка на машине длиной 230 миль сопряжена с риском в один микроморт. За время жизни вашего автомобиля его пробег может составить, скажем, 92 ООО миль, а это уже 400 микромортов. Есть данные, что люди, похоже, готовы заплагить примерно на 1 2  ООО долл. больше за более безопасный автомобиль, который вдвое снижает риск смерти. Тогда из ска­занного выше можно заключить, что их действия при покупке автомобиля сви­детельствуют о согласии со стоимостью в 60 долл . за микроморт. Ряд исследо­ваний подтвердил оценку примерно в этом диапазоне для многих лиц и разных типов риска. Тем не менее государственные органы США, такие как Министер­ство транспорта, как правило, выбирают более низкие значения; они готовы потра­тить на ремонт дорог всего лишь около 6 долл . на ожидаемую спасенную жизнь. Конечно, эти расчеты верны только для небольших рисков. Большинство людей не согласится убить себя даже за 60 млн долл . Еще одной мерой является ► QALY, или скорректированный на качество год 
жизни. Пациенты готовы принять более короткую продолжительность жизни, что­бы избежать инвалидности. Например, пациенты, страдающие болезнями почек, в среднем безразличны к выбору между двумя годами жизни при диализе и одним годом полного здоровья .  
1 б.3.2. Полезность денег 

Корни теории полезности скрываются в экономике, а экономика предоставля­ет единственного очевидного кандидага для использования в качестве меры полез­ности - деньги (или, более конкретно, общий суммарный капитал агента). Почти универсальная способность денег к обмену на всевозможные товары и услуги под­сказывает, что деньги играют важную роль в функциях полезности людей. Чаще всего можно обнаружить, что при прочих равных условиях агент, как правило, предпочитает иметь больше денег, а не меньше. А значит, можно утвер­ждать, что агент проявляет ► монотонное предпочтение в отношении больших сумм денег. Однако это еще не означает, что деньги всегда можно использовать в качестве меры функции полезности, поскольку в этом определении ничего не ска­зано о предпочтениях между лотерея.ми, включающими денежные ставки. Предположим, что вы одержали победу над всеми соперниками в телевизи­онном игровом шоу и ведущий предлагает вам выбор: забирайте свой приз в 1 ООО ООО долл . или сделайте на него ставку, подбросив монету. Если выпадет орел, вы ничего не получите, а если выпадет решка, то получите 2 500 ООО долл . Если вы не склонны к риску, как и большинство людей, то откажетесь от этой ставки и положите в карман миллион. Является ли это решение нерациональ­ным? 
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При условии, что монета не подделана, ► ожидаемая денежная ценность 
(Expected Monetary Value - EMV) этой ставки равно ½ (О долл . ) + ½ 
(2 500 ООО долл .) = 1 250 ООО долл., что больше, чем исходные 1 ООО ООО долл. Но та­
кой расчет не обязательно означает, что принятие предложения сделать подобную 
ставку является лучшим решением. Допустим, что мы используем запись Sn для 
обозначения состояния, соответствующего обладанию всей суммой в п долл ., а 
ваши текущие накопления составляют k долл. В таком случае ожидаемые полезно­
сти двух действий, соответствующих принятию (Accept) и отказу (Decline) от пред­
ложения сделать ставку, будут следующими: 

EU(Accept) = ½ U(SJ + ½ U(Sk+2 500 000), 

EU(Dec/ine) = U(Sk+ 1  000 000)-

Чтобы определить, что делать, необходимо присвоить значения полезности ре­
зультирующим состояниям.  Полезность не является прямо пропорциональной де­
нежной ценности, поскольку полезность вашего первого миллиона очень высока 
(по крайней мере, все так говорят), тогда как полезность еще одного миллиона бу­
дет уже меньше. Предположим, что вы присвоили значение полезности 5 своему 
текущему финансовому состоянию (Sk), значение 9 - состоянию Sk+2 500 000 и зна­
чение 8 - состоянию Sk+ 1 000 000 . В таком случае рациональным действием будет 
отказ от предложения сделать ставку, поскольку ожидаемая полезность его приня­
тия равна только 7,5 (меньше 8, что соответствует отказу от этого предложения). 
С другой стороны, м иллиардер, скорее всего, будет обладать функцией полезно­
сти, практически линейной в диапазоне добавления еще нескольких миллионов, а 
значит, он охотно примет эту ставку. 

В своем первопроходческом исследовании фактически применяемых функ­
ций полезности Грейсон ( [9 1 7], 1 960) обнаружил, что полезность денег почти точ­
но пропорциональна логарифму их количества (предположение об этом впервые 
высказал Бернулли ( [ 1 9 1 ] , 1 73 8); см. упражнение 1 6 .4). Одна конкретная кривая 
полезности, характеризующая предпочтения некоего мистера Берда, показана на 
рис. 1 6 .2, а. Полученные Грейсоном данные о предпочтениях мистера Берда со­
вместимы со следующей функцией полезности: 

U(Sk+п) = -263,3 1 + 22,09 log (п + 1 50 ООО) 

для диапазона от п = - 1 50 ООО долл. до п = 800 ООО долл . 
Не следует полагать, что это безусловно верная функция полезности для денеж­

ных значений, но создается впеч1Пление, что большинство людей руководствуются 
функцией полезности, которая является вогнутой в области положительных значе­
ний денежных накоплений. Брать в долг обычно считается плохим решением, но 
предпочтения между различными уровнями задолженности могут показывать об­
ратное поведение по отношению к вогнутости, связанной с положительными де­
нежными накоплениями. Например, если некто уже имеет долг 1 О ООО ООО долл ., 
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то вполне может принять предложение сделагь ставку на подбрасывание подлин­
ной монеты с выигрышем в 1 О ООО ООО долл. при выпадении орла и проигрышем в 
20 ООО ООО долл. при выпадении решки.4 Такое поведение соответствует S-образ­
ной кривой, показанной на рис. 1 6.2, б. 

и и 

800 000 

а) б) 

Рис. 1 6.2. Кривая полезности денег. а) Эмпирические данные о предпочтениях ми­
стера Берда, представленные в ограниченном диапазоне. б) Типичная кривая для 
всего диапазона 

Если ограничить рассмотрение лишь положительной частью таких кривых, где 
уклон постепенно уменьшается, то для любой лотереи L полезность решения, при 
котором придется сделать выбор в этой лотерее, будет меньше, чем полезность по­
лучения ожидаемой денежной ценности в этой лотерее без принятия условий: 

U(L) < U(Sнмv(L)) .  

Это означает, что агенты с кривыми полезности такой формы ► не склонны к 
риску: они предпочитают вариант гарантированной выплаrы, пусть даже меньшей 
по сравнению с ожидаемой денежной ценностью возможной ставки. С другой сто­
роны, в "безнадежной" области кривой с большими отрицаrельными накоплени­
ями (см. рис. 16.2, б) для поведения агентов характерно уже ► стремление к ри­
ску. Сумма, приобретаемая агентом вместо лотереи, называется ► эквивалентом 
определенности лотереи. Исследования показали, что большинство людей пред­
почитают забрать 400 долл. вместо того, чтобы сделать ставку, розыгрыш кото­
рой позволит в половине случаев получить 1 ООО долл. и О долл. - в другой поло­
вине. Эго означает, что эквивалентом определенности для этой лотереи является 
400 долл., тогда как ее ЕМV равно 500 долл. 

4 Такое поведение можно назвать отчаянным, но оно рационально, если человек уже 
находится в безнадежной сиrуации. 
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Разность между ожидаемой денежной ценностью лотереи и ее эквивалентом 
определенности называется ► страховой премией. Неприятие риска является ос­
новой индустрии страхования, поскольку такое поведение означает, что страховые 
премии становятся положительными. Люди предпочитают заплаrить небольшую 
страховую премию, нежели делаrь ставку на всю стоимость своего дома против 
вероятности его потери в огне. С точки зрения страховой компании цена отдель­
ного дома весьма мала по сравнению с общими резервами этой компании. Это оз­
начает, что кривая полезности страховщика в таком небольшом регионе остается 
приблизительно линейной и для этой компании ставка на стоимость дома против 
страховой премии является почти беспроигрышной. 

Обратите внимание, что при небольших изменениях в уровне денежных нако­
плений по сравнению с текущим размером накоплений почти любая кривая полез­
ности должна быть приблизительно линейной. Агент, который руководствуется 
такой линейной кривой, называется ► нейтрально относищнмси к риску. По­
этому в случае ставок на небольшие суммы предполагается соблюдение свойства 
нейтрального отношения к риску. В определенном смысле это свойство является 
обоснованием упрощенной процедуры, в которой применяются небольшие ставки 
для оценки вероятностей, а также обоснованием аксиом вероятностей, приведен­
ных в разделе 1 2 .2 .3 . 

1 6.3.3. Ожидаемая полезность и разочарование 

после принятия решения 

Рациональный способ выбора наилучшего действия а* заключается в максими­
зации ожидаемой полезности : 

а* =  argmaxa EU(a). 
Если ожидаемая полезность была правильно рассчитана в соответствии с веро­

ятностной моделью и если вероятностная модель правильно отражает лежащие в 
основе стохастические процессы, определяющие генерируемые результаты, то в 
среднем ожидаемая полезность будет достигнута, если весь процесс будет повто­
рен много раз. 

Однако в действительности выбранная модель, как правило, слишком упроща­
ет реальную сmуацию либо потому, что имеющихся знаний недостагочно (напри­
мер, при принятии сложного инвестиционного решения), либо потому, что вычис­
ление истинной ожидаемой полезности является слишком сложным (например, 
при выборе хода в нардах необходимо принимать во внимание все возможные в 
будущем варианты выпадения очков на паре игральных костей). В этом случае мы ----
работаем действительно с оценками истинной ожидаемой полезности EU(a) . Бу-
дем предполагать, возможно излишне благожелательно, что оценки являются ----
► несмещенными, т.е. ожидаемое значение ошибки M( EU(a) - EU(a)) является 
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нулевым. В этом случае все еще кажется разумным выбирпь действия с самой вы­
сокой оценкой полезности и рассчиrывать получить эту полезность, в среднем, по­
сле выполнения действия. 

К сожалению, реальный результат, как правило, будет значительно хуже, чем 
это следует из оценки, несмотря даже на то, что оценка была несмещенной !  Чтобы 
понять, почему, рассмотрим задачу принятия решения, в которой есть k вариантов, 
каждый из которых имеет истинную оценочную полезность О. Предположим, что 
ошибки в оценке полезности каждого результата независимы и характеризуют­
ся единичным нормальным распределением, т.е. гауссианом с нулевым средним и 
единичной дисперсией, представленным утолщенной кривой на рис. 16.3 .  Теперь, 
если начать генерировать оценки полезности, некоторые ошибки будут отрица­
тельными (пессимистичными), а некоторые - положительными (оптимистичны­
ми). Поскольку выбирается действие с самой высокой оценкой полезности, неиз­
бежно проявится предпочтение в отношении чрезмерно оптимистичных оценок, 
что и послужит источником смещения. 
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Рис. 16.3. Необоснованный оптимизм, вызванный выбором самых лучших из име­
ющихся k вариантов: предполагается, что каждый вариант имеет истинную полез­
ность О, а результаты оценки полезности подчиняются единичному нормальному 
распределению (утолщенная кривая). Остальные кривые показывают распределе­
ние для максимума из k оценок при k = 3, 1 0  и 30 

Было совсем несложно вычислить распределение максимума для k оценок и, 
таким образом, количественно оценить степень нашего разочарования. (Это вы­
числение является частным случаем вычисления ► порядковой статистики, рас­
пределения любого конкретного ранжированного элемента выборки.) Предполо­
жим, что каждая оценка Х; имеет функцию плотности вероятности ./{х) и 
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кумулятивное распределение F(x). (Как объясняется в приложении А, кумулятив­
ное распределение F определяет вероятность того, что стоимость будет меньше 
или равна любой заданной величине, т.е. она интегрирует исходную плО111ость ве­
роятности /) Теперь пусть Х" будет наибольшей оценкой, т.е. равна max{X1 , . . . , 
Xk} . Тогда кумулятивное распределение для Х" вычисляется как 

P(max{X1 , · · ·  , Xk} � х) = Р(Х1 � х, . . .  , xk � X) =  
= Р(Х1 � х) . . .  P(Xk � х) = F(xi. 

Функция плотности вероятности является производной кумулятивной функции 
распределения, поэтому плотность для Х", т.е. для максимума из k оценок, будет 
равна 

d 
Р(х) = -( F(x)k ) = kf(x)(F(x))k-1 • 

dx 

На рис. 1 6.3 эти плотности показаны для различных значений k в случае, когда 
.f(x) является единичным нормальным распределением. Для k = З  nлО111ость вероят­
ности для Р имеет среднее значение примерно 0,85, так что среднее разочарова­
ние будет составлять около 85% от стандартного отклонения в оценке полезности. 
При большем количестве возможностей выбора крайне оптимистичные оценки с 
большой вероятностью возрас'I)'Т: для k = 30 разочарование будет примерно вдвое 
превышать стандартное отклонение для оценок. 

ЭJу тенденцию - оказываться слишком высокой - для оценочной ожидаемой 
полезности при выборе наилучшей оценки называют ► проЮJятием оптимизато­
ра (Смит и Винклер [2094], 2006). Оно поражает даже самых опытных аналитиков 
и статистиков. Серьезные проявления включают в себя необоснованную уверен­
ность, что восхитительный новый препарат, который якобы излечивает 80% па­
циентов, при испытании действительно вьmечит 80% пациеlfГОв (эта цифра была 
выбрана при k = "тысячи потенциальных лекарственных препаратов"), или фонд 
взаимопомощи, рекламируемый как имеющий доходность выше среднего уровня 
будет действительно ее иметь (для упоминания в рекламе это заявление бьmо вы­
брано из k = "дюжины фондов" в общем портфолио компании). Может даже так 
оказаться, что то, что кажется лучшим выбором, может вовсе им не бьrrь, если 
дисперсия у оценки полезности будет высока: препарат, который вьmечил 9 из I О 
пациентов и был выбран из тысяч опробованных, вероятно, будет хуже, чем тот, 
который вылечил 800 пациентов из 1 000. 

Проклятие оптимизатора проявляется везде и всюду по причине повсеместного 
распространения способа выбора по максимальной полезности, поэтому прини­
мать оценки полезности по их "номинальной стоимости" - это плохая идея. Про­
клятия можно избежать с помощью байесовского подхода, в котором используется -
явная вероятностная модель Р( EU I EU) для ошибки в оценках полезности. Имея 
эту модель и априорное распределение того, что можно обоснованно ожидать 
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относительно величин полезностей, можно рассмагривпь оценку полезности как 
свидетельство и вычислять апостериорное распределение для истинной полезно­
сти, используя правило Байеса. 

16.3.4. Субъективные суждения и иррациональность 

Теория принятия решений является ► нормативной теорией - она описы­
вает, как должен действовагь рациональный агент. С другой стороны, ► описа­
тельная теория описывает, как реальные агенты - например, люди - действуют 
на практике. Область применения экономической теории удалось бы значительно 
расширить, если бы вторая совпадала с первой, однако имеются некоторые экспе­
риментальные св идетельства того, что все обстоит не так. Эrи свидетельства пока­
зывают, что люди "предсказуемо иррациональны" (Ариэли [69], 2009). 

Наиболее известным примером является парадокс экономиста Алле (Алле [30], 
1 953). Людям был предоставлен выбор между лотереями А и В, а загем между ло­
тереями С и D, которые имели следующие призы. 

А :  шанс 80% на получение 4000 долл. 
В: шанс 1 00% на получение 3000 долл. 
С: шанс 20% на получение 4000 долл. 
D: шанс 25% на получение 3000 долл. 

Большинство участников предпочли лотерею В лотерее А (принимая гаран­
тированный выигрыш) и лотерею С лотерее D (выбирая более высокую по­
лезность). Однако нормативная теория требует иного !  Почему - легче всего 
увидеть, если воспользоваться вытекающей из уравнения ( 1 6 .2) свободой уста­
новить U(0 долл.) = О. В этом случае из В >-- А для первого выбора следует, что 
U(3000 долл.) > 0,8 U(4000 долл .), тогда как из С >-- D следует прямо противопо­
ложное. Другими словами, не существует функции полезности, которая была бы 
совместимой с этими выборами.  

Одним из объяснений для этих очевидно нерациональных предпочтений явля­
ется ► эффект уверенности (Канеман и Тверски [ 1 1 73 ], 1 979): людей чрезвычай­
но притягивает выигрыш, который они получат наверняка. Есть несколько причин, 
по которым это может происходить. 

Во-первых, люди могут предпочесть снять с себя всю вычислительную нагруз­
ку, - при выборе надежных результагов, им не потребуется выполнять каких-ли­
бо расчетов с вероятностями. И этот эффект сохраняется даже тогда, когда необхо­
димые вычисления в действительности очень просты. 

Во-вторых, люди могут не доверять законности заявленных вероятностей. Я по­
верю, что результаты бросков монеты действительно будут примерно 50/50 толь­
ко в том случае, если я контролирую и монету, и броски, но я могу не поверить 
результагам, если броски выполнял кто-то другой, имеющий личные интересы в 
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полученных результатах.5 При наличии недоверия лучшим выбором может ока­
заться гарантированный вариант.6 

В-третьих, люди могут беспокоиться о своем эмоциональном состоянии точно 
так же, как и о финансовом. Люди знают, что испытают большое сожаление, если 
откажутся от гарантированной награды (лотерея В) в пользу шанса 80% на более 
высокую награду (лотерея А), а зRГем проиграют. 

Другими словами, если будет выбрана лотерея А, то будет существовать шанс 
20% вообще не получить никаких денег и почувствовать себя полным идиотом, 
что еще хуже, чем просто не получить денег. Так что вполне возможно, что те 
люди, которые предпочитают лотерею В лотерее А и лотерею С лотерее D, не яв­
ляются нерациональными, - просто они готовы отказаться от лишних 200 долл. 
из ЕМУ, чтобы избежать шанса 20% почувствовRГь себя полным идиотом. 

Близкой проблемой является парадокс Эллсберга. В этом случае приз фикси­
рован, а ограничения относятся к вероятностям. Выплата будет зависеть от цвета 
шара, выбранного из урны. Известно, что урна содержит 1 /3 красных шаров и 2/3 
черных или желтых шаров, но остается неизвестным, сколько из них шаров чер­
ных и шаров желтых. И вновь, участнику предлагается выбор между лотереями А 
и В, а затем между лотереями С и D: 

А :  1 00 долл . за красный шар 
В: 1 00 долл. за черный шар 
С: 1 00 долл. за красный или желтый шар 
D: 1 00 долл. за черный или желтый шар 

Должно быть понятно, что если вы полагаете, что красных шаров больше, чем 
черных, то вам лучше предпочесть лотерею А лотерее В и лотерею С лотерее D. 
Но если вы считаете, что красных шаров меньше, чем черных, то должны пред­
почесть обратное. Однако оказалось, что большинство людей предпочитают ло­
терею А лотерее В, но также предпочитают лотерею D лотерее С, несмотря на то 
что в этом мире нет такого состояния, для которого этот выбор бьm бы рациональ­
ным. Кажется, что люди испытывают ► отвращение к неоднозначности: лоте­
рея А дает 1 /3 шансов на победу, в то время как лотерея В может дать шансов где­
то между О и 2/3 .  Точно так же лотерея D дает 2/3 шансов, в то время как лотерея С 
может дать шансов где-то между 1 /3 и 3/3. Большинство людей выбирают извест­
ную вероятность, а не неизвестную неизвестность . 

Еще одна проблема заключается в том, что точная формулировка задачи при­
нятия решения может оказать большое влияние на выбор агента, - это называют 
► эффектом фрейминrа. Эксперименты показывают, что медицинская процедура, 

5 Например, математик и маг Перси Диаконис каждый раз может заставить монетку 
упасть так, как ему хочется (Ландхуис [ 1 349], 2004). 

6 Даже гарантированные вещи моrут не обладать полной достоверностью. Несмотря 
на "чуrунные" обещания, никто еще так и не получил 27 млн долл. с нигерийского бан­
ковского счета ранее неизвестного умершего родственника. 
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которая описывается как имеющая "выживаемость 90%", нравится людям пример­
но вдвое больше, чем описанная как имеющая "смертность 1 0%", несмотря на то 
что оба эти утверждения означают одно и то же. Подобное расхождение в сужде­
ниях было обнаружено во множестве экспериментов, и оно проявляло себя при­
мерно одинаково независимо от того, кто именно принимал участие в экспери­
менте: пациенты клиники, статистически подкованные сrуденты бизнес-школ или 
опытные врачи. 

Обычно люди чувствуют себя комфортнее, делая относительные суждения о 
полезности, а не абсолютные. Клиент может иметь очень слабое представление о 
том, насколько хороши разные сорта вин, предлагаемых в ресторане. И ресторан 
пользуется этим, предлагая вино по 200 долл. за бутылку, которое никто не будет 
покупать, но которое способствует взвинчиванию оценки клиента в отношении 
стоимости остальных предлагаемых вин, делая вино по 55  долл. за бутылку впол­
не приемлемым выбором. Это явление называют ► эффектом привязки. 

Если люди-информаторы настаивают на противоречивых суждениях о предпо­
чтениях, не существует ничего, что автоматизированный агент мог бы сделать, 
чтобы стать совместимым с ними. К счастью, суждения о предпочтениях, сделан­
ные людьми, часто открыты для пересмотра в свете дальнейшего рассмотрения. 
Парадоксальность выбора в таких экспериментах, как лотереи Алле и Эллсберга, 
значительно сокращается (но не исчезает), если досrупные варианты выбора луч­
ше объясняются. Работая в Гарвардской школе бизнеса по оценке полезности де­
нег, Кини и Райффа ([ 1 2 1 3 ], 1 976, с. 2 1 0) обнаружили следующее: 

Субъекты, как правило, слишком склонны к риску в малом, и в результате . . .  
встроенные функции полезности демонстрируют неприемлемо большие пре­
мии за риск в случае лотерей с широким распространением ... Однако большин­
ство испыrуемых способны убедиться в своей непоследовательности и чувству­
ют, что усвоили важный урок в отношении того, как им следует поступать. Как 
следствие некоторые субъекты отменяют свою краткосрочную страховку на слу­
чай авгомобильной аварии и заключают договор о страховании жизни на более 
длительный срок. 

Свидетельства иррациональности человека также изучались исследователями в 
области ► эволюционной психологии, которые указывают на тот факт, что меха­
низмы принятия решений нашего мозга еще не эволюционировали в достаточной 
степени, чтобы решать устные задачи с вероятностями и призами, приведенными 
в виде десятичных чисел. Допустим в качестве аргумента, что мозг имеет встро­
енные нейронные механизмы для выполнения вычислений с вероятностями и по­
лезностями или что-то функционально эквивалентное. Если это так, то необходи­
мые входные данные посrупали бы за счет накопленного опыта по результатам и 
наградам, а не посредством лингвистических представлений числовых значений. 

Далеко не очевидно, что есть возможность непосредственно получить досrуп к 
встроенным в мозг нейронным структурам, представляя задачи принятия решений 
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в лингвистической/числовой форме. Сам тот факг, что различные словесные вари­
анты представления одной и той же задачи принятия решения приводят к различ­
ным вариантам выбора, предполагает, что сама задача принятия решения остает­
ся не воспринятой. Вдохновленные этим наблюдением, психологи уже пытались 
представлять задачи, требующие рассуждений в условиях неопределенности и 
принятия решений, в "эволюционно подходящих" формах. Например, вместо того 
чтобы сказать "шансы на выживание равны 90%" экспериментатор может показагь 
1 00 контурных изображений операции, на десяти из которых пациент умирает и 
остается жив на оставшихся 90. В случае, когда задачи принятия решений предла­
гаются подобным образом, поведение людей, кажется, намного ближе к стандар­
ту рациональности. 

16.4. Многоатрибутные функции полезности 
Принятие решений в области государственной политики предполагает высокие 

ставки как в финансовом отношении, так и в вопросах жизни и смерти. Например, 
принимая решение о том, какие уровни вредных выбросов считать допустимыми 
для электростанций, лица, устанавливающие эти ограничения, должны сопоста­
вить гарантии предотвращения смертей и инвалидности с выгодой для предприя­
тий и экономическим бременем снижения выбросов. При поиске места для стро­
ительства нового аэропорта приходится учитывать, какой вред окружающей среде 
будет нане�ен этим строительством, стоимость земельного участка, расстояние от 
центров сосредоточения большого количества населения, шум, связанный с дея­
тельностью аэропорта, проблемы безопасности, обусловленные местной топогра­
фией и погодными условиями, и т.д. Задачи, подобные этим, в которых результаты 
харакrеризуются двумя или несколькими атрибутами, рассмаrриваются в ► тео­
рии мноrоатрибутной полезности. По своей сути это теория сравнения яблок с 
апельсинами. 

Обозначим эти аrрибуты как Х =Х1 , . • • , Хп, и пусть х = (х 1 , . • • , Хп) будет полным 
вектором присваиваний, где каждый Х; представляет собой либо числовое, либо 
дискретное значение с предполагаемым упорядочением по значениям. Анализ 
упрощается, если все устроить так, чтобы более высокие значения аrрибута всегда 
соответствовали более высоким полезностям: полезности должны монотонно воз­
растать. Эrо означает, например, что в качестве аrрибута нельзя использовать ко­
личество смертей d, - в данном случае следует использовать значение -d. Эrо 
также означает, что недопустимо использовать как аrрибут темперmуру в помеще­
нии. Если функция полезности для комнатной темпера,уры имеет пик при 22°С и 
монотонно падает по обе стороны от него, то следует разделить подобный атрибут 
на две части: использовать значение t - 22 для измерения, достаточно ли в комнате 
тепло, и 22 - t - для измерения, не слишком ли в ней холодно. Каждый из этих 
атрибутов будет монотонно возрастать, пока не достигнет своей максимальной 
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полезности при значении О. Or этой точки и далее кривые полезности остаются го­
ризонтальными, и это означает, что уже нельзя получить большее значение "доста­
точно тепло" при увеличении температуры выше 22°С или "достаточно прохлад­
но" при ее снижении ниже 22°С. 

В задаче о строительстве нового аэропорта можно выделить следующие атри­
буты. 

• Пропускная способность (Тhroughput), измеряемая количеством рейсов в 
день. 

• Безопасность (Safety), измеряемая ожидаемым количеством смертей в год, 
взятым со знаком минус. 

• Беспокойство (Quietness), измеряемое количеством людей, над жилищами 
которых пролетают самолеты, взятое со знаком минус. 

• Экономичность (Frugality), измеряемая стоимостью строительства, взятой 
со знаком минус. 

Начнем с анализа случаев, в которых решения моrут быть приняты без комби­
нирования значений атрибутов в единственное значение полезности . Затем рас­
смотрим случаи, в которых полезности комбинаций атрибутов могут быть опреде­
лены очень кратко. 

16.4.1. Доминирование 

Предположим, что строительство аэропорта на площадке S 1 стоит меньше, обе­
спечивает меньшее шумовое загрязнение и характеризуется большей безопас­
ностью, чем в случае выбора площадки S2 • Значит, можно фактически без коле­
баний отвергнуть вариант с площадкой S2 • О такой ситуации говорят, что имеет 
место ► строгое доминирование варианта S1 над вариантом S2 • В общем случае, 
если некоторый вариант характеризуется меньшими значениями всех атрибутов по 
сравнению с каким-то другим вариантом, нет необходимости продолжать его даль­
нейшее рассмотрение. Выявление строгого доминирования часто бывает очень по­
лезно, когда требуется сократить перечень вариантов выбора, оставив лишь ре­
альных претендентов, хотя его применение редко приводит к тому, что остается 
единственный вариант. На рис. 1 6 .4, а показана диаграмма для случая с двумя 
атрибутами - Х1 и Х2 . 

Такой подход, безусловно, применим для детерминированного случая, когда зна­
чения всех атрибутов точно известны. А как поступать в более общем случае, когда 
следствия представлены неопределенными значениями? В этих случаях можно при­
менять прямой аналог отношения строгого доминирования, в котором, несмотря на 
неопределенность, все возможные конкретные результаты для S1 строго доминиру­
ют над всеми возможными результатами для S2 (рис. 1 6.4, 6). Конечно, это, вероятно, 
происходит даже реже по сравнению с детерминированным случаем. 
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Рис. 16.4. Строгое доминирование. а)Детерминированный случай: над вариантом А 
строго доминирует вариант В, но этого нельзя сказать о вариантах С и D. б) Неопре­
деленный случай: над вариантом А строго доминирует вариант В, но не вариант С 

К счастью, есть и более полезное обобщение, называемое ► стохастическим 
доминированием, которое очень часто встречается в реальных задачах. Принцип 
стохастического доминирования проще понять в контексте задачи с одним аrри­
бутом. Допустим, известно, что стоимость строительства аэропорта на площад­
ке S1 равномерно распределена в пределах от 2,8 млрд долл. до 4,8 млрд долл ., а 
стоимость его строительства на площадке S2 равномерно распределена в преде­
лах от 3 млрд долл. до 5,2 млрд долл. Определим аrрибут Экономичность как сто­
имость строительства со знаком "минус". На рис. 1 6.5, а показаны распределения 
для аrрибутов экономичности площадок S1 и S2• Теперь, руководствуясь лишь ин­
формацией о том, что более экономичный выбор имеет большую полезность (все 
остальные показатели равны), можно сказаrь, что вариант S1 стохастически доми­
нирует над S2 (а значит, вариант S2 можно отбросить). Важно отметить, что такой 
вывод не следует из сравнения ожидаемых зarpar. Например, если бы было из­
вестно, 'ПО стоимость варианта S 1 равна точно 3,8 млрд долл., то мы не смогли бы 
принять решение без дополнительной информации о полезности денег. (Может 
показаrься странным, что больше информации о стоимости S1 может уменьшить 
способность агента принимать решения. Парадокс разрешается, если отметить, 
что при отсутствии точной информации о стоимости решение принять легче, но с 
большей вероятностью его ошибочности.) 

Точное соотношение между распределениями атрибутов, необходимое для 
определения стохастического доминирования, проще всего оценить, исследуя ку­
мулятивные распределения, показанные на рис. 1 6.5, 6. (Напомним, что в кумуля­
тивном распределении измеряется вероятность того, что стоимость меньше или 
равна какой-либо заданной сумме.) Если кумулятивное распределение для S1 всег­
да находится справа от кумулятивного распределения для S2, то с точки зрения 
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стохастической оценки вариант S1 дешевле, чем S2 • Говоря формальным языком, 
если два действия, А I и А2, приводЯт к созданию распределений вероятностей р 1 (х) 
и р2(х) по атрибуту Х, то действие А I стохастически доминирует над действием А2 
по атрибуту Х, если справедливо следующее соотношение: 
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Рис. 16.5. Стохастическое доминирование. а) Вариант S1 стохастически доминиру­
ет над вариантом S2 по стоимости. б) Кумулятивные распределения для отрицатель­
ной стоимости вариантов S1 и S2 

Возможность применения этого определения для выбора оптимальных ре­
шений вытекает из следующего свойства: ♦ если действие А I стохастически до­
минирует над действием А21 то для любой не убывающей монотонно функции полез­
ности U(x) ожидаемая полезность действия А I является по меньшей мере такой же 
высокой, как и ожидаемая полезность действия А2 • Чтобы понять, почему это так, рас­
смотрим две ожидаемые полезности, J p 1 (x)U(x)dx и J pix)U(x)dx. Вначале не оче­
видно, почему первый интеграл больше второго, если известно, что условие сто­
хастического доминирования утверждает, что р1 -интеграл должен быть меньше 
Ргинтеграла. 

Однако, вместо того чтобы рассматривать интеграл по х, давайте рассмотрим 
интеграл по у, т.е. кумулятивную вероятность, показанную на рис. 1 6.5 ,  6. При лю­
бом значении у соответствующее значение х (а следовательно, и U(x)) для S1 будет 
больше, чем для S2 • Поэтому, при интегрировании больших значений по всему ди­
апазону изменения у, безусловно, будет получен больший результат. Говоря фор­
мально, это просто подстановкау = Р 1 (х) в интеграл для ожидаемого значения S1 и 
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у =  Pix) - в интеграл для ожидаемого значения S2. При такой замене получим 
dy = :fx (Pi (x)) dx =p 1 (x)dx для S 1 и dу =рiх)dх - для S2, следовательно, 

00 1 1 00 

f P1 (x)U(x)dx = f U(}�- I (y))dy � f U(l�-1 (y))dy = f p2 (x)U(x)dx . 
-00 0 0 -<1J 

Это неравенство позволяет нам А 1 предпочесть А2 в задаче с одним атрибутом. 
В более общем случае, если в задаче с несколькими атрибутами над некоторым 
действием по всем атрибутам стохастически доминирует другое действие, то пер­
вое можно отбросить. 

Состояние стохастического доминирования может показаться довольно специ­
фическим, и оценить его, возможно, будет не так и просто без громоздких вероят­
ностных расчетов. Но на самом деле прийти к подобному заключению очень лег­
ко во многих случаях. Например, что вы предпочтете: упасть головой на бетон с 
высоты 3 миллиметра или с высоты 3 метра? Полагаем, что вы выбрали 3 милли­
метра - правильный выбор ! Но почему это обязательно лучшее решение? Су­
ществует значительная неопределенность в отношении степени ущерба, который 
будет получен в обоих случаях; но для любого заданного уровня повреждений ве­
роятность того, что вы получите повреждения не менее этого уровня, всегда будет 
выше при падении с высоты три метра, а не три миллиметра. Другими словами, 
высота 3 миллиметра стохастически доминирует над высотой 3 метра по атрибу-
1)' безопасности. 

Подобный вид рассуждений совершенно естественен для человека. Это на­
столько очевидно, что мы даже не задумываемся об этом. Примеров стохасти­
ческого доминирования достаточно и в задаче о строительстве аэропорта. Пред­
положим, например, что транспортные расходы при строительстве зависят от 
расстояний до поставщиков. Сама по себе стоимость остается неопределенной, но 
чем больше эти расстояния, тем выше стоимость. Если площадка S1 ближе к по­
ставщикам, чем S2, то вариант S 1 будет доминировать над S2 по показателю эконо­
мичности. Хотя они здесь не приводятся, существуют алгоритмы распростране­
ния качественной информации такого рода среди неопределенных переменных в 
► качественных вероятностных сетях, позволяющие системе вырабатывать ра­
циональные решения на основе отношений стохастического доминирования без 
использования каких-либо числовых значений. 

1 6.4.2. Структура предпочтений и многоатрибутная полезность 

Предположим, что имеется п атрибутов, каждый из которых имеет d различных 
возможных значений. Чтобы определить полную функцию полезности U(x 1 , . . .  , 
Хп), в худшем случае потребуется dn значений. Теория мноrоатрибутной полезно­
сти ставит целью выявление регулярных струкrур в предпочтениях людей, чтобы 
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устранить необходимость определения всех значений dn в отдельности. После вы­
явления некоторой закономерности в выборе предпочтений выводятся ► теоремы 
представления - для обоснования тоrо, что агент со структурой предпочтений 
определенноrо рода имеет следующую функцию полезности: 

U(x 1 , · · ·  , Xп) = F [/j(xi ), . . .  ,.fп(xп)], 

где F представляет собой (мы надеемся) простую функцию, такую как сложение. 
Обратите внимание на сходство с использованием байесовских сетей для деком­
позиции совместного распределения вероятностей нескольких случайных пере­
менных. 

В качестве примера предположим, что каждый атрибут х; - это сумма денег, 
которую агент имеет в определенной валюте: доллары, евро, марки, лиры и т.д. 
Тогда функции.fi могут выполнять конвертирование этих сумм в общую валюту, 
а функция F будет простым суммированием. 

Предпочтения без неопредеnенности 

Начнем с детерминированного случая. В разделе 1 6 .2 .2 отмечалось, что для 
детерминированных вариантов среды у агента имеется функция ценности, запи­
сываемая как V(x 1 , • • •  , Хп), поэтому здесь наша цель состоит лишь в том, чтобы 
представить эту функцию в более краткой форме. Основное свойство регулярно­
сти, которое наблюдается в детерминированных структурах предпочтений, назы­
вается ► независимостью предпочтений. Два атрибута, Х1 и Х2, являются неза­
висимыми по предпочтениям от третьеrо атрибута, Х3 , если предпочтение между 
состояниями (х1 , х2, х3) и (х 1 ', х2', х3) не зависит от конкретноrо значения х3 атри­
бута Х3. 

Возвращаясь к примеру с аэропортом, в котором нужно было рассмотреть (кро­
ме других атрибутов) атрибуты Quietness (беспокойство), Frugality (экономич­
ность) и Safety (безопасность), можно предположить, что атрибуты Quietness и 
Frugality независимы по предпочтениям от атрибута Safety. Например, если мы 
предпочтем состояние с 20 ООО людей, проживающих в районах, над которыми вы­
полняются полеты, и стоимостью строительства 4 млрд долл. состоянию с 70 ООО 
людей, проживающих в районах полетов, и стоимостью 3 ,  7 млрд долл. ,  при том 
что уровень безопасности в обоих случаях равен 0,006 смертей в расчете на мил­
лиард миль перевозок пассажиров, то будем иметь то же предпочтение, когда 
уровень безопасности равен 0,0 1 2  или когда он равен 0,003 , и то же отношение 
независимости сохранится для предпочтений между любыми другими парами зна­
чений атрибутов Quietness и Frugality. Также очевидно, что атрибуты Frugality и 
Safety независимы по предпочтениям от атрибута Quietness, а атрибуты Quietness 
и Safety независимы по предпочтениям от атрибута Frugality. 

В подобных случаях rоворят, что множество атрибутов { Quietness, Frugality, 
Safety} обнаруживает ► взаимную независимость по предпочтениям (Mutua/ 
Preferential Independence - ► МРI). Согласно свойству MPI, независимо от того, 
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насколько важен каждый атрибут, он не влияет на отношения, в которых другие 
атрибуты сопоставляются друг с другом. 

Взаимная независимость по предпочтениям в определенной степени представ­
ляет собой идеализацию, но на ее основе можно вывести очень просrую форму 
для функции ценности агента (Дебре [576], 1960): ♦ если атрибуты Х1 , • • •  , Хп яв­
ляются взаимно независимыми по предпочтениям, то предпочтения агента можно 

представить функцией ценности 

V(х1 , . . .  , Хп ) = L/;(x; ), 
i 

где каждое слагаемое V; ссылается только на атрибут Х;. Например, вполне допу­
стим такой вариант, что решение по размещению аэропорта может быть принято 
на основе следующей функции ценности: 

V(quietness,jrugality, safety) = quietness x 104 + frugality + safety x 10 1 2
• 

Функция ценности такого типа называется ► аддитивной функцией ценно­
сти . Аддитивные функции представляют собой исключительно естественный спо­
соб описания предпочтений агента и действительно правильно описывают многие 
реальные сиrуации. Для п атрибутов оценка аддитивной функции ценности тре­
бует оценки п отдельных одномерных функций ценности вместо одной п-мерной 
функции. Как правило, это означает экспоненциальное уменьшение количества 
необходимых экспериментов с предпочтениями. Даже если свойство MPI не со­
блюдается строго, что может иметь место при крайних значениях атрибутов, адди­
тивная функция ценности все еще может предоставлять хорошую аппроксимацию 
для предпочтений агента. Такое утверждение особенно полно оправдывается, ког­
да нарушения свойства MPI возникают в тех частях диапазонов значений атрибу­
тов, которые редко встречаются на практике. 

Чтобы лучше понять взаимную независимость по предпочтениям (МРI), будет 
полезно обратиться к случаям, когда она не соблюдается. Предположим, вы нахо­
дитесь на средневековом рынке, рассматривая возможность покупки нескольких 
охотничьих собак, нескольких цыплят и нескольких плетеных клеток для цыплят. 
Охотничьи собаки очень ценны, но если у вас не будет достаточного количества 
клеток для цыплят, собаки съедят их. Следовательно, компромисс между собака­
ми и цыплятами сильно зависит от количества клеток, которые вы сможете купить, 
и это нарушает MPI. Существование подобных видов взаимодействий между раз­
личными атрибутами значительно усложняет оценку общей функции ценности. 

Предпочтения с неопредепенностью 
Если в рассматриваемой проблемной области присутствует неопределенность, 

то необходимо также рассмотреть структуру предпочтений между лотереями и по­
нять результирующие свойства функций полезности, а не просто функций ценно­
сти. Математические основы решения этой проблемы могут оказаться достаточно 
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сложными, поэтому здесь мы представим только один из основных результатов, 
чтобы дать представление о том, как эта проблема может быть решена. 

Основное понятие ► независимости полезностей позволяет расширить поня­
тие независимости предпочтений так, чтобы оно охватывало лотереи :  множество 
атрибутов Х является независимым по полезности от множества атрибутов У, если 
предпочтения между лотереями по атрибутам Х независимы от конкретных значе­
ний атрибутов У. Множество атрибутов является ► взаимно независимым по по­
лезностям (Mutually Uti/ity Independent - MUI), если каждое из его подмножеств 
является независимым по полезностям от остальных атрибутов. И вновь, предпо­
ложение о том, что атрибуты задачи о размещении аэропорта обладают свойством 
MUI, кажется вполне резонным. 

Из взаимной независимости по полезностям следует, что поведение агента 
может быть описано с помощью ► мультипликативной функции полезности 
(Кини [ 1 2 1 2] ,  1 974). Общую форму мультипликативной функции полезности про­
ще всего понять, обратившись к случаю с тремя атрибутами.  Для краткости вос­
пользуемся записью U; для обозначения U;(x;) : 

И= k1 U1 + "2U2 + kз U3 + k1"2U1 U2 + k2k3 U2U3 + k3k1 UзU1 + 

+ k1k2k3 U1 U2U3 • 

Хотя это соотношение не выглядит простым,  оно содержит лишь три од­
ноатрибутные функции полезности и три константы. В общем случае любую 
п-атрибутную задачу, характеризующуюся наличием свойства MUI ,  можно смо­
делировать с использованием п одноатрибутных полезностей и п констант. Ка­
ждая из одноатрибутных функций полезности может быть разработана незави­
симо от других атрибутов, а применение комбинации этих функций гарантирует 
формирование правильных общих предпочтений. Для получения чисто аддитив­
ной функции полезности потребуется ввести некоторые дополнительные пред­
положения. 

16.5. Сети принятия решений 
В этом разделе рассматривается общий механизм принятия рациональных ре­

шений. Описанную здесь систему обозначений часто называют ► диаграммами 
влияния (Ховард и Мафесон [ 1 076], 1 984) но в этой книге будет использоваться 
более описательный термин ► сети принятия решений.  В сетях принятия реше­
ний байесовские сети комбинируются с узлами дополнительных типов, представ­
ляющими действия и полезности. В качестве примера будет рассматриваться зада­
ча выбора места для строительства аэропорта. 
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1 б.5 .1. Представление задачи принятия решений 
с помощью сети принятия решений 

В своей наиболее общей форме любая сеть принятия решений представляет ин­
формацию о текущем состоянии агента, его возможных действиях, о состоянии, 
которое станет результатом данного действия агента, и о полезности этого состоя­
ния .  Таким образом, данная сеть может служить основой для реализации агентов, 
действующих с учетом полезности, такого типа, который был впервые представ­
лен в разделе 2 .4 . 5 .  На рис. 1 6 .6 показана сеть принятия решений для задачи вы­
бора площадки для строительства аэропорта. Эrот рисунок служит иллюстрацией 
того, как используются узлы трех описанных ниже типов. 

AirportSite 

AirTraffic 

Litigation 

Рис. 1 6.6. Сеть принятия решений для задачи выбора площадки для строительства 
аэропорта 

• ► Узлы жеребьевки (овалы).  Представляют случайные переменные, как 
и в байесовских сетях. Агент может не иметь определенной информации 
о стоимости строительства (Construction), интенсивности воздушного тра­
фика (AirTraffic) и возможностях получения разрешения на строительство 
(Litigation), а также о значениях переменных Safety, Quietness и Frugality, 
поскольку каждое из этих значений зависит от особенностей выбранной 
площадки. Каждый узел жеребьевки имеет связанное с ним распределение 
условных вероятностей, которое проиндексировано по состояниям его ро­
дительских узлов. В сетях принятия решений родительскими узлами могут 
быть узлы принятия решений, а также узлы жеребьевки. Обратите внима­
ние, что каждый из узлов жеребьевки в текущем состоянии может входить 
в состав более крупной байесовской сети, предназначенной для оценки за­
трат на строительство, интенсивности воздушного трафика или возможно­
стей урегулирования формальностей. 
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• ► Узлы принятия решений (прямоугольники). Представляют собой точки, 
в которых лицу, принимающему решение, предоставляется выбор вариантов 
действий. В данном случае действие AirportSite может принимать разные 
значения для каждой площадки, подлежащей рассмотрению. Этот выбор 
влияет на безопасность, шумовое загрязнение и общую стоимость строи­
тельства. В данной главе предполагается, что нам придется иметь дело толь­
ко с единственным узлом принятия решений. В главе 1 7  рассматриваются 
случаи, в которых потребуется принимать более одного решения. 

• ► Узлы полезности (ромбы). Представляют функцию полезности агента.7 

Родительскими переменными узла полезности являются все переменные, 
описывающие результат, который непосредственно влияет на полезность. 
С узлом полезности связано описание полезности агента как функции от ро­
дительских атрибутов. Это описание может представлять собой табуляцию 
функции или может быть выражено в виде параметризованной аддитивной 
или линейной функции от значений атрибутов. На данный момент будем 
предполагать, что данная функция является детерминированной, т.е. при за­
данных значениях ее родительских переменных значение полезности узла 
будет полностью детерминированным. 

Кроме того, во многих случаях также применяется упрощенная форма. При 
этом система обозначений остается неизменной, но опускаются узлы жеребьев­
ки, описывающие результирующее состояние. Вместо этого узел полезности 
связывается непосредственно с узлами текущего состояния и с узлом принятия 
решений . В данном случае вместо представления функции полезности от ре­
зультирующих состояний узел полезности представляет ожидаемую полезность, 
связанную с каждым действием, как было определено в уравнении ( 1 6 . 1  ), т.е. 
узел связывается с ► функцией "действие-полезность" (также известной как 
Q-функция в области обучения с подкреплением, как описывается в главе 22). 
На рис. 16. 7 показано представление задачи о размещении аэропорта в форме 
"действие-полезность". 

Обратите внимание на то, что узлы жеребьевки Quietness, Safety и Fruga/ity, по­
казанные на рис. 16.6, ссылаются на будущее состояние, поэтому их значения ни­
когда не должны определяться в виде переменных свидетельства. Следователь­
но, к упрощенной версии, в которой эти узлы исключены, можно обращаться во 
всех случаях, когда допустимо использование более общей формы. Однако, несмо­
тря на то, что в упрощенной форме содержится меньше узлов, исключение явного 
описания результатов решения по выбору площадки означает, что такая сеть явля­
ется менее гибкой по отношению к возможным изменениям обстоятельств. 

Например, на рис. 16.6 изменение допустимых уровней шума от самолетов 
можно отразить в виде изменения в таблице условных вероятностей, связанной с 
узлом Quietness, тогда как изменение веса, касающегося компонента с описанием 

7 Такие узлы в литера,уре также иногда называют узлами ценности . 
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шумового загрязнения в функции полезности, может быть отражено с помощью 
изменения в таблице полезности. С другой стороны, в схеме "действие-полез­
ность", приведенной на рис. 1 6 .7 ,  все такие изменения должны быть отражены 
как изменения в таблице "действие-полезность". По сути формулировка на осно­
ве подхода "действие-полезность" представляет собой откомпwzированную вер­
сию первоначальной формулировки, полученную суммированием переменных со­
стояния результата. 

Air Traffic 

Litigation 

Рис. 16.7. Упрощенное представление задачи выбора площадки для строительства аэ­
ропорта. Исключены узлы жеребьевки, соответствующие результирующим состояниям 

1 6.5.2. Вычисления в сетях принятия решений 

Действия выбираюrся посредством проведения в сети принятия решений соот­
ветствующих вычислений дrJЯ каждого возможного ряда значений узла принятия 
решений. После того как значение узла принятия решений определено, он ведет 
себя полностью аналогично узлу жеребьевки, которому были присвоены значения 
по тому же принципу, что и переменной свидетельства. Алгоритм проведения вы­
числений в сетях принятия решений описан ниже. 

1 .  Задаются значения переменных свидетельства для текущего состояния. 
2 .  Дnя каждого возможного значения узла принятия решений: 

а) вводится это значение в узел принятия решений; 
6) вычисляются апостериорные вероятности дrJЯ родительских узлов узла 

полезности с использованием стандартного алгоритма вероятностного 
вывода; 

в) вычисляется результирующее значение полезности для данного действия. 
3. Возвращается действие с наибольшей полезностью. 
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Эrот алгоритм представляет собой непосредственное расширение алгоритма вычислений в байесовской сети и может быть внедрен непосредственно в проект агента, приведенный на рис. 1 2 . 1 .  Как будет показано в главе 1 7, эта задача стано­вится намного более интересной, когда существует возможность последоваrельно­rо выполнения нескольких действий. 
1 6.6. Стоимость информации 

В приведенном выше анализе предполагалось, что агенту, прежде чем он при­ступает к принятию решения, предоставляется вся относящаяся к делу информа­ция или по меньшей мере вся доступная информация. Но на практике такая си­туация возникает чрезвычайно редко. ♦ Одной из наиболее важных составляющих 
процесса принятия решений является знание о том, какие вопросы следует задавать. Например, врач не может рассчитываrь на то, что ему будут предоставлены ре­зультаrы всех возможных диагностических тестов и опросов к тому времени, как пациент впервые войдет в его кабинет. Медицинские тесты часто являются доро­гостоящими, а иногда даже опасными (как непосредственно, так и из-за связанных с ними задержек). Важность проведения этих тестов зависит от двух факторов: от того, приведет ли получение результаrов этих тестов к выработке существен­но лучшего плана лечения, и от того, насколько велика вероятность различных ре­зультатов тестов. В этом разделе описывается ► теория стоимости информации, которая позво­ляет агенту выбираrь, какую информацию он должен получить. Предполагается, что до выбора "реального" действия, представленного узлом принятия решения, агент может получить значение любой из потенциально наблюдаемых случайных величин в модели.  Таким образом, теория стоимости информации включает упро­щенную форму последоваrельного принятия решений, - упрощенную, поскольку действия наблюдения влияют только на доверительное состояние агента, а не на внешнее физическое состояние. Ценность любого конкретного наблюдения долж­на основываrься на его способности оказаrь влияние на возможное физическое действие агента, и эта способность может быть оценена непосредственно из са­мой модели принятия решения. 
16.6.1. Простой пример 

Предположим, что нефтедобывающая компания надеется приобрести права на один из п равнозначных по своей перспективности участков для проведения разведочных работ на океанском шельфе. Также примем дополнительное пред­положение, что из этих участков ровно один обладает запасами нефти, позво­ляющими получить чистую прибыль в размере С долл . ,  тогда как все осталь­ные не содержат ничего. Запрашиваемая цена участка равна С/п долл . Если 
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эта компания нейтрально относится к риску, то она должна быть безразлична к 
выбору между покупкой лицензии на один из участков и отказом от такой по­
купки. 

Теперь допустим, что некий сейсмолог доложил руководству этой компании 
результаты проведенного им исследования участка номер 3 ,  которые, определен­
но, указывают на то, что на этом участке имеется нефrь. Какую сумму компания 
должна быть готова заплатить за Э1)' информацию? Один из способов получить от­
вет на этот вопрос состоит в анализе того, какие действия предприняла бы компа­
ния, обладая указанной ниже информацией. 

• С вероятностью l /n исследование покажет наличие нефти на участке 3 .  
В этом случае компания купит участок 3 за С/п долл. и получит прибыль в 
размере С - С/п = (n - l )C/n долл. 

• С вероятностью (п - 1 )/п исследование покажет, что участок не содержит 
нефти, и в этом случае компания купит другой участок. Теперь вероятность 
обнаружения нефти на одном из других участков измеряется значением от 
1 / п до 1 / (п - 1 ), поэтому компания получит ожидаемую прибыль в размере 
С/(п - 1 ) - С/п = С/п(п - 1 ) долл. 

Теперь можно рассчитать ожидаемую прибыль  при наличии дос,упа к информа­
ции о результатах исследования : 

Таким образом,  для компании и нформация стоит С /п долл . и компания 
должна быть готова выплатить сейсмологу некоторую значительную часть этой 
суммы.  

Стоимость информации определяется тем фактом, что при наr,ичии такой 
информации можно изменить собственную стратегию таким образом, чтобы 
она соответствовала действительной ситуации. Наличие информации позволя­
ет выявить отличительные особенности рассматриваемой ситуации, а без этой 
информации в лучшем случае можно лишь найти среднее значение по всем 
возможным ситуациям.  Вообще говоря, стоимость данного конкретного фраг­
мента информации определяется той разницей в ожидаемых значениях меж­
ду наилучшими действиями, которая возникает до и после получения этой ин­
формации .  

1 б.б.2. Общая формула для полной информации 

Общую математическую формулу для стоимости информации получить не­
сложно. Предполагается, что можно получить точное свидетельство о значе­
нии некоторой случайной переменной Ej (т.е.  мы узнаем, что Ej = ej), поэтому 
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используется выражение ► стоимость полной информации ( Va/ue of Perfect 
lnformation - VPI).8 

Пусть исходные знания агента - Е, тогда стоимость текущего наилучшего дей­
ствия о., согласно формуле ( 16.1 ), определяется как 

EU(a) = max IP(RESULT(a) = s')U(s') , 
а s ' 

а стоимостью нового наилучшего действия (после получения нового свидетель­
ства E.i = ej) будет 

EU(aej I ej ) = max L P(RESULТ(a) = s' l ej )U(s ') . 
а s' 

Но Ej - это случайная переменная, значение которой в настоящее время неиз­
вестно, поэтому для определения стоимости обнаружения Ej необходимо выполнить 
усреднение по всем возможным значениям ej, которые мoryr быть обнаружены для 
переменной Ej, с использованием текущих степеней уверенности о ее значении: 

VP/(E1 ) = [ � Р(Е; = е; )EU(a,1 1 Е; = е1 ) ) -EU(a) . 

Чтобы получить определенное интуитивное представление о смысле этой фор­
мулы, рассмотрим простой случай, когда имеются только два действия, а 1 и а2, из 
которых делается выбор. Текущими ожидаемыми полезностями этих действий яв­
ляются U1 и И2 •  Получение информации E.i= ej приведет к некоторым новым значе-
ниям ожидаемых полезностей И{ и И� для этих действий, но прежде чем инфор­
мация Ej будет получена, уже будут существовать определенные распределения 
вероятностей по всем возможным значениям И{ и И� (которые, согласно приня­
тому предположению, являются независимыми). 

Предположим, что действия а 1 и а2 представляют собой два разных маршруrа 
проезда через горную цепь зимой. Действие а 1 - это движение по скоростной трас­
се через rуннель, а действие а2 предусматривает проезд по извилистой грунтовой 
дороге, пересекающей горную цепь. Даже при наличии только этой информации 
очевидно, чrо предпочтительным является действие а1 , поскольку весьма вероятно, 
что проезд по второму маршруту может оказаться невозможным из-за снежных 

8 Требование полной информации не связано с потерей выразительности. Предполо­
жим, требуется построить модель для случая, когда появилось больше уверенности в от­
ношении переменной. Можно сдешпь это, введя другую переменную, о которой известна 
полная информация. Например, предположим, что изначально имеет место значительная 
неопределенность в отношении переменной Temperature (температура). Затем поступает 
полная информация о том, что переменная Thermometer (термометр) имеет значение 1 7 . 
Это дает нам неполную информацию об истинном значении переменной Temperature, 
а неопределенность за счет погрешности измерения будет закодирована в модели воспри­
ятия P(Thermometer I Temperature). В упражнении 1 6.22 приведен еще один пример. 
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заносов, тогда как очень маловероятно, что появятся какие-либо препятствия для 
проезда по первому маршруrу. Следовагельно, вполне очевидно, что полезность U1 
выше полезности И2 • Однако возможно, что резульппы наблюдений со спутника Е1 
относительно фактического состояния каждой дороги приведут к получению новых 
оценок двух маршрутов через горный хребет, И{ и И� . Распределения вероятностей 
для исходных ожиданий показаны на рис. 1 6 .8, а. Очевидно, что в этом случае нет 
смысла оплачивагь получение данных со спутника, поскольку маловероятно, что по­
лученная с их помощью информация приведет к изменению плана. В случае отсут­
ствия изменений информация не имеет какой-либо стоимости. 

P(U I EJ) P(И I EJ) 

И2 
а) 

И2 И1 
б) 

P(И I EJ) 

.__ __ __,_,.,........_.___ ____ и 

Рис. 16.8. Три типичные сюуации при определении стоимости информации. а) Дей­
ствие а 1 почти с полной определенностью останется лучшим по сравнению с дей­
ствием а2, поэтому дополнительная информация не нужна. б) Выбор неясен, по­
этому информация очень важна. в) Выбор неясен, но поскольку разница между 
полезностями действий невелика, информация не имеет большой ценности. (При­
мечание. Тот факт, что в варианте в полезность V2 имеет существенно более высо­
кий пик, означает, что ее ожидаемое значение известно с гораздо большей достовер­
ностью, чем для полезности V1 ) 

Теперь предположим, что необходимо выбрать одну из двух извилистых грун­
товых дорог, немного различающихся по длине, чтобы вывезти пострадавшего с 
серьезной травмой. В таком случае, даже если полезности U1 и U2 относительно 
близки, распределения вероятностей И{ и И� будут очень широкими. Существу­
ет значительная вероятность того, что второй маршрут окажется свободным, а пер­
вый - заблокированным, и в этом случае разность между полезностями будет 
очень большой. Формула VPI показывает, что в данном случае вполне оправданно 
получение отчета со спутника. Данная сИ1уация показана на рис. 1 6 .8, б. 

Наконец, предположим, что необходимо выбрать одну из двух грунтовых до­
рог летом, когда вероятность снежных заносов невелика. В этом случае отчеты со 
спутника могут показать, что одна дорога будет более живописной, чем другая, 
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поскольку вдоль нее расположены цветущие альпийские луга, или, возможно, одна 
из дорог будет влажной из-за недавнего дождя . Поэтому весьма вероятно, что при 
получении подобной информации вполне возможно изменение исходного плана. 
Однако в этом случае разница в значении полезности между двумя маршрутами, 
по-видимому, все так же остается небольшой, а значит, в получении отчетов со 
спутника нет большого смысла. Подобная сmуация показана на рис. 1 6 .8, в. 

Подводя итог, можно сказать, что ♦ стоимость информации определяется той 
степенью, в которой она может вызвать изменение плана, а также той степенью, в ка­
кой новый план окажется значительно лучше по сравнению со старым. 

16.6.3. Свойства стоимости информации 

Может возникнуть вопрос: возможно ли, чтобы информация была вредной, т.е. 
может ли она в действительности иметь отрицательную ожидаемую стоимость? 
Интуиция подсказывает, что такая ситуация невозможна. В конце концов, в наи­
худшем случае можно просто проигнорировать ненужную информацию и сделать 
вид, что она так и не была получена. Это представление подтверждается приве­
денной ниже теоремой, которая применима к любому агенту, действующему на 
основе теории принятия решений и использующему сеть принятия решений с воз­
можными наблюдениями �-
♦ Ожидаемая стоимость информации является неотрицательной: 

V j VPl(E1) � О. 
Эта теорема следует непосредственно из определения VPI, и мы оставляем ее 

доказательство читаrелю в качестве упражнения (упражнение 1 6 .23). Безусловно, 
это теорема об ожидаемой стоимости, а не о фактической стоимости. Дополни­
тельная информация легко может привести к плану, который, как потом выясня­
ется, оказывается хуже, чем первоначальный план, если эта информация в дей­
ствительности вводит в заблуждение. Например, медицинский тест, показавший 
ложный положительный результат, может привести к ненужной операции; но это 
вовсе не означает, что тест не следовало делаrь. 

Важно помнить, что стоимость полной информации зависит от текущего состо­
яния информации и что она может изменяться по мере получения дополнительной 
информации. Для любого заданного элемента свидетельства Е1 стоимость его по­
лучения может уменьшаrься (например, если другая переменная сильно ограничи­
вает апостериорное распределение для �) или возрастать (например, если другая 
переменная дает информацию, на которой основывается Е1, позволяя разработать 
новый и лучший план). Следовательно, стоимость полной информации не адди­
тивна, и это означает, что справедливо следующее соотношение: 

(в общем случае). 
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Однако VPI не зависит от порядка следования переменных, т.е. справедливо соот­
ношение 

VPI(EJ, Ek) = VP/(�) + VP/(Ek I Е1) = VP/(Ek) + VP/(E1 1 Ek) = VP/(Ek, Е1), 

где нотация VP /( 1 Е) обозначает стоимость полной информации, рассчитанную 
в соответствии с апостериорным распределением, где Е уже наблюдалось. Неза­
висимость по упорядоченности отличает действия восприятия от обычных дей­
ствий и упрощает задачу расчета значения последовательности действий восприя­
тия. Мы вернемся к этому вопросу в следующем разделе. 

1 6.6.4. Реализация агента, собирающего информацию 

Рассудительный агент должен задавать вопросы в разумном порядке, должен из­
бегать вопросов, не имеющих отношения к делу, должен принимать во внимание 
важность каждого фрагмента в сопоставлении с его стоимостью и должен прекра­
щать задавать вопросы, когда это будет уместно. Все эти возможности могут быть 
достигнуты за счет использования в качестве критерия стоимости информации. 

На рис. 1 6 .9 приведена общая конструкция агента, способного осуществлять 
интеллектуальный сбор информации, прежде чем приступать к действиям. На 
данный момент будем предполагяrь, что с каждой наблюдаемой переменной сви­
детельства Е1 связана соответствующая стоимость С(Е1), отражающая стоимость 
получения этого свидетельства с помощью проведения тестов, организации кон­
сультаций, получения ответов на вопросы или других подобных действий. Агент 
запрашивает то, что представляется ему наиболее целесообразным наблюдением 
в терминах полезности, получаемой на единицу стоимости. Предполагается, что 
результатом действия выдачи запроса Request(E1) является то, что следующий акт 
восприятия предоставит значение Е1. Если ни одно наблюдение не оправдывает 
его стоимость, агент выбирает "реальное" действие. 

function INFORMATION-GATНERING-AGENT(percept) returns действие 
persistent: D, сеть принятия решений 

включить данные о восприятии percept в сеть D 
j +- значение, максимизирующее выражение VPI(E;) / С(Е1) 
if VPI(E1) > С(Е1) 

then return Request (Е1) 
else return наилучшее действие из D 

Рис. 16.9. Структура простого близорукого агента, действующего на основе сбора 
информации. Агент функционирует, выбирая наблюдение с наибольшим информа­
ционным значением, и повторяет эти действия до тех пор, пока стоимость следую­
щего наблюдения не превысит его ожидаемую полезность 
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Представленный здесь алгоритм агента реализует подход к сбору информа­
ции, который называют ► близоруким.  Это связано с тем, что в данном случае 
формула VPI используется без дальновидных расчетов и значение информации 
определяется так, как будто было бы достаточно получить значение единствен­
ной переменной свидетельства. Близорукий подход основан на той же эвристиче­
ской идее, что и жадный поиск, и часто хорошо работает на практике. (Например, 
бьmо показано, что подобные системы превосходят по своей производительности 
опытных врачей в подборе диагностических тестов.) Однако, если не существует 
единственной переменной свидетельства, позволяющей достичь значительных ре­
зультатов, близорукий агент может опрометчиво прейти к действиям, когда было 
бы лучше сначала сделать запросы по двум или более переменным, а уже потом 
переходить к действиям. В следующем разделе рассматривается возможность по­
лучения многих наблюдений. 

1 6.6.5 . Сбор информации по нескольким наблюдениям 

Тот факт, что значение последовательности наблюдений не зависит от переста­
новок в порядке их следования, интригует, но сам по себе не приводит к эффек­
тивным алгоритмам оптимального сбора информации. Даже если мы ограничимся 
выбором для сбора заранее определенного подмножества наблюдений, то суще­
ствует 2n таких возможных подмножеств из п потенциальных наблюдений. В об­
щем случае мы сталкиваемся с еще более сложной проблемой нахождения опти­
мал·ьного условного плана (как описано в разделе 1 1 . 5 .2), согласно которому будут 
выбираться наблюдения, а затем приниматься решения о выполнении действия 
или продолжении выбора следующих наблюдений - в зависимости от результата. 
Подобные планы имеют форму деревьев, а количество этих деревьев суперэкспо­
ненциально относительно п.9 

Как оказалось, для сетей принятия решений задача наблюдения многих пере­
менных является неразрешимой даже в том случае, когда сеть представляет собой 
полидерево. Однако есть особые случаи, в которых эта задача может быть реше­
на эффективно. Здесь мы приводим один такой случай : задача ► охоты за сокро­
вищем (или ► тестирования последовательности по наименьшей стоимости 
(/east-cost testing sequence) - для менее склонных к романтике). Имеется п яче­
ек 1 ,  ... , п, и каждая ячейка i может содержать сокровище с независимой вероятно­
стью Р(1), а проверка ячейки i имеет стоимость C(i). Это описание соответствует 
сети принятия решений, где все потенциальные переменные свидетельства Trea­
sure; являются абсолютно независимыми. Агент проверяет ячейки в некотором по­
рядке, пока не найдет сокровище, и вопрос заключается в том, какой порядок бу­
дет оптимальным. 

9 Общая проблема генерации последовательного поведения в частично наблюдаемой 
среде относится к категории частично наблюдаемых марковских процессов принятия 
решений, которые описываются в главе 1 7. 
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Чтобы ответить на этот вопрос, нужно рассмотреть ожидаемые затраты и ве­
роятности успеха различных последовательностей наблюдений, предполагая, что 
агент останавливается, как только обнаруживает сокровище. Пусть х будет такой 
последовательностью, ху будет конкатенацией последоваrельностей х и у, С(х) бу­
дет ожидаемой стоимостью последовательности х, Р(х) будет вероятностью того, 
что последовпельность х успешно приводит к обнаружению сокровища, а F(x) = 
1 - Р(х) будет вероятностью того, что поиск будет неудачным. С учетом всех этих 
определений, получим 

С(ху) = С(х) + F(x)C(y), ( 1 6.3) 

т.е. последов�ьность ху будет, безусловно, включагь стоимость х и, если поиск 
в ней будет неудачным, будет также включагь стоимость у. 

Основная идея в любой задаче оптимизации последовательности состо­
ит в том, чтобы посмотреть на изменение стоимости, определяемое разностью 
Л = C(wxyz) - C(wyxz), когда переставляются две соседние подпоследовательно­
сти, х и у, в общей последовательности wxyz. Если последовагельность являет­
ся оптимальной, любые подробные перестановки делают ее хуже. Первый этап -
показагь, что знак эффекта (увеличение или уменьшение стоимости) не зависит 
от контекста, предоставляемого подпоследовагельностями w и z. Итак, мы имеем 

Л = [C(w) + F(w)C(yxz)] - [C(w) + F(w)C(yxz)] = (уравнение ( 1 6.3)) 
= F(w)[C(xyz) - C(yxz)] = 
= F(w)[(C(xy) + F(xy)C(z)) - (C(yx) + F(yx)C(z))] = (уравнение ( 1 6.3)) 
= F(w)[C(xy) - С(ух)] (поскольку F(xy) = F(yx)). 

Таким образом, мы показали, что направление изменения стоимости по всей по­
следоваrельности зависит только от направления изменения стоимости пары пе­
реставляемых элементов, окружение пары не имеет значения. Это позволяет 
отсортировагь последоваrельность путем парных сравнений для получения опти­
мального решения. В частности, теперь у нас есть 

Л = F(w)[(C(x) + F(x)C(y)) - (С(у) + F(y)C(x))] = 
= F(w)[C(x)( l - F(y)) - C(y)( l - F(x))] = 
= F(w)[C(x)P(y) - С(у)Р(х)] .  

(уравнение ( 1 6.3)) 

Это выражение справедливо для любых последовательностей х и у, в том чис­
ле и тогда, когда х и у являются одиночными наблюдениями в ячейках i иj соот­
ветственно. Значит, для того чтобы i иj были смежными в оптимальной последо-

вательности, необходимо иметь C(l")P(j) :s; C(J)P(i), или ���� � ��j� . Другими 

словами, оптимальный порядок ранжирует ячейки согласно вероятности успеха на 
единицу стоимости. 
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16.6.6. Анализ чувствительности и надежные решения 

Практика проведения ► анализа чувствительности широко распространена в 
технологических дисциплинах: под этим подразумевается анализ того, насколько 
результаты процесса изменяются при небольших изменениях параметров модели. 
Анализ чувствительности в вероятностных системах и системах принятия реше­
ний особенно важен, поскольку используемые вероятности обычно либо изуча­
ются на основе данных, либо оцениваются экспертами-людьми, а это означает, что 
они сами по себе подвержены значительной неопределенности. Лишь в редких 
случаях - например, как при бросках игральных костей при игре в нарды - эти 
вероятности объективно известны. 

Для процесса принятия решений на основе полезности полученный результат 
можно понимать либо как фактическое принятие решения, либо как ожидаемую 
полезность от этого решения. Сначала рассмотрим последний случай: поскольку 
ожидания зависят от вероятностей в модели, можно вычислить производную от 
ожидаемой полезности любого заданного действия по отношению к каждому из 
этих значений вероятности. (Например, если все распределения условных вероят­
ностей в модели явно сведены в таблицу, вычисление ожидания включает в себя 
вычисление отношения двух выражений, в которых суммируются произведения; 
подробнее об этом читайте в главе 20.) Следовательно, можно определить, какие 
параметры в модели оказывают наибольшее влияние на ожидаемую полезность 
окончательного решения. 

Если, напротив, мы заинтересованы в фактическом принятии решения, а не в 
оценке его полезности согласно модели, то можно просто систематически изме­
нять параметры (возможно, с помощью бинарного поиска), чтобы увидеть, будет 
ли меняться решение, и если будет, то что именно является наименьшим возму­
щением, вызывающим такое изменение. Конечно, можно полагать, что не важ­
но, какое именно решение принято, важна только его полезность. Эrо так, но на 
практике разница между реальной полезностью решения и его полезностью в со­
ответствии с моделью может оказаться очень существенной. 

Если все разумные возмущения параметров оставляют оптимальное решение 
без изменений, то разумно предположить, что это решение является хорошим, 
даже если оценка полезности для этого решения является по существу неверной. 
С другой стороны, если оптимальное решение значительно изменяется при изме­
нении параметров в модели, то есть большая вероятность, что модель выдает ре­
шение, которое в действиrельности является существенно неоптимальным. В этом 
случае стоит приложить дополнительные усилия для доработки модели. 

Эти интуитивно понятные рассуждения были формализованы в несколь­
ких областях (теория управления, анализ решений, управление рисками) с вве­
дением понятия ► надежного или минимаксного решения, т.е. такого, которое 
дает наилучший результат в наихудшем случае. Здесь "наихудший случай" озна­
чает наихудший по отношению ко всем правдоподобным изменениям значений 
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параметров модели. Если принять, что 0 обозначает все параметры модели, то на­
дежные решения определяются следующим образом: 

а* = argmaXa min0 EU(a; 0). 

Во многих случаях, особенно в теории управления, надежный подход приво­
дит к решениям, которые очень устойчиво и бесперебойно работают на практике. 
В других случаях это приводит к чрезмерно консервативным решениям. Напри­
мер, при проектировании беспилотного автомобиля надежный подход требовал бы 
предполагать наихудший вариант поведения со стороны всех других транспорт­
ных средств на дороге, т.е. все они должны восприниматься как управляемые ма­
ньяками-убийцами. В такой ситуации самым оптимальным решением для маши­
ны будет остаться в гараже. 

Байесовская теория принятия решений предлагает альтернативу надежным ме­
тодам: если существует неопределенность в отношении параметров модели, то 
включите эту неопределенность в модель, используя гиперпараметры. 

В то время как надежный подход мог бы показать, что некоторая вероятность 0; 
в модели может иметь значение где-то между 0,3 и 0,7, с фактическим значением, 
выбранным противником так, чтобы сделать происходящее настолько плохим, на­
сколько это возможно, байесовский подход построил бы априорное распределение 
вероятностей для 0;, а затем продолжил бы работу, как прежде. Такой подход тре­
бует больших усилий при моделировании, например разработчик модели байесов­
ской сети должен решить, будут ли параметры 0; и 0j независимыми, но на практи­
ке это часто приводит к более высокой производительности. 

Помимо параметрической неопределенности, приложения теории приня­
тия решений в реальном мире также страдают от структурной неопределенно­
сти. Например, допущение о независимости переменных AirTraffic, Litigation и 
Construction в сети на рис. 1 6.6 может быть неверным, а также могут существо­
вать дополнительные переменные, которые в модели просто опущены. В настоя­
щее время еще нет достаточно хорошего понимания в отношении того, как при­
нять этот вид неопределенности во внимание. Одна из возможностей состоит в 
том, чтобы сохранить ансамбль моделей, возможно, сгенерированных с помощью 
алгоритмов машинного обучения, в надежде на то, что этот ансамбль захватит все 
значительные вариации, которые имеют значение. 

16.7. Неизвестные предпочтения 
В этом разделе мы обсудим, что происходит, когда существует неопределен­

ность в отношении функции полезности, ожидаемое значение которой должно 
быть оптимизировано. Есть две версий этой проблемы: одна, когда агент (маши­
на или человек) находится в состоянии неопределенности относительно его соб­
ственной функции полезности, и другая, в которой машина, как она полагает, 
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должна помочь человеку, но находится в неопределенности относительно того, 
что человек хочет. 

16.7.1. Неопределенность в отношении 
собственных предпочтений 

Представьте, что вы находитесь в магазине мороженого в Таиланде, и у них 
осталось только два его сорта: ваниль и дуриан. Оба стоят 2 долл. Вы знаете о сво­
ей умеренной симпатии к ванили и готовы платить до 3 долл. за ванильное моро­
женое в такой жаркий день, так что вас ждет "чистая прибыль" в 1 долл. при выбо­
ре ванили. С другой стороны, вы не имеете представления о том, понравится вам 
мороженое с дурианом или нет, но в Википедии вы читали, что в отношении ду­
риана мнения разных людей сильно расходятся : одни считают, что "его вкус пре­
восходит вкус всех других плодов мира", в то время как другие уподобляют его 
"сточным водам, несвежей рвоте, зловонию скунса и использованным хирургиче­
ским тампонам". 

Чтобы связать с этим сценарием какие-то цифры, давайте договоримся, что с ве­
роятностью 50% вы найдете вкус этого мороженого восхитительным (+ 1 00 долл.) 
и с вероятностью 50% - что вы его возненавидите (- 80 долл., если его привкус 
сохранится на всю вторую половину дня). Здесь нет никакой неопределенности в 
отношении того, какой приз вы собираетесь выиграть - в любом случае это то же 
самое мороженое с дурианом, - но здесь есть неопределенность по поводу ваших 
личных предпочтений в отношении этого приза. 

Можно расширить формальное маrематическое представление сетей принятия 
решений так, чтобы допустить возможность наличия неопределенности в отноше­
нии полезности, как показано на рис. 1 6 . 1 О, а. Однако если больше нет никакой 
возможности получить информацию по поводу ваших предпочтений относитель­
но дуриана - например, если в магазине не соглашаются позволить вам сначала 
попробовать это мороженое, - то задача принятия решения будет идентична той, 
которая показано на рис. 1 6. 1 О, б. Можно просто заменить неопределенную стои­
мость дуриана ожидаемой "чистой прибылью" в (0,5 х 1 00 долл . )  - (0,5 х 
х 80 долл.) - 2 долл. = 8  долл., и ваше решение останется неизменным. 

Если случится так, что вы измените свои представления о дуриане - скажем, 
вам удастся попробовать крошечный кусочек или вы вспомните, что все ваши бли­
жайшие родственники любят дуриан, - то трансформированная сеть, представ­
ленная на рис. 1 6. 1 О, б, станет недействительной. Однако, как выяснилось, все еще 
есть возможность найти эквивалентную модель, в которой функция полезности бу­
дет детерминированной. Вместо того чтобы говорить о наличии неопределенно­
сти в отношении функции полезности, мы, так сказаrь, перемещаем эту неопреде­
ленность "в мир". Для этого создается новая случайная переменная LikesDurian с 
теми же вероятностями 0,5 дr1я значений true иfalse, как показано на рис. 1 6 . 1 0, в. 
При наличии этой дополнительной переменной функция полезности становится 
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детерминированной, но при этом появляется возможность учесть вероятные из­
менения в ваших представлениях о своих предпочтениях относительно дуриана. 

DN LikesDurian и 
durian true +$98 

DN . . .  -$82 . . .  +$0 +$ 1 · · · +$98 . .. DN и durian false -$82 
durian . . .  0,5 . . .  0,0 0,0 . .. 0,5 . . .  durian +$8 vanilla true +$ 1 
vanilla · · 0,0 . . .  0,0 1 ,0 . . .  0,0 . . . vanilla +$ 1 vanilla false +$ 1 

а) б) в) 

Рис. 16. 10. а) Сеть принятия решения для задачи выбора мороженого при неопреде­
ленности в отношении функции полезности. б) Сеть с ожидаемой полезностью каж­
дого действия. в) Перемещение неопределенности из функции полезности в новую 
случайную величину 

Тот факт, что неизвестные предпочтения можно смоделировать с помощью 
обычных случайных переменных, означает, что мы можем продолжать использо­
вать весь аппарат и все теоремы, разработанные для случая известных предпочте­
ний. С другой стороны, это не означает, что мы всегда можем полагать, что пред­
почтения известны. Неопределенность все еще существует и все еще влияет на то, 
как должны вести себя агенты. 

1 6.7.2. Уважение к людям 

Теперь давайте обратимся ко второму случаю, упомянутому выше: к машине, 
которая должна помогать человеку, но не уверена в том, чего именно хочет чело­
век. Полное рассмотрение этой СИ'I)'ации следует отложить до главы 18, в которой 
обсуждаются решения, выполняемые с участием более чем одного агента. Здесь 
же мы зададим лишь один простой вопрос: при каких обстоятельствах такая ма­
шина будет подчиняться человеку? 

Чтобы изучить этот вопрос, давайте рассмотрим очень простой сценарий, пред­
ставленный на рис. 16. 11. Здесь Робби (R) - это программный робот, работающий 
на Гарриет (Н), заНЯ'I)'Ю бизнес-леди, в качестве ее личного помощника. Гарри­
ет нужен номер в гостинице для ее следующей деловой встречи в Женеве. В дан­
ный момент Робби может действовать - допустим, может забронировать для Гар­
риет номер в очень дорогом отеле рядом с местом проведения встречи. Но он не 
имеет уверенности в том, насколько Гарриет понравится этот отель или его цены. 
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Допустим, что в отношении возможной оценки отеля со стороны Гарриет он при­
нял равномерное распределение вероятностей в диапазоне от -40 до +60 со сред­
ним + 1 О. Также у него есть возможность "отключиться" - говоря менее театраль­
но, просто выйти из процедуры бронирования гостиничного номера, - исход, 
который мы определяем (не теряя общего смысла) как имеющий ценность О для 
Гарриет. Если бы это были два единственных варианта его выбора, он начал бы 
действовать и забронировал номер в гостинице, взяв на себя значительный риск 
сделать Гарриет несчастной.  (Если бы диапазон был от -60 до +40 при среднем 
- 10, он бы вместо этого просто отключился.) Однако мы дадим Робби третий ва­
риант выбора: доложить свой план и перейти в ожидание, предоставив Гарриет 
возможность отключить его от выполнения этого задания. В свою очередь, Гарри­
ет, ознакомившись с предложенным планом, может либо отключить Робби, либо 
позволить ему продолжить выполнение процедуры и забронировать номер в отеле. 
Может возникнуть вопрос: а что во всем этом хорошего, если известно, что Робби 
мог бы сделать оба эти выбора и сам? 

Распределение вероятностей 
для оценки результата 

1 1 . 
-40 + 60 

1 1 U = ?  U = 0  
-40 +60 8 

Рис. 1 6. 1 1 .  Игра с отключением. R, робот, может выбрать действовать сейчас при 
крайне неопределенном результате, может отключиться от выполнения задания и 
может переложить решение на Н, человека. У Н есть выбор - отключить R от вы­
полнения задания или позволить ему продолжить работу. В последнем случае у R 
вновь будут те же возможности выбора, однако, хотя результат действия все еще 
остается неопределенным, теперь R точно знает, что он не будет отрицательным 

Дело в том, что выбор Гарриет - отключить Робби от выполнения задания или 
позволить ему продолжить - предоставляет Робби важную информацию о предпо­
чтениях Гарриет. В данном случае мы предполагаем, что поведение Гарриет раци­
онально, поэтому, если она разрешила Робби продолжить выполнение задания, то 
это означает, что Гарриет положительно оценивает его действия. Теперь, как показа­
но на рис. 1 6. 1 1 ,  представления Робби о возможной оценке его действий меняются: 
это равномерное распределение в диапазоне от О до +60 со средним значением +30. 
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Итак, давайте оценим первоначальный выбор Робби, исходя из его точки зрения. 

1. Решение действовать немедленно и забронировать номер в отеле имеет ожи­
даемое значение оценки + 1 О. 

2. Решение отключиться от выполнения задания имеет ожидаемое значение 
оценки О. 

3 .  Решение перейти в ожидание и позволить Гарриет отключить его от выпол­
нения задания приводит к двум возможным результатам: 
а) исходя из выбранного Робби распределения вероятностей в отношении 

предпочтений Гарриет, с вероятностью 40% предложенный план ей не по­
нравится, и она отключит Робби от выполнения задания, что даст ожида­
емое значение оценки О. 

б) с вероятностью 60% предложенный план Гарриет понравится, и она по­
зволит Робби продолжить выполнение задания, что дает ожидаемое зна­
чение оценки +30. 

Таким образом, переход в ожидание имеет ожидаемое значение оценки (0,4 х О) + 
(0,6 х 30) = + 1 8, что лучше, чем + 1 О, ожидающих Робби, если он сразу начнет дей­
ствовать. 

В результате у Робби появляется положительный стимул предоставить Гарриет 
возможность сделать выбор, т.е. позволить себе стать отключенным ею. Эrот сти­
мул исходит непосредственно из неуверенности Робби в отношении предпочтений 
Гарриет. Робби знает, что есть шанс ( 40% в данном примере), что он может при­
нять решение сделать что-то, что сделает Гарриет несчастной, и в этом случае от­
ключение от выполнения задания предпочтительнее его выполнения. Если бы Роб­
би уже был в полной уверенности о предпочтениях Гарриет, он просто принял бы 
решение и выполнил задание (или отключился от его выполнения), - ему было 
бы абсолютно нечего получить от консультации с Гарриет, поскольку, согласно 
определенным убеждениям Робби, он уже может точно предсказать, какое реше­
ние она собирается принять. 

В действительности тот же результат можно доказать и для общего случая: 
пока Робби не совсем уверен в том, что он собирается сделать то, что сама Гарри­
ет сделала бы, ему лучше позволить ей отключить его. Интуитивно понятно, что 
ее решение предоставляет Робби информацию, и ожидаемая ценность этой инфор­
мации всегда будет неотрицательной. И наоборот, если Робби уверен в том, какое 
решение примет Гарриет, ее решение не предоставит ему никакой новой инфор­
мации, и поэтому у Робби нет никакого стимула позволить ей принимать решения. 

При формальном подходе пусть Р(и) будет априорной плотностью вероятности 
Робби в отношении полезности предлагаемого действия а для Гарриет. Тогда зна­
чением полезности в случае выполнения им действия а будет 

ЕИ(а) = J00 
Р(и) · иdи = J0 Р(и) · udu + r00 

Р(и) · иdи . 
--оо -оо Jo 
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(Скоро будет показано, почему интеграл разделяется именно таким образом. )  
С другой стороны, значение полезности действия d, решение о выполнении кого­
рого возлагается на Гарриет, будет состоять из двух частей: если и >  О, то Гарриет 
позволит Робби продолжить работу, поэтому значением полезности является и, но 
если и <  О, то Гарриет огключит Робби or выполнения задания и значение полез­
ности будет равно О: 

EU(d) = J00 Р(и) · Оdи = r00 
P(u) - udu. 

-оо Jo 

Сравнив выражения для EU(a) и EU(d), сразу можно заметить, что 

EU(d) � ЕИ(а), 
поскольку выражение для EU(d) имеет нулевую полезность в области отрицатель­
ных значений. Эrи два варианта имеют одинаковое значение только в том случае, 
когда отрицательная область имеет нулевую вероятность, т.е. когда Робби уже уве­
рен, что Гарриет нравится предлагаемое им действие. 

Существуют некоторые очевидные уточнения модели, которые стоит обсудить 
немедленно. Первым уточнением является наложение на Робби штрафов за расхо­
дование времени Гарриет. В этом случае Робби будет менее склонен беспокоить 
Гарриет, если риск отрицательной оценки будет небольшим. Именно так и долж­
но быть. А если Гарриет при этом очень раздражается, когда ее отрывают от дела, 
то она не должна слишком удивляться тому, что Робби иногда будет делать что-то, 
что ей не понравится. 

Вторым уточнением является допущение некоторой вероятности ошибки чело­
века, т.е. Гарриет может иногда отключmъ Робби даже в тех случаях, когда предла­
гаемое им действие разумно, и наоборот, иногда она может позволить Робби про­
должить работу, даже если предложенное им действие нежелательно. Включить 
эту вероятность ошибки в модель совсем несложно. Как и следовало ожидать, та­
кое решение приводит к тому, что Робби становится менее склонным считаться с 
иррациональностью Гарриет, которая иногда действует против ее собственных ин­
тересов. Чем более непредсказуемым становится ее поведение, тем больше долж­
на возрастать неуверенность Робби в отношении ее предпочтений, прежде чем 
возложить решение на нее. И вновь, именно так и должно быть. Например, если 
Робби представляет собой беспилотный автомобиль, а Гарриет - это его озорной 
двухлетний пассажир, Робби не должен позволить Гарриет отключить его посре­
ди скоростного шоссе. 
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В этой главе показано, как объединить теорию полезности с теорией вероятно­
стей, чтобы предоставить areнry возможность выбрать действия, которые макси­
мизируют его ожидаемую производительность. 

• Теория вероятностей описывает, в чем должен быть уверен агент соглас­
но полученному свидетельству, теория полезности показывает, к чему дол­
жен стремиться агент, а теория принятия решений позволяет объединить 
подходы этих двух теорий для определения того, что должен делать агент. 

• Теорию принятия решений можно использовать для создания систем, кото­
рые принимают решения, рассматривая все возможные действия и выбирая 
из них именно то, которое приводит к наилучшему ожидаемому результаrу. 
Такая система известна под названием рациональный агент. 

• Теория полезности показывает, что агент, руководствующийся отношения­
ми предпочтения между лотереями, совместимыми с множеством простых 
аксиом, может быть описан как обладающий функцией полезности. Более 
того, этот агент выбирает действия так, чтобы можно было максимизировать 
его ожидаемую полезность. 

• Теория мноrоатрибуrной полезности связана с изучением полезности, ко­
торая зависит от нескольких разных атрибутов состояний. Стохастическое 
доминирование представляет собой особенно удобный метод принятия не­
противоречивых решений даже при отсутствии точных значений полезно­
сти для атрибутов. 

• Сети принятия решений являются простым формальным математическим 
представлением для описания и решения задач принятия решений. Они яв­
ляются естественным расширением байесовских сетей и, кроме узлов жере­
бьевки, содержат узлы решения и узлы полезности. 

• Иногда при решении задачи, прежде чем принимать решение, приходится 
заниматься поиском дополнительной информации. Стоимость информа­
ции определена как ожидаемое повышение полезности по сравнению с при­
нятием решений без этой информации. Этот подход особенно полезен для 
управления процессом сбора информации до принятия окончательного ре­
шения. 

• Когда, как это часто бывает, невозможно полностью и корректно определить 
функцию полезности для человека, машинам приходится работать в услови­
ях неопределенности о его истинной цели. Сиrуация существенно меняется 
в том случае, если у машины имеется возможность получить больше инфор­
мации о предпочтениях человека. На простом примере было показано, что 
неопределенность относительно предпочтений обеспечивает тот факт, что 
машины полагаются на человека, - вплоть до того, что позволяют себе пре­
доставить ему возможность их отключения. 
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Библиографические и исторические заметки 
В тра1СГ3Те Арно L 'art de Penser или Port-Royal Logic XVI I века ( [74], 1 662) го-

воркгся: 
Для того чтобы судить о том, что нужно сделать, чтобы получить хорошее или 
избежать плохого, необходимо учитывать не только хорошее и плохое в самом 
себе, но и вероятность того, что это произойдет или не произойдет, и геометри­
чески рассматривать пропорции, которые все они имеют совместно. 
Современные тексты говорят о полезности, а не о хорошем и плохом, но в этом 

уrверждении правильно отмечается, что, чтобы "судить, что нужно сделать", сле­
дует умножить ("геометрически рассмотреть") полезность на вероятность, по­
лучив ожидаемую полезность, и максимизировать это по всем результшам ("все 
они"). Примечательно то, насколько Арно бьm прав более 350 лет назад и всего че­
рез 8 лет после того, как Паскаль и Ферма впервые показали, как правильно ис­
пользовать вероятности. 

Даниил Бернулли ([ 1 9 1  ], 1 73 8), исследуя Санкт-Петербургский парадокс (см . 
упражнение 1 6.4), впервые понял важность измерения предпочтений в отношении 
л<УГерей и написал такие слова: "Ценность любого предмета должна быть осно­
вана не на его стоимости, а на той пользе, которую он может принести" (курсив 
Бернулли). Философ-уrилитарист Джереми Бентам ([ 1 76], 1 823) предrюжил ► ге­
донистическое исчисление для взвешивания ''удовольствий" и "неприятностей", 
доказывая, что все решения (а не только касающиеся денег) можно свести к срав­
нению полезностей. 

Введение Бернулли понятия полезности как внутреннего, субъективного качества 
для обьяснения поведения человека с помощью матемшической теории бьmо чрез­
вычайно примечательным предложением для своего времени. И оно бьmо тем более 
примечательным благодаря тому фаюу, что, в отличие от денежных сумм, значения 
полезности различных ставок и призов непосредственно не наблюдались. Вместо 
этого полезности следовало выводить из предпочтений, проявляемых индивидом . 
П<УГребовалось два столеmя, чтобы полностью разработать все следствия этой идеи 
и чтобы она во всей широте бьmа принята статистиками и экономистами. 

Определение числовых значений полезности на основе предпочтений бьmо 
впервые выполнено Рамзеем ([ 1 848], 1 93 1  ); аксиомы предпочтений, приведен­
ные в этой книге, по своей форме ближе всего тем, которые были вновь откры­
ты в книге Тheory of Games and Economic Behavior ( фон Нейман и Моргенштерн 
[2282], 1 944). Рамзей предложил способ вычисления субъективных вероятностей 
(а не только полезностей) на основе предпочтений агента; Сэведж ([ 1 984], 1 954) 
и Джеффри ([ 1 1 29], 1 983) предложили более современные вычислительные кон­
струкции такого рода. Бердо и соавт. ( [  1 50], 2002) показали, что функции полезно­
сти недостаточно для представления нетранзитивных предпочтений и других ано­
мальных си,уаций. 
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В послевоенный период теория принятия решений стала стандартным инстру­
ментом в экономике, финансах и науке управления . Возникла новая область ► ана­
лиза решений, направленная на поиск более рациональных решений при выборе 
линии поведения в таких областях, как военная страгегия, медицинская диагно­
стика, здравоохранение, инженерные проекты и управление ресурсами .  Процесс 
включает ► принимающего решенв11, утверждающего предпочтения между ре­
зультатами, и ► аналитика решений, определяющего возможные действия, вы­
числяющего их результагы и получающего сведения о предпочтениях от принима­
ющего решения с целью определения наилучшей последовагельности действий .  
Фон Винтерфельдт и Эдварде ([2283], 1 986) предоставили детальное исследова­
ние области анализа решений и ее связи со струюурами предпочтений человека. 
Смит в [2093] ( 1 988) дает обзор методологии в области анализа решений. 

До 1 980-х годов основным инструментом, применяемым при работе с мно­
гомерными задачами принятия решений, было построение "деревьев решений", 
включающих все возможные конкретизации переменных. Сети принятия реше­
ний, или диаграммы влияния, использующие все преимущества свойств условной 
независимости, предоставляемые байесовскими сетями, были разработаны Говар­
дом и Матесоном ( [  1 0769], 1 984) на основе одной из ранних работ, выполненных 
группой специалистов (включая Говарда и Матесона) в ИНСТИ'IУJ'е SRI (Миллер и 
др. [ 1 577], 1 976). Алгоритм Говарда и Матесона обеспечивает формирование пол­
ного (имеющего экспоненциальные размеры) дерева решений на основе сети при­
нятия решений. Шахтер ( [2028], 1 986) разра�ал метод принятия решений, осно­
ванный на использовании непосредственно сети принятия решений, без создания 
промежуточного дерева решений. Этот алгоритм оказался также одним из пер­
вых алгоритмов, обеспечивающих полный вероятностный вывод в многосвязных 
байесовских сетях. В раб(Ле Нильссона и Лауритцена [ 1 685] (2000) показано, как 
алгоритмы для сетей принятия решений связаны с продолжающимися разработ­
ками в области алгоритмов кластеризации для байесовских сетей. В сборнике ста­
тей Оливера и Смита [ 1 7 1 2] ( 1 990) приведен целый ряд полезных статей по сетям 
принятия решений, как и в специальном выпуске журнала Networks, вышедшем в 
1 990 году. Учебник Фентона и Нейла [727] (20 1 8) представляет собой отличное ру­
ководство по решению реальных задач принятия решений. Стагьи по сетям приня­
тия решений и моделированию полезностей также реrулярно публикуюrся в жур­
налах Management Science и Decision Ana/ysis. 

Как это ни удивительно, лишь немногие исследователи в области искусствен­
ного интеллекта взяли на вооружение инструментальные средства теории приня­
тия решений после появления первых приложений принятия решений в медицине, 
ранее описанных в главе 1 2 . Одним из немногих исключений был Джерри Фельд­
ман, применивший теорию принятия решений в задачах машинного зрения (Фель­
дман и Якимовски [7 1 8], 1 974) и планирования (Фельдман и Спроулл [7 1 7], 1 977). 
Экспертные системы на базе правил конца 1 970-х и начала 1 980-х годов в боль­
шей степени предназначались для предоставления ответов на вопросы, чем для 
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принятия решений. А те системы, которые действительно давали рекомендации в 
отношении действий, обычно работали на базе правил ''условие-действие", а не 
явного представления результатов и предпочтений. 

Сети принятия решений предлагают гораздо более гибкий подход, например, 
позволяя предпочтениям изменяться, при сохранении модели переходов неиз­
менной, или наоборот. Они также принципиально допускают расчеты, какую ин­
формацию искать дальше. В конце 1980-х годов, отчасти из-за работы Перла по 
байесовским сетям, получили широкое распространение теоретико-экспертные си­
стемы принятия решений (Хорвиц и др. [1068] , 1988; Коуэлл и др. [485], 2002). 
Примечагелен тот факт, что с 1 991 года на обложке журнала Искусственный ин­
теллект бьта изображена сеть принятия решений, хотя с направлениями стрелок 
на ней все же были допущены некоторые художественные вольности. 

Практические попытки измерения оценок полезности у людей начались еще 
в послевоенные годы на первой стадии разработки теории анализа принятия ре­
шений (см. выше). Такая единица измерения полезности, как микроморт, обсу­
ждалась Говардом ([1075] ,  1989). Талер в работе [2197] (1992) установил, что 
при шансе погибнуть 1/1000 респондент обычно отказывается платить больше 
чем 200 долл. за устранение этого риска, но при этом не соглашается получить 
50 ООО долл., чтобы взять на себя этот риск. 

Использование такого показателя, как QALY (Qua\ ity-Adjusted Life Years -
годы жизни с поправкой на качество), для анализа экономической выгоды от ме­
дицинского вмешательства и соответствующей социальной политики можно про­
следить в прошлое по крайней мере до работы Клармана и соавт. [ 123 7] ( 1968), 
хотя сам по себе этот термин впервые был использован Зекхаузером и Шепардом 
в работе [2421] ( 1976). Как и деньги, показатель QALY прямо соответствует полез­
ности только при соблюдении довольно строгих допущений, таких как нейтраль­
ное отношение к риску, что в действительности часто нарушается (Березняк и др. 
[ 1 78], 2015); тем не менее этот показагель очень широко используется на практике, 
например при формировании политики Национальной службы здравоохранения в 
Великобритании. Расселл в работе [ 1 937] (1990) приводит типичный пример аргу­
ментации в пользу серьезных изменений в политике общественного здравоохране­
ния на основании ожидаемой полезности, измеряемой в QALY. 

Кини и Райффа в [1213] ( 1 976) дают введение в мноrоатрибутиую теорию 
полезности. Они описывают ранние компьютерные реализации методов выявле­
ния необходимых параметров для мноrоагрибутной функции полезности и при­
водят множество сообщений о реальных приложениях теории. Аббас в [4] (2018) 
рассматривает многие достижения начиная с 1976 года. Эrа теория впервые была 
введена в области ИИ в работе Вэллмана [2315] (1985), который также исследо­
вал использование стохастического доминирования и качественных вероятност­
ных моделей (Вэллман [2315], ( 1988); [23 1 6], 1990). Вэллман и Дойл ([2319], 1992) 
предоставили предварительный набросок того, как сложное множество незави­
симых по полезности отношений может быть использовано для представления 
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структурированной модели функции полезности, - во многом аналогично тому, 
как байесовские сети могут быть использованы для представления распределений 
совместных вероятностей.  Бакхус и Гроув ( [97], 1 995;  [98], 1 996) и Ла Мура и Шо­
хам ( [ 1 333] ,  1 999) освещают дальнейшие результаты работ по этим направлени­
ям. Бутилье и соавт. в [269] (2004) описывают СР-сети, полностью разработанную 
графическую модель формального математического представления для условных 
ceteribus paribus (при прочих равных условиях) утверждений предпочтения . 

К понятию проклятия оптимизатора внимание аналитиков решения с боль­
шим напором бьmо привлечено Смитом и Винклерлом ([2094], 2006), указавшими, 
что прогнозируемые аналитиками финансовые выгоды клиента для предлагаемых 
ими вариантов действий почти никогда не материализуются. Они связали это не­
посредственно с предвзятостью, введенной путем выбора оптимального действия, 
и показали, что более полный байесовский анализ устраняет эту проблему. 

Харрисон и Март ( [969], 1 984) ту же основную концепцию назвали ► разоча­
рованием после принятия решения, а Браун ([3 1 9] ,  1 974) выявил эту проблему 
в контексте анализа проектов капиталовложений. Проклятие оптимизатора также 
тесно связано с ► проклятием победителя (Капе и др. [366], 1 97 1 ;  Талер [2 1 97], 
1 992), которое применимо к конкурсным торгам на аукционах: кто бы ни выиграл 
аукцион, очень вероятно, что он переоценил стоимость рассмприваемого объекта. 
В своей работе Капе и соавт. процитировали слова инженера-нефтяника на тему 
проведения торгов по правам : "Если кто-то выиграет пакет у двух или трех про­
тивников, то он сможет почувствовать себя счастливым в связи со своей удачей. 
Но что он почувствует, если выиграет у 50 противников? Огорчение". 

Парадокс Алле, предложенный лауреатом Нобелевской премии Морисом Алле 
([30] ,  1 953), бьт экспериментально проверен, и результаты показали, что люди по­
стоянно непоследовательны в своих суждениях (Тверски и Канеман [2239], 1 982; 
Конлиск [ 469], 1 989). Парадокс Эллсберга о неоднозначности неприятия бьm пред­
ставлен в докторской диссертации Даниэля Эллсберга ([682], 1 962). 1 0  Фокс и Твер­
ски ([765] ,  1 995) описывают последующее исследование в отношении отвращения 
к неоднозначности. Махина ([ 1 47 1 ] , 2005) приводит общий обзор в отношении вы­
бора в условиях неопределенности и объясняет, как он может варьироваться со­
гласно теории ожидаемой полезности. В отношении уrnубленного анализа предпо­
чтений при неопределенности стоит обратить внимание на классический учебник 
Кини и Райффы ([ 1 2 1 3] ,  1 976) и недавнюю работу Аббаса ([4] , 20 1 8). 

Большим годом для популярных книг о человеческой ► иррациональности 
стал 2009 год - вышли такие издания, как PredictaЬly Irrational (Ариэли [ 69], 2009), 
Sway (Брафман и Брафман [286], 2009), Nudge (Талер и Сунстейн [2 1 98],  2009), 
К/иgе (Маркус [ 1 49 1  ] ,  2009), How We Decide (Лерер [ 1 3 80], 2009) и Оп Being Certain 

1 0  Позже Эллсберг стал военным аналитиком корпорации RAND, и связанная с этим 
утечка информации, известная как "документы Пентагона", способствовала окончанию 
Вьетнамской войны . 
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(Бартон [35 1 ) , 2009). Все эти издания дополняют классическую книгу Judgment 
Under Uncertainty (Канеман и др. [ 1 1 72), 1 982) и стагью, с которой все началось (Ка­
неман и Тверски [ 1 1 73) ,  1 979). Сам Канеман предложил глубокое и легко читаемое 
обсуждение предмета в Thinking: Fast and Slow (Канеман [ 1 1 7 1  ], 20 1 1 ). 

С другой стороны, в области эволюционной психологии было высказано про­
тивоположное относительно этой литературы мнение: в работе Басса [352) (2005) 
утверждается, что люди вполне рациональны в эволюционно соответствующих 
контекстах. Его сторонники указывают, что в эволюционном контексте иррацио­
нальность наказывается по определению, и показывают, что в некоторых случаях 
отмеченные факты являются следствием экспериментальной процедуры (Камминс 
и Аллен [507), 1 998). В свое время было отмечено возрождение интереса к байе­
совской модели познания после десятилетий пессимизма (Элио [680) , 2002; Чатер 
и Оаксфорд [40 1 ) , 2008 ; Гриффитс и др. [923) ,  2008); однако это возрождение не 
осталось без внимания недоброжелателей (Джоне и Лав [ 1 1 44), 20 1 1 ). 

Теория стоимости информации вначале исследовалась в контексте статистиче­
ских экспериментов, в которых использовалась квазиполезность ( сокращение эн­
тропии) (Линд.ли [ 1 4 1 6), 1 956). Специалист в области теории управления, Руслан 
Страrонович, в [2 1 44) ( 1 965) разработал более общую теорию, представленную в 
этой книге, где стоимость информации устанавливается в соответствии с ее спо­
собностью влиять на решения . Работа Стратоновича была неизвестна на Западе, 
где Рон Ховард ([2 1 44) , 1 966) развил ту же идею. Его статья завершалась следую­
щим замечанием : "Если теория стоимости информации и связанные с ней струк­
туры теории принятия решений в будущем не охватят большую часть образования 
инженеров, то в отношении профессии инженера вскоре обнаружится, что ее тра­
диционная роль управления научными и экономическими ресурсами на благо че­
ловека была утрачена в пользу другой профессии". На сегодняшний день подоб­
ной революции в методах управления так и не произошло. 

Близорукий алгоритм сбора информации, описанный в этой главе, повсемест­
но упоминается в литературе по анализу решений; его основные контуры можно 
разглядеть в оригинальной статье о диаграммах влияния (Говард и Матесон [ 1 076) , 
1 984). Эффективные расчетные методы изучались Диттмером и Йенсеном ([625), 
1 997). Ласки ( ( 1 3 56), 1 995) и Нильсен и Йенсен (( 1 68 1 ) , 2003 ) обсуждают методы 
анализа чувствительности в байесовских сетях и сетях принятия решений соответ­
ственно. В классическом учебнике Robust and Optimal Contro/ (Чжоу и др. [2437), 
1 995) предоставляется полное раскрытие темы и приводится сравнение надежных 
и теоретических подходов к принятию решений при неопределенности. 

Задача поиска сокровищ бьmа независимо решена многими авторами, по край­
ней мере начиная с работ по последоваrельному тестированию Гласса ((87 1 ], 1 959) 
и Миттена ([ 1 60 1  ], 1 960). Стиль доказаrельства в этой главе опирается на основной 
результаr, представленный Смитом ([2 1 О 1 ], 1 956), при котором значение последова­
тельности связывается со значением той же последоваrельности при перестановке 
двух смежных элемеlfГОв. Эти результаrы для независимых тестов бьmи расширены 
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на более общие задачи поиска по дереву и графику (где тесты частично упорядо­
чены) Каданом и Симоном ( [ 1 1 63] ,  1 977). Результаты по сложности не близоруких 
(nonmyopic) вычислений стоимости информации бьmи получены Краузе и Гестри­
ном ([ 1 307], 2009). Краузе и соавт. ([ 1 308], 2008) идентифицировали случаи, когда 
субмодулярность (submodularity) приводит к разрешимой аппроксимации алгорит­
ма, опираясь на плодотворную рабmу Немхаузера и соавт. ( ( 1 662], 1 978) о субмоду­
лярных функциях. Краузе и Гестрин ( ( 1 306], 2005) выявили случаи, когда точный 
алгоритм динамического программирования предоставляет эффективное решение 
как для выбора подмножества свидетельства, так и для генерации условного плана. 

Гарсани ((97 1 ], 1 967) исследовал проблему неполной информации в теории игр, 
когда игроки могут не знать точно функцию вознаграждения друг друга. Он по­
казал, что такие игры были идентичны играм с частично наблюдаемой информа­
цией, в которых игроки находятся в неопределенности о состоянии мира, с помо­
щью приема добавления переменных состояния, ссьmающихся на вознаграждение 
игроков. Сайерт и де Гроот ( (5 1 2] ,  1 979) разработали теорию ► адаптивной по­
лезности, в которой агент может быть не уверен в своей функции полезности и 
может получить больше информации через опыт. 

Работа по выявлению байесовских предпочтений (Чаевска и др. (383], 2000; Бу­
тилье (265] ,  2002) начинается с принятия функции априорной вероятности полезно­
сти агента. Ферн и соавт. ((732], 20 1 4) предлагаюr базирующуюся на теории приня­
тия решений модель ► помощи, в которой робот пытается выяснить цель человека, 
относительно коrорой он изначально находится в неопределенности, и помочь в ее 
достижении. Пример с отключением в разделе 1 6.7.2 взят из стагьи Хетфилда-Ме­
нелла и соавт. ( (943 ], 20 1 7). Рассел ([ 1 942], 20 1 9) предлагает общую структуру для 
благотворного ИИ, в коrорой игра на отключение является основным примером. 

Упражнения 
16.1. Эrо упражнение построено на игре Almanac Game (игра на знание факrов из спра­

вочника), используемой аналитиками решений для калибровки свих числовых оце­
нок. На кm�щый из приведенных ниже вопросов дайте наилучший предполагаемый 
вами ответ, т.е .  найдите число, которое, по вашему мнению, с такой же вероятно­
стью является слишком большим, с какой оно может бьrrь слишком малым. Кроме 
roro, приведите свою гипоrезу с оценкой на уровне 25-й процентили, т.е. такое чис­
ло, которое, по вашему мнению, имеет 25% шансов на то, чтобы быть слишком вы­
соким, и 75% шансов на ro, чтобы бьпь слишком низким. Наконец, приведите та­
кую же оценку значения и для 75-й процентили. (Таким образом, вы должны даrь 
всего три оценки для кmiщoro вопроса - низкую, среднюю и высокую.) 
а) Количество пассажиров, которые совершали полеты между Нью-Йорком и 

Лос-Анджелесом в 1 989 году. 
б) Население Варшавы в 1 992 году. 
в) Год, в который испанский конкистадор Коронадо открьm реку Миссисипи. 
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r) Количество голосов, полученных Джимми Картером во время президент-
ских выборов в 1 976 году. 

д) Возраст самого старого живого дерева по состоянию на 2002 год. 
е) Высота плотины Гувера (Hoover Dam) в футах. 
ж) Количество яиц, произведенных в штате Орегон в 1 985 году. 
з) Количество буддистов в мире в 1 992 году. 
и) Количество смертных случаев из-за СПИДа в Соединенных Штатах 

в 1 98 1  году. 
к) Количество американских патентов, выданных в 1 90 1  году. 
Правильные ответы приведены в конце этой главы. С точки зрения анализа реше­
ний интересно не то, насколько ваши средние предположения подошли к реаль­
ным ответам, а скорее то, насколько часто реальный ответ попадал в установлен­
ные вами границы 25 и 75%. Если такая си,уация возникала примерно в половине 
случаев, то указанные вами границы были доспrгочно точными. Но если вы похо­
жи на большинство людей, то проявите больше самоуверенности, чем следует, и 
более половины ответов выйдет за пределы этих границ. Постоянно практикуясь, 
вы сможете откалибровать свои оценки, чтобы устанавливаемые пределы стали 
более реалистичными и тем самым приносили больше пользы при предоставле­
нии информации для принятия решений. Попробуйте ответить на второй ряд во­
просов и определите, достигнуты ли вами какие-либо улучшения. 
а) Год рождения актрисы За За Габор (Zsa Zsa Gabor). 
б) Максимальное расстояние от Марса до Солнца в милях. 
в) Стоимость в долларах пшеницы, экспортированной из Соединенных Штагов 

в 1 992 году. 
г) Количество тонн груза, обработанных в пор,у Гонолулу в 1 99 1  году. 
д) Годовая заработная плата в долларах губернатора Калифорнии в 1 993 году. 
е) Население города Сан-Диего в 1 990 году. 
ж) Год, в котором Роджер Уильямс основал r. Провиденс, штат Род-Айленд. 
з) Высота горы Килиманджаро в футах. 
и) Длина Бруклинского моста в футах. 
к) Количество смертных случаев из-за автомобильных аварий в Соединенных 

Штатах в 1 992 году. 
16.2. Крис рассмаrривает пять подержанных автомобилей, прежде чем купить тот, ко­

торый принесет ему максимальную полезность. Пэт рассмшривает десять авто­
мобилей с то же самой целью. При прочих равных условиях у кого из них боль­
ше шансов купить маши ну лучше, чем у другого? Кто из них с большей вероят­
ностью будет разочарован качеством своего автомобиля? И на сколько именно 
(с точки зрения стандартных отклонений от ожидаемого качества)? 

16.3. Крис рассмшривает пять подержанных автомобилей, прежде чем купить тот, ко­
торый принесет ему максимальную полезность. Пэт рассмагривает одиннадцать 
автомобилей с то же самой целью. При прочих равных условиях, у кого из них 
больше шансов купить машину лучше, чем у другого? Кто из них с большей ве­
роятностью будет разочарован качеством своего автомобиля? И насколько имен­
но ( с точки зрения стандартных отклонений от ожидаемого качества)? 
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16.4. В 1 7 1 3 году Николай Бернулли исследовал санкт-петербургский парадокс, кото­
рый заключается в следующем. У вас есть возможность сыграгь в игру, в которой 
подпинная монета подбрасывается повторно до тех пор, пока не выпадет орлом 
вверх. Если орел впервые появится на п-м броске, вы выигрываете 2n монет. 
а) Покажите, что ожидаемая денежная ценность этой игры является бесконеч­

но большой. 
б) Сколько бы лично вы заплатили за участие в этой игре? 
в) В 1 738 году Даниил Бернулли, двоюродный брат Николая, разрешил кажу­

щийся парадокс, связанный с нежеланием людей участвовагь в этой игре, не­
смотря на ее привлекательность, выдвинув предположение, что полезность 
денег измеряется логарифмической шкалой ( т.е. И(Sп) = а log2 п + Ь, где Sn -
денежное состояние человека, т.е. наличие у него п монет). Какова ожидае­
мая полезность этой игры согласно указанному предположению? 

г) Каковая максимальная сумма, которую бьmо бы разумно заплатить, чтобы 
сыграгь в эту игру, при условии, что исходное состояние равно k монет? 

16.5. Напишите компьютерную программу дпя автоматизации процесса, описанного 
в упражнении 1 6. 1 1 . Проверьте работу вашей программы на нескольких людях с 
разным собственным капиталом и различными политическими взглядами. Про­
комментируйте результаты сравнения согласованности полученных данных как 
дпя отдельного лица, так и дпя разных лиц. 

16.6. Компания "Карамельки с сюрпризом" выпускает конфеты двух вкусов: 75% -
со вкусом клубники и 25% - со вкусом анчоуса. Каждой новой карамельке 
придается шарообразная форма, после чего она попадает на производствен­
ный конвейер. По мере продвижения ленты машина случайным образом вы­
бирает определенный процент конфет, которым придается кубическая фор­
ма. Далее все конфеты оборачивается в обертку, цвет которой выбирается слу­
чайным образом - красный или коричневый. В итоге 70% клубничных кон­
фет имеют круглую форму и 70% имеют красную обертку, тогда как 90% ан­
чоусных конфет имеют квадратную форму и 90% имеют коричневую обертку. 
Все конфеты продаются поштучно в одинаковых черных закрытых коробочках. 
Итак, теперь вы - покупатель в магазине и только что купили конфету с сюр­
призом, но еще не открьmи коробочку. Рассмотрим три байесовские сети, приве­
денные на рис. 1 6. 1 2, с узлами Wrapper (обертка), Flavor (вкус), Shape (форма). 
а) Какая сеть (сети) может правильно представить вероятность P(Flavor, Wrap-

per, Shape )? 
б) Какая сеть лучше всего подходит для этой задачи? 
в) Утверждает ли сеть на рис. 1 6. 1 2, а, что P(Wrapper I Shape) = P(Wrapper)? 
г) Какова вероятность того, что ваша конфета имеет красную обертку? 
д) В коробочке находится круглая конфетка с красной оберткой. Какова вероят­

ность того, что ее вкус клубничный? 
е) Развернутая конфета с клубничным вкусом на уличном рынке стоит s, а раз­

вернутая конфета со вкусом анчоуса - а. Напишите выражение дпя стоимо­
сти нераскрытой коробочки с конфетой. 
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ж) Новый закон запрещает торговлю конфетами без обертки, но по-прежнему 
разрешает торговать конфетами без упаковки (вынутыми из коробочки). Бу­
дет ли теперь нераскрытая коробочка с конфетой стоить больше либо мень­
ше, или же она останется в той же цене, что и раньше? 

а) б) в) 

Рис. 16. 12. Три варианта байесовской сети, предr1аrаемые дr1я задачи о карамельках 
с сюрпризом 

16.7. Компания "Карамельки с сюрпризом" выпускает конфеты двух вкусов: 70% ­
со вкусом клубники и 30% - со вкусом анчоуса. Каждой новой карамельке 
придается шарообразная форма, после чего она попадает на производствен­
ный конвейер. По мере продвижения ленты машина случайным образом вы­
бирает определенный процент конфет, которым придается кубическая фор­
ма. Далее все конфеты оборачивается в обертку, цвет которой выбирается слу­
чайным образом - красный или коричневый. В итоге 80% клубничных кон­
фет имеют круглую форму и 80% имеют красную обертку, тогда как 90% ан­
чоусных конфет имеют квадратную форму и 90% имеют коричневую обертку. 
Все конфеты продаются поштучно в одинаковых черных закрытых коробочках. 
Итак, теперь вы - покупатель в магазине и только что купили конфету с сюр­
призом, но еще не открыли коробочку. Рассмотрим три байесовские сети, приве­
денные на рис. 1 6. 1 2, с узлами Wrapper (обертка), Flavor (вкус), Shape (форма). 
а) Какая сеть (сети) может правильно представить вероятность P(Flavor, Wrap-

per, Shape)? 
б) Какая сеть лучше всего подходит для этой задачи? 
в) Утверждает ли сеть на рис. 1 6. 1 2, а, что P(Wrapper l Shape) = P(Wrapper)? 
г) Какова вероятность того, что ваша конфета имеет красную обертку? 
д) В коробочке находится круглая конфетка с красной оберткой. Какова вероят­

ность того, что ее вкус клубничный? 
е) Развернутая конфета с клубничным вкусом на уличном рынке стоит s, а раз­

вернутая конфета со вкусом анчоуса - а. Напишите выражение для стоимо­
сти нераскрытой коробочки с конфетой. 

ж) Новый закон запрещает торговлю конфетами без обертки, но по-прежнему 
разрешает торговать конфетами без упаковки (вынутыми из коробочки). Бу­
дет ли теперь нераскрытая коробочка с конфетой стоить больше либо мень­
ше, или же она останется в той же цене, что и раньше? 
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1 6.8. Докажите, что суждения В >- А и С >- D в парадоксе Алле (раздел 1 6 .3 .4) нару­
шают аксиому заменяемости . 

16.9. Рассмотрим парадокс Алле, описанный в разделе 1 6 .3 .4 :  агент, который пред­
почитает лотерею В лотерее А (принимая гарантированный выигрыш) и лоте­
рею С - лотерее D (выбирая более высокую полезность), согласно теории по­
лезности действует нерационально. Как вы думаете, это указывает на проблему 
для агента, на проблему для теории или здесь вообще нет проблемы? Поясните 
свой ответ. 

16. 10. Лотерейные билеты стоят 1 долл. В этой лотерее возможны два приза: выплата 
1 О долл.  с вероятностью 1 150 и выплата 1 ООО ООО долл.  с вероятностью 
1 /2 ООО ООО. Какова ожидаемая денежная ценность лотерейного билета? Когда 
(если вообще когда-либо) будет рационально купить такой билет? Дайте точный 
ответ - представьте уравнение, включающее полезности . При этом можете 
принять размер текущего состояния k и полезность U(Sk) = О, а также можете 
предположить, что полезность U(Sk+ i o) = l O x  U(Sk+ i ), но не можете делать ка­
ких-либо предположений в отношении полезности U(Sk+ 1 000 000). Социологиче­
ские исследования показывают, что люди с более низким доходом покупают не­
пропорционально большое количество лотерейных билетов. Как вы думаете, 
это потому, что в качестве принимающих решения они действуют хуже, или по­
тому, что они имеют другую функцию полезности? Рассмотрите ценность обду­
мывания возможности выиграть в лотерею в сравнении с обдумыванием воз­
можности стать героем происходящего на экране во время просмотра приклю­
ченческого фильма. 

16.11.  Проанализируйте свою оценку полезности различных постепенно увеличива­
ющихся сумм денег, выполнив ряд проверок предпочтения между некоторой 
определенной суммой М1 и лотереей [р, М2; ( 1 - р), О] .  Выбирайте различные 
значения М1 и М2 и варьируйте вероятность р до тех пор, пока для вас выбор 
из этих двух вариантов не станет безразличным. Представьте полученную в ре­
зультате функцию полезности в виде графика. 

16.12. Какова стоимость микроморта лично для вас? Разработайте определенный про­
токол, позволяющий узнать это значение. Задавайте вопросы, основанные как 
на том, сколько вы готовы заплатить, чтобы избежать риска смерти, так и на 
том, сколько вы готовы принять в качестве платы за то, чтобы взять на себя этот 
риск. 

16. 13. Пусть непрерывные переменные Х1 , • • • , Xk имеют независимое распределение 
в соответствии с одной и той же функцией плотности вероятности .t(х) . Дока­
жите, что функция плотности вероятности для max{X1 , • • •  , Xk } задается как 
kf(x)(F(x))н , где F - кумулятивное распределение для / 

16.14. Экономисты часто используют экспоненциальную функцию полезности для де­
нег: И(х) = -e-xlR, где R - положительная константа, представляющая толерант­
ность конкретного человека к риску. Толерантность к риску отражает, насколь­
ко вероятно, что человек может принять лотерею с определенной ожидаемой 
денежной ценностью (ЕМУ) в сравнении с определенной выплатой за участие 
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в ней. По мере того как значение R (измеряемое в тех же единицах, что и х) ста­
новится больше, человек становится менее склонным к риску. 
а) Предположим, что для Мэри в экспоненциальной функции полезности 

R = 500 долл. Мэри предоставляется право сделать выбор между гарантиро­
ванным получением 500 долл. (вероятность 1 )  и участием в лотерее с веро­
ятностью 60% выиграть 5000 долл. и вероятностью 40% не выиграть ничего. 
Если предположить, что Мэри действует рационально, то какой вариант она 
выберет? Покажите, как вы пришли к своему ответу. 

б) Проанализируйте выбор между гарантированным получением 1 00 долл. 
(вероятность 1 )  и участием в лотерее с вероятностью 50% выигрыша 
500 долл. и вероятностью 50% не выиграть ничего. Укажите приблизитель­
ное (до трех значащих цифр) значение коэффициента R в экспоненциаль­
ной функции полезности, при котором человек будет безразличен к этим 
двум альтернативам. (Возможно, имеет смысл написать короткую програм­
му, которая поможет решить эту задачу.) 

16.15. Экономисты часто используют экспоненциальную функцию полезности для де­
нег: И(х) = -e-xlR, где R - положительная константа, представляющая толерант­
ность конкретного человека к риску. Толерантность к риску отражает, насколь­
ко вероятно, что человек может принять лотерею с определенной ожидаемой де­
нежной ценностью (EMV) в сравнении с определенной выплатой за участие в 
ней. По мере того как значение R (измеряемое в тех же единицах, что и х) стано­
вится больше, человек становится менее склонным к риску. 
а) Предположим, что для Мэри в экспоненциальной функции полезности 

R = 400 долл. Мэри предоставляется право сделать выбор между гарантиро­
ванным получением 400 долл. (вероятность 1 )  и участием в лотерее с веро­
ятностью 60% выиграть 5000 долл. и вероятностью 40% не выиграть ничего. 
Если предположить, что Мэри действует рационально, то какой вариант она 
выберет? Покажите, как вы пришли к своему ответу. 

б) Проанализируйте выбор между гарантированным получением 1 00 долл. (ве­
роятность 1 )  и участием в лотерее с вероятностью 50% выигрыша 500 долл. 
и вероятностью 50% не выиграть ничего. Укажите приблизительное (до трех 
значащих цифр) значение коэффициента R в экспоненциальной функции по­
лезности, при котором человек будет безразличен к этим двум альтернати­
вам. (Возможно, имеет смысл написать короткую программу, которая помо­
жет решить эту задачу.) 

16.16. Алексу предложено сделать выбор между двумя играми. В игре 1 подбрасыва­
ется честная монета, и, если выпадает орел, Алекс получает 1 00 долл. Если вы­
падает решка, Алекс ничего не получает. В игре 2 честная монета подбрасыва­
ется дважды. Каждый раз, когда выпадает орел, Алекс получает 50 долл., и каж­
дый раз, когда выпадает решка, Алекс не получает ничего. Предположим, что 
для Алекса функция полезности денег в диапазоне (О, 1 00] долл. является мо­
нотонно возрастающей.  Математически покажите, что если Алекс предпочита­
ет игру 2 игре 1 ,  то он не склонен к риску (по крайней мере в отношении этого 



Глава 1 6. Принятие простых решений 303 

диапазона денежных сумм). Покажите, что если Х1 и Х2 являются независимы­
ми по предпочтению от Х3 и если Х2 и Х3 являются независимыми по предпо­
чтению от Х1 , то Х3 и Х1 являются независимыми по предпочтению от Х2• 

16. 1 7. Выполните упражнение 1 6.2 1 ,  используя представление "действие-полезность", 
приведенное на рис. 1 6 .7. 

16.18. Для какой из двух диаграмм размещения аэропорта, упоминаемых в упражнени­
ях 1 6.2 1 и 1 6. 1 7, значения в таблице условной вероятности являются собственно 
точной полезностью с учетом имеющихся свидетельств? 

16.19. Модифицируйте и дополните программы байесовской сети, приведенные в ре­
позитории кода, чтобы обеспечить создание и оценку сетей принятия решений, 
а также вычисление стоимости информации.  

16.20. Рассмотрим ситуацию студента, которому нужно сделать выбор: купить или не 
купить учебник для курса. Смоделируем ее как задачу принятия решения с од­
ним булевым узлом принятия решения, В, указывающим, принял ли агент ре­
шение купить книгу, и двумя булевыми узлами жеребьевки: узлом М, указыва­
ющим, освоил ли студент материал в учебнике, и узлом Р, указывающим, про­
шел ли студент этот курс. Безусловно, имеется также узел полезности U. Некий 
студент Сэм имеет следующую аддитивную функцию полезности: О долл. - не 
покупать книгу и - 1 00 долл . ,  если купить ее, 2000 долл. - за прохождение кур­
са и О долл. - за его не прохождение. Оценки условной вероятности Сэма сле­
дующие. 

P(p l b, m) = 0,9 
Р(р I Ь, ,т) = 0,5 
Р(р 1 ,Ь, т) = О,8 
Р(р l ·b, ,т) = О,3 

Р(т I Ь) = О,9 
Р(т 1 ,Ь) = О,7 

Можно решить, что Р является независимым от В при заданном М, однако при 
сдаче экзамена по этому курсу разрешается использовать литерmуру, так что на­
личие учебника может оказаться полезным. 
а) Нарисуйте сеть принятия решений  для этой задачи.  
б) Вычислите ожидаемую полезность от покупки книги и от отказа от ее по­

купки. 
в) Как следует поступить Сэму? 

16.21. В этом упражнении завершается анализ задачи выбора площадки для размеще­
ния аэропорта, приведенной на рис. 1 6 .6. 
а) Приведите приемлемые области определения переменных, значения вероят­

ностей и полезностей для этой сети при условии, что имеются три возмож­
ные площадки для постройки аэропорта. 

б) Решите эту задачу принятия решений.  
в)  Что произойдет, если будут внедрены такие технологические усовершен­

ствования, что каждый самолет будет издавать вдвое меньше шума? 
г) Что произойдет, если требования по снижению уровня шума станут в три 

раза более жесткими? 
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д) Рассчитайте значение VPI для переменных AirTraffic (интенсивность воз­
душного трафика), Litigation (возможности получения разрешения на строи­
тельство) и Construction (стоимость строительства) в вашей модели. 

16.22. Покушrrель подержанного авгомобиля может принять решение выполнить раз­
личные проверки с разной стоимостью (например, постучать по шинам, пока­
зать авгомобиль квалифицированному механику), а затем, в зависимости от ре­
зультата этих проверок, принять решение о том, какой автомобиль следует ку­
пить. Предположим, что покупатель должен принять решение о покупке авто­
мобиля с 1 и при этом готов провести не более одной проверки t 1 автомобиля с 1 
стоимостью 50 долл. Автомобиль может находиться в хорошем состоянии (ка­
чество q+) или в плохом состоянии (качество q J, а проверка может показать, в 
каком состоянии находится автомобиль. Автомобиль с 1 стоит 1 500 долл . ,  а его 
рыночная стоимость равна 2000 долл., если он находится в хорошем состоянии. 
Если же нет, то потребуется ремонт стоимостью 700 долл., чтобы привести его в 
хорошее состояние. По оценке покупателя, вероятность того, что автомобиль с 1 
находится в хорошем состоянии, составляет 70%. 
а) Нарисуйте сеть принятия решений, представляющую эту задачу. 
б) Рассчитайте ожидаемую чистую прибыль  от покупки автомобиля с 1 , если 

проверка не проводится. 
в) Проверку можно описаrь посредством оценки вероятности того, что автомо­

биль пройдет или не пройдет данную проверку, если известно, что автомо­
биль находится в хорошем или плохом состоянии .  Имеется следующая ин­
формация : 

P(pass(c 1 , t1 ) 1 q+(c 1 )) = 0,8 ;  
P(pass(c 1 , t 1 ) 1 q-(c 1 )) = 0,35 .  

Примените теорему Байеса для вычисления вероятности того, что авгомобиль 
успешного пройдет (или не пройдет) проверку, и, следоваrельно, вероятно­
сти того, что он находится в хорошем (или плохом) состоянии, с учетом каж­
дого возможного результата проверки. 

а) Рассчитайте оптимальные решения при условии  прохождения или не про­
хождения проверки, а также их ожидаемые полезности . 

б) Рассчитайте стоимость информации от проверки и разработайте оптималь­
ный условный план для покупателя. 

16.23. Вспомните определение стоимости информации, приведенное в разделе 1 6 .6. 
а) Докажите, что стоимость информации неотрицательна и не зависит от по­

рядка следования восприятий.  
б) Объясните, почему некоторые предпочли бы не получать определенную ин­

формацию, например не желают узнать пол своего ребенка при проведении 
УЗИ. 

в) Функция/ на множествах является субмодулярной, если для любого элемен­
тах и любых множеств А и В, таких, что А � В, добавление элемента х к мно­
жеству А дает большее увеличение значения /, чем добавление х к мно-
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жеству В: А �  В =} (/{_А U {х }  ) -.l(A)) � (/{_В U {х }  ) -.1(В)). Субмодулярность 
отражает интуитивное понятие убывающей отдачи. Является ли стоимость 
информации, рассматриваемой как функция/на множествах возможных на­
блюдений, субмодулярной? Докажите это или приведите контрпример. 

Ответы к упражнению 1 6 . 1  
• Первый ряд вопросов: 3 ООО ООО; 1 600 ООО; 1 54 1 ;  4 1  ООО ООО; 4 768; 

22 1 ;  649 ООО ООО; 295 ООО ООО; 1 32;  25 546. 
• Второй ряд вопросов:  1 9 1 7 ; 1 5 5 ООО ООО; 4 500 ООО ООО ; 1 1  ООО ООО; 

1 20 000; 1 1 00 000; 1 636; 1 9 340; 1 595 ; 4 1 7 1 0. 





ГЛАВА 1 7  
Принятие сложных решений  

В данной главе рассматриваются методы принятия. решений о том, что сле­
дует делать сегодня, учитывая, что завтра может потребоваться принять 
другое решение. 

В этой главе обсуждаются расчеты, связанные с принятием решений в стоха­
стическом окружении. В главе 1 6  речь шла о задачах принятия единоразовых или 
эпизодических решений, в которых полезность результата каждого действия была 
вполне известна, а в данной главе рассматриваются ► задачи последовательного 
принятия решений, в которых полезность действий агента зависит от последо­
вательности решений. Задачи последовательного принятия решений объединяют 
обработку полезностей, неопределенностей и результатов восприятия и включа­
ют особые случаи задач поиска и планирования. В разделе 1 7 . 1  объясняется, как 
определяются задачи последовательного принятия решений, а в разделе 1 7  .2 опи­
сываются методы их решения с целью выработки оптимальных правил поведения, 
соответствующих стохастической окружающей среде. В разделе 1 7  .3 рассматри­
ваются задачи "многоруких бандитов" - особый и привлекательный класс задач 
последовательного принятия решений, возникающих во многих контекстах. В раз­
деле 1 7.4 исследуются задачи принятия решений в частично наблюдаемых вариан­
тах среды, а в разделе 1 7.5  описывается, как эти задачи решаются. 

17 .1. Задачи последовательного принятия решений 
Предположим, что агент находится в среде размером 4 х 3, показанной на 

рис. 1 7. 1 ,  а. Начиная с исходного состояния START, в каждом временном интерва­
ле он должен выбирать какое-то действие. Взаимодействие со средой оканчивает­
ся, когда агент достигает одного из целевых состояний, обозначенных на рисунке 
как + 1 и - 1 .  Как и в задачах поиска, действия, доступные агенту в каждом состоя­
нии, задаются функцией ACTIONS(s), которую мы иногда будем сокращать до A(s). 
В среде 4 х 3 в каждом состоянии возможны действия Ир (вверх), Down (вниз), Left 
(влево) и Right (вправо). Будем предполагать, что эта среда является полностью 
наблюдаемой, поэтому агент всегда знает, где он находится. 
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Рис. 17. 1 .  а) Простая стохастическая среда размером 4 х 3, в которой перед агентом 
поставлена задача последовательного принятия решений. б) Модель перехода для 
этой среды: "намеченный" результат достигается с вероятностью 0,8, а с вероятно­
стью 0,2 агент движется под прямым уг.лом влево или вправо от намеченного направ­
ления. Столкновение со стеной приводит к прекращенmо движения. Перемещение в 
два конечных состояния приводит к получению вознаграждений + 1 и - 1  соответ­
ственно, а перемещение в любое другое состояние связано с вознаграждением -0,04 

Если бы эта среда была детерминированной, то достичь требуемого результата 
было бы несложно: [ Up, Up, Right, Right, Right]. К сожалению, среда не всегда спо­
собствует осуществлению этого решения, поскольку действия в ней являются не­
надежными. Конкретная, принятая в данном случае модель стохастического дви­
жения показана на рис. 1 7 . 1 ,  6. Каждое действие достигает намеченной цели с 
вероятностью 0,8, но в остальных случаях в результате его выполнения агент пе­
ремещается под прямым углом к выбранному направлению, а если при этом агент 
ударяется в стену, то остается в том же квадрате. Например, действие Up, выпол­
няемое в начальном квадрате ( 1 , 1 ), перемещает агента в квадрат ( 1 ,2) с вероятно­
стью 0,8, но с вероятностью О, 1 агент может переместиться вправо, в квадрат (2, 1 ), 
а с вероятностью О, 1 он двинется влево, ударится в стену и останется в квадрате 
( 1 ,  I ). В подобной среде последовательность действий [ Ир, Ир, Right, Right, Right] 
позволяет обойти препятствие и достичь целевого состояния в квадрате (4,3) с ве­
роятностью 0,85 = 0,32768. В этом случае есть также небольшой шанс случайно 
достичь цели, обойдя препятствие с другой стороны - с вероятностью О, 1 4 х 0,8, 
поэтому суммарная вероятность достижения цели равна 0,32776 ( см. также упраж­
нение 1 7  . 1  ). 

Как и в главе 3 ,  модель перехода (или просто "модель", когда смысл слова оче­
виден) описывает результаты каждого действия в каждом состоянии. В этом слу­
чае результат является стохастическим, поэтому для обозначения вероятности до­
стижения состояния s', если в состоянии s было выполнено действие а, мы будем 
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использовать запись P(s1 1 s, а). Предполагается, LfГO эти переходы являются мар­
ковскими: вероятность достижения состояния s1 из состояния s зависит только 
от s и не зависит от истории предыдущих состояний. 

В завершение данного определения среды задачи требуется сформулировать 
функцию полезности для агента. Поскольку эта задача принятия решений являет­
ся последовательной, функция полезности должна зависеть от последовагельно­
сти состояний и действий - истории пребывании в среде, - а не от отдельного 
состояния. Ниже в этом разделе будет рассмотрена природа функций пмезности 
по истории, а сейчас просто оговорим, LfГO за каждый переход из состояния s в со­
стояние s' посредством выполнения действия а агент получает ► вознаграждение 
R(s, а, s1 ). Вознаграждение может быть положительным или отрицательным, но 
должно быть ограничено величиной ±Rmax • 1 

В данном конкретном примере вознаграждение равно -0,04 для всех переходов, 
кроме тех, которые приводят в конечные состояния ( с ними связаны вознагражде­
ния + 1  и - 1 ). Полезность, связанная с историей пребывания в среде (на текущий 
момент), рассмаrривается просто как сумма пмученных вознаграждений. Напри­
мер, если агент достиг состояния + 1 после выполнения I О переходов, суммарная 
полезность его действий будет (9 х - 0,04) + 1 = 0,64. Оrрицаrельное вознагражде­
ние -0,04 побуждает агента быстрее достичь квадраrа (4,3), поэтому данная среда 
представляет собой стохастическое обобщение задач поиска в главе 3 .  Еще один 
способ описать эту ситуацию - сказаrь, что агенту "не нравится" находиться в 
этой среде, поэтому он стремится выйти из нее как можно быстрее. 

Подведем итог: задача последоваrельноrо принятия решений для пмностью 
наблюдаемой стохастической среды с марковской моделью перехода и аддитив­
ными вознаграждениями называется ► марковским процессом привитии реше­
ний, или МОР (Markov Decision Process). Любая задача МОР состоит из множе­
ства состояний (с начальным состоянием s0), функции ACTIONS(s), определяющей 
множество действий, доступных в каждом состоянии, модели перехода P(s' 1 s, а) и 
функции вознаграждения R(s, а, s1 ) . Методы решения задач МОР обычно включа­
ют ► динамическое программирование: упрощение задачи посредством ее ре­
курсивного разбиения на более мелкие фрагменты и запоминания оrnимальных 
решений для этих фрагментов. 

Следующий вопрос состоит в том, как должно выглядеть решение этой задачи. 
Из сказанного выше уже понятно, что какая-либо фиксированная последовагель­
ность действий не может служить искомым решением, поскольку после ее выпол­
нения агент может оказаrься в состоянии, отличном от целевого. Следовательно, 
решение должно определять, что следует делаrь агенту в любаw состоянии, кото­
рого он может достичь. Решение такого рода - это так называемая ► стратегии. 

1 Также допускается использовать сrоимосrь c(s, а, s'), как это было сделано в опреде­
лении задач поиска в главе 3. Однако использование вознаграждения является стандартной 
практикой в литературе по последовательным решениям в условиях неопределенности. 
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По традиции для обозначения стратегии принято использовать символ 'Т'i, а но­
тация 7i(s) определяет действие, рекомендованное в стратегии 1'i для состояния s. 
Не имеет значения, каким будет результат этого действия, - результирующее со­
стояние будет входить в стратегию и агент будет знать, что делать дальше. 

Всякий раз, когда определенная стратегия выполняется, начиная с начального 
состояния, стохастический характер среды приводит к формированию другой 
истории пребывания в среде. Поэтому качество определения стратегии измеряется 
по ожидаемой полезности возможных историй пребывания в среде, создаваемых 
согласно этой страrегии. ► Оптимальной стратегией называется такая стратегия, 
которая позволяет достичь максимальной ожидаемой полезности, которую приня­
то обозначать как 'Т'i* . Следуя заданной стратегии 'Т'i* , агент принимает решение, 
что делать, учитывая текущие результаты своего восприятия, сообщающие ему, 
что он находится в состоянии s, а затем выполняет действие 'Т'i* (s). В любой стра­
тегии функция агента представлена явно, поэтому стратегия является описанием 
простого рефлексного агента, вычисленным на основе информации, используемой 
агентом, действующим на основе полезности. 

Оптимальные страrегии для мира, представленного на рис. 17 .1, приведены на 
рис. 17 .2, а. Здесь есть две стратегии, поскольку аген,у абсолютно безразлично, 
куда идти из квадрата (3 ,  1) - влево или вверх: идти влево безопаснее, но дольше, 
а идти вверх быстрее, но есть риск случайно попасть в квадрат ( 4,2). В общем слу­
чае довольно часто возможно наличие нескольких оптимальных стратегий. 
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Рис. 17 .2. а) Оптимальные стратегии для стохастической среды с r = -0,04 для пере­
ходов в нетерминальные состояния. Существует две стратегии, поскольку в состо­
янии (3 , l )  оба перехода, влево и вверх, являются оптимальными. б) Оптимальные 
стратегии для четырех различных диапазонов значений r 
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Равновесие между риском и вознаграждением изменяется в зависимости от зна­
чения вознаграждения r = R(s, а, s' ) для переходов между нетерминальными со­
стояниями. Стратегии, показанные на рис. 1 7 .2, а, являются оптимальными для 
-0,0850 < r < -0,0273.  На рис. 1 7 .2, б показаны оптимальные страгеrии для четырех 
других диапазонов значения r. Если r < - 1 ,6497, жизнь агента настолько мучитель­
на, что он сразу направляется прямо к ближайшему выходу, даже если стоимость 
этого выхода равна - 1 . Когда -0, 73 1 1  < r < -0,4526, жизнь агента заметно диском­
фортна, и он выбирает кратчайший маршрут к состоянию + 1 из состояний (2, 1 ), 
(3, 1 )  и (3,2). Однако из состояния ( 4, 1 )  стоимость достижения + 1 является настоль­
ко высокой, что агент предпочитает направиться прямо в - 1 .  А когда жизнь агента 
не столь уж неприятна (-0,0274 < r < О), оптимальная стратегия состоит в том, что­
бы вообще не рисковать. В состояниях (4, 1 )  и (3,2) агент направляется буквально 
прочь от состояния - 1 ,  чтобы случайно не попасть rуда ни при каких обстоятель­
ствах, даже несмотря на то, что из-за этого ему приходится несколько раз ударить­
ся головой о стену. Наконец, если r > О, то жизнь агента становится, определенно, 
приятной и он избегает обоих выходов.  При использовании действий, показанных 
для состояний (4, 1 ), (3,2) и (3 ,3), любая страгеrия является оптимальной и агент 
получает бесконечно большое суммарное вознаграждение, поскольку никогда не 
попадает в терминальное состояние. Как оказалось, существует девять оптималь­
ных страгеrий для различных диапазонов значений r, - в упражнении 1 7 . 7 пред­
лагается найти эти страгеrии. 

Введение неопределенности делает задачи МОР гораздо ближе к реальному 
миру по сравнению с задачами детерминированного поиска. По этой причине воз­
можности МДП уже исследовались в нескольких научных областях, включая ис­
кусственный интеллект, исследование операций, экономику и теорию управления . 
Были предложены десятки алгоритмов поиска решений и некоторые из них обсуж­
даются в разделе 1 7 .2 .  Но прежде необходимо более обстоятельно разобраться в 
определениях полезности, оптимальной страrеrии и моделях для марковских про­
цессов принятия решений (МОР). 

1 7  . 1 . 1 . Определение полезности с учетом времени 

В примере задачи МОР, представленном на рис. 1 7. l ,  производительность аген­
та оценивалась как сумма вознаграждений за выполненные переходы. Такой вы­
бор показагеля производительности нельзя назвагь произвольным, но он не явля­
ется единственно возможным для функций полезности по историям пребывания в 
среде, которые могут записывагься как Uh([s0, а0, s 1 , а 1 • • •  , sn]) .2 

Первый вопрос, на который нужно найти ответ, - что имеет место при при­
нятии решений: ► конечный горизонт или ► бесконечный горизонт? Наличие 

2 В этой главе для функции полезности используете.я обозначение U (с целью соответ­
ствия остальной части книги), но во многих работах по MDP вместо него используете.я 
обозначение V (от слова value). 
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конечного горизонта означает, что есть такое фиксированное время N, после кото­
рого все теряет смысл, - можно сказать, что игра уже окончена. Таким образом, 

Uh([s0, а0, s 1 , а 1 , • • •  , SN+k]) = Uh([s0, а0, s 1 , а 1 , • • • , sN]) 

для всех k > О.  Например, предположим, что агент начинает движение из состояния 
(3 ,  1 )  в мире с размерами 4 х 3 ,  показанном на рис . 1 7  . 1 , а также допустим, что 
N = 3 .  Тогда, чтобы получить хоть малейший шанс достичь состояния + 1 ,  агент 
должен направиться непосредственно к нему, и оптимальным действием будет пе­
реход в направлении Ир. С другой стороны, если N = 1 00, то запас времени у аген­
та настолько велик, что лучше выбрать безопасный маршрут в направлении Left. 
Поэтому ♦ при наличии конечного горизонта оптимальное действие в данном состо­

янии может зависеть от того, сколько времени осталось. Стратегия, которая зависит 
от времени, называется ► нестационарной. 

С другой стороны, если нет заданного предела времени, то нет смысла ве­
сти себя по-разному в одном и том же состоянии в разное время .  Поэтому здесь 
оптимальное действие зависит только от текущего состояния, а оптимальная 
стратегия является ► стационарной. Таким образом, стратегии для случая с 
бесконечным горизонтом будут проще по сравнению со стратегиями,  которые 
применяются в случае с конечным горизонтом, и в данной главе будет в основ­
ном рассматриваться случай с бесконечным горизонтом. (Позднее будет показа­
но, что для частично наблюдаемых сред случай с бесконечным горизонтом уже 
не будет таким простым.)  Обратите внимание, что понятие "бесконечного гори­
зонта" не обязательно означает, что все последовательности состояний являют­
ся бесконечными, просто в этом случае для их выполнения не устанавливаются 
фиксированные сроки . Конечные последовательности состояний могут суще­
ствовать в любой задаче МОР с бесконечным горизонтом, содержащей терми­
нальное состояние. 

Следующий вопрос, на который необходимо найти ответ, - как рассчитать по­
лезность последовательностей состояний? Везде в этой главе мы будем исполь­
зовать ► аддитивные обесцениваемые вознаграждения (additive discounted 
rewards): полезность истории будет следующей: 

Uh([s0, а0, s 1 , а 1 , s2, • • • ]) = 

= R(s0, а0, s 1 ) + 1 R(s 1 , а 1 , s2) + "·,
?
R(s2, а2, s3) + · · ·  , 

где "/ - это ► коэффициент обесценивании, представляющий собой число в ди­
апазоне от О до 1 .  Коэффициент обесценивания описывает степень предпочтения 
агентом текущих вознаграждений перед будущими вознаграждениями. Если ко­
эффициент "/ близок к О, вознаграждения в отдаленном будущем рассматривают­
ся им как малозначащие. Когда коэффициент "/ близок к 1 ,  агент проявляет больше 
желания ожидать получения отдаленных вознаграждений. Если же коэффициент "/ 
равен 1 ,  то аддитивные обесцениваемые вознаграждения сводятся к особому слу­
чаю чисто ► аддитивных вознаграждений . Обратите внимание, что свойство 
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аддитивности уже бьmо определено неявно в используемых нами функциях стои­
мости пути для алгоритмов эвристического поиска (глава 3) .  

Использование аддитивных обесцениваемых вознаграждений имеет смысл по 
нескольким причинам .  Одна из них является эмпирической : как люди, так и жи­
вотные склонны оценивать получение вознаграждения в ближайшей перспекти­
ве более высоко, чем его получение в отдаленном будущем . Другая - экономи­
ческая : если вознаграждение денежное, то действительно лучше получить его 
раньше, а не позже, поскольку полученное раньше вознаграждение может быть 
инвестировано и уже принести прибьmь, пока придется ожидаrь получения более 
поздних вознаграждений. В этом контексте коэффициент обесценивания "t являет­
ся эквивалентом процентной ставки размером ( 1 /1) - 1 .  Например, коэффициент 
обесценивания "t = 0,9 является эквивалентом процентной ставки 1 1 , 1 %.  

Третьей причиной является неопределенность в отношении истинных возна­
граждений: их можно так никогда и не получить по самым разным причинам, ко­
торые не были приняты во внимание в модели перехода. При определенных до­
пущениях коэффициент обесценивания гамма является эквивалентом добавления 
вероятности 1 - "t случайного останова истории на любом этапе выполнения стра­
тегии, независимо от выбранного действия . 

Четвертое обоснование вытекает из естественного свойства предпочтений от­
носительно историй . В терминологии м ногоатрибутной теории полезности 
(см . раздел 1 6 .4) каждый переход s, �s1+1 можно рассматривать как атрибут 
истории [s0, а0, s 1 , а 1 , s2 • • • ] . В принципе, функция полезности может зависеть от 
этих атрибутов сколь угодно сложным образом. Однако существует возможность 
сделать весьма правдоподобное допущение по поводу независимости предпочте­
ний, а именно - что в отношении последоваrельностей состояний агент имеет 
► стационарные предпочтения. 

[ ' / ' , / ] Предположим, что две истории, [s0, а0, s 1 , а 1 , s2 , • • •  ] и so , ао , s1 , щ , s2 , • • · , начи-
наются С ОДНОГО И ТОГО же перехода (т.е .  So = So , ао = Cl() И S\ = S\ ). Тогда стацио­
нарность предпочтений означает, что эти две истории должны быть упорядочены 

б [ ' ' ' ] н по предпочтительности тем же спосо ом, что и [s 1 , а 1 , s2, • • •  ] и s1 , a1 , s2 , . . . . а 
обычном языке это означает, что если вы предпочитаете одно будущее другому, на­
чиная с завтрашнего дня, то вы должны также предпочесть это будущее, если оно 
начнется сегодня, а не завтра. Стационарность - допущение, которое выглядит 
довольно безобидно, но аддитивное обесценивание _:_ это единственная форма по­
лезности историй, которая ему удовлетворяет. 

Последним обоснованием использования аддитивных обесцениваемых возна­
граждений является тот факт, что это позволяет удобным образом устранить неко­
торые неприятные бесконечности. При бесконечных горизонтах имеет место по­
тенциальное затруднение: если среда не содержит терминального состояния или 
если оно есть, но агент никогда не сможет его достичь, то все истории в этой среде 
будут бесконечно длинными, а их полезности при аддитивном необесцениваемом 
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вознаграждении будут в общем случае бесконечными. Хотя мы можем согласить­ся, что + оо - это лучше, чем - оо , сравнить две последовательности состояний с полезностью + оо будет сложнее. Здесь возможны три решения, с двумя из которых мы уже встречались. 
1 .  При обесцениваемых вознаграждениях полезность любой бесконечной по­следовательности будет конечной. Так, если "1 < 1 ,  а величина вознаграж­дения ограничена значением ±Rmax• то, с использованием стандартной формулы суммы бесконечных геометрических рядов будет справедливо сле­дующее соотношение: 

оо оо R Uh([so , ao , s1 ,  . .  ,]) = L 11R(s1 , a, , s1+ 1 ) ::; L "l1 Rmax = max . � � 1 4  ( l 7. 1 )  
2 .  Если среда содержит терминальные состояния и если в конечном итоге га­

рантируется достижение агеитом одного из этих состояиий, то нам ни­когда не придется сравнивать бесконечные последовательности действий. Стратегия, которая гарантирует достижение терминального состояния, на­зывается ► правильной стратегией . При наличии правильных стратегий можно использовать "1 = 1 (т.е. аддитивные необесцениваемые вознагражде­ния). Первые три страгеrии, показанные на рис. 1 7  .2, б, являются правиль­ными, а четвертая - неправильной . В ней достигается бесконечное сум­марное вознаграждение за счет предотвращения попадания в терминальные состояния, и при этом вознаграждение за пребывание в нетерминальных со­стояниях является положительным.  Существование таких неправильных стратегий в сочетании с использованием аддитивных необесцениваемых вознаграждений может стагь причиной неудачного завершения стандартных алгоритмов решения задач МОР, что само по себе является весомым дово­дом в пользу применения обесцениваемых вознаграждений. 3. Бесконечные последовагельности можно сравнивать в терминах ►среднего вознаграждении, получаемого в расчете на временной интервал. Предполо­жим, что в нашем мире 4 х 3 с квадратом ( 1 ,  1 )  связано вознаграждение О, 1 ,  тогда как для других нетерминальных состояний предусмотрено вознаграж­дение 0,0 1 .  В таком случае страгеrия, в которой агент предпочтет оставаться в квадрате ( 1 ,  1 ), позволит получагь более высокое среднее вознаграждение по сравнению с той стратегией, в которой агент находится в каком-то другом квадрате. Среднее вознаграждение является полезным критерием для неко­торых задач, но анализ алгоритмов со средним вознаграждением слишком сложен. 
Адцитивные обесцениваемые вознаграждения обеспечивает наименьшее коли­чество трудностей в оценке историй, поэтому мы будем использовать их в даль­нейшем. 
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17 .1.2. Оптимальные стратегии и полезность состояний 

Решив, что полезность определенной истории является суммой обесценивае­
мых вознаграждений, можно сравнивать отдельные стра:rегии, сравнивая ожидае­
мые полезности, которые будут получены при их выполнении. Предполагается, 
что агент находится в некотором начальном состоянии s и определена случайная 
переменная S,, представляющая состояние, которое агент достигнет на этапе t при 
выполнении определенной стра:rегии 7(. (Очевидно, что S0 = s - это то состояние, 
в котором агент находится на данный момент.) Распределение вероятностей по по­
следова:rельности состояний S1 , S2, • • •  определяется начальным состоянием s, стра­
тегией 7( и моделью перехода окружающей среды. 

Ожидаемая полезность, которую можно получить при выполнении стра:rегии 7(, 
начиная с состояния s, определяется как 

( 1 7 .2) 

где М - ма:rематическое ожидание относительно распределения вероятностей по­
следовательности состояний, определяемой начальным состоянием s и стратеги­
ей 7(. Теперь из всех стратегий, которые агент может выбрать для выполнения на­
чиная с состояния s, одна (или более) будет иметь более высокую ожидаемую 
полезность, чем все остальные. Обозначив Э1)' лучшую стратегию как 7(; , можно 
сформулировать следующее определение: 

7(; = argmax Uтт (s). ( 1 7.3 )  
'lt 

Не забывайте, что 7(1 - это стра:rегия, поэтому она рекомендует действие для 
каждого состояния. В частности, ее связь с состоянием s состоит в том, что это 
оптимальная стратегия, когда s является начальным состоянием. Замечательное 
последствие использования обесцениваемых утилит при бесконечных горизонтах 
заключается в том, что оптимальная стратегия не зависит от исходного состояния. 
(Безусловно, последовательность действий не может быть независимой; напом­
ним, что стратегия является функцией, определяющей действие для каждого со­
стояния.) Эrот факт кажется инrуитивно очевидным: если стра:rегия 7(: является 
оптимальной стратегией, начинающейся в состоянии а, а стра:rегия 7(; есть опти­
мальная стратегия, начинающаяся в состоянии Ь, то когда они достигают третьего 
состояния, с, нет никаких оснований для того, чтобы они противоречили друг 
другу или стратегии 7(� в отношении того, что следует делать дальше.3 

3 Хотя это утверждение кажется очевидным, оно не соблюдается для стратегий при ко­
нечных горизонтах или для других способов комбинирования вознаграждений во време­
ни, таких как выбор максимального значения. Доказательство следует непосредственно 
из уникальности функции полезности в состояниях, как показано в разделе 1 7  .2. 1 .  
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Поэтому в дальнейшем мы можем обозначать оптимальную стратегию просто 
как 11* . 

Из этого определения следует, что истинная полезность любого состояния есть 
просто lf

0(s), т.е. ожидаемая сумма обесцениваемых вознаграждений, если агент 
осуществляет оптимальную стратегию. Мы обозначаем ее как U(s), придержива­
ясь нотации, использовавшейся в главе 1 6  для полезности результата. (Обратите 
внимание, что U(s) и R(s) - разные величины: R(s) является "кратковременным" 
вознаграждением за пребывание в состоянии s, а U(s) является "долговременным" 
суммарным вознаграждением, начинающимся с состояния s и продолжающимся 
далее.) На рис. 17 .3 показаны значения полезности для мира 4 х 3. Обратите вни­
мание, что значения полезности становятся выше по мере приближения состояний 
к выходу + 1, - результат уменьшения количества шагов, необходимых для дости­
жения этого выхода. 

3 0,85 1 6  0,9078 0,9578 Ш] 
' 

2 0,80 1 6  0,7003 GJ 

0,7453 0,6953 0,65 1 4  0,4279 

2 3 4 

Рис. 17.3. Полезности состояний в мире 4 х 3, рассчитанные при 1 = 1 и r = -0,04 
для нетерминальных состояний 

Функция полезности U(s) позволяет агенrу выбирать действия, используя прин­
цип максимальной ожидаемой полезности, обсуждавшийся в главе 1 6, т.е. выби­
рать действие, максимизирующее вознаграждение за следующий этап плюс ожи­
даемая обесцениваемая полезность следующего состояния: 

1t*(s) = argmax L P(s' 1 s, a)[R(s, а, s') + 1И(s')] .  ( 17.4) 
aeA(s) s' 

Итак, полезность некоторого состояния U(s) определена как ожидаемая сумма 
обесцениваемых вознаграждений от данной точки и дальше. Из этого следует, что 
существует прямая связь между полезностью состояния и полезностью его сосед­
них состояний: ♦ полезность состояния равна ожидаемому вознаграждению за следу­
ющий переход плюс ожидаемая обесцениваемая полезность следующего состояния, при 
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условии, что агент выбирает оптимальное действие. Это означает, что полезность 
любого состояния можно определить следующим образом : 

U(s) = max L P(s 1 1 s, a)[R(s, а, s') + 1И(s 1)] . 
ae A(s) s' 

( 1 7 .5) 

Уравнение ( 1 7 .5 ) называется ► уравнением Беллмана в честь Ричарда Белл­
мана ([ 1 69] , 1 957). Полезности состояний - определяемые с помощью уравне­
ния ( 1 7 .2) как ожидаемые полезности дальнейших последовательностей состоя­
ний - являются решениями множества уравнений Беллмана. В действительности, 
как будет показано в разделе 1 7 .2 . 1 , они являются уникальными решениями. 

Рассмотрим одно из уравнений Беллмана для мира 4 х 3 .  Выражение для U( I ,  1 )  
будет выглядеть следующим образом : 

max{ [0,8(-0,04 + 1И( l , 2)) + 0, 1 (-0,04 + 1И(2, 1 )) + 0, 1 (-0,04 + 1U( l , 1 ))] , 
(0,9(-0,04 + 1U( l , 1 )) + 0, 1 (-0,04 + 1И( I , 2))] , 
(0,9(-0,04 + 1U( I ,  1 )) + 0, 1 (-0,04 + 1И(2, 1 ))], 
(0,8(-0,04 + 1И(2, 1 )) + О, 1 (-0,04 + 1U( l , 2)) + 0, 1 (-0,04 + 1И( I , 1 ))] } , 

где элементы этого выражения в каждой из четырех строк соответствуют движе­
ниям Ир, Left, Down и Right соответственно. После подстановки в это уравнение 
чисел, приведенных на рис. 1 7 .3 , при "1 = 1 выясняется, что наилучшим действием 
является Ир. 

Другой важной величиной является ► функция значения действия (action­
utility function), или ► Q-функция:  Q(s, а) представляет ожидаемую полезность 
выбора данного действия в данном состоянии. Q-функция связана с полезностями 
очевидным образом : 

U(s) = max Q(s, a). ( 1 7 .6) 

Более того, оптимальная стратегия также может быть извлечена из Q-функции сле­
дующим образом : 

'Тl"*(s) = argmax Q(s , а). ( 1 7 .7) 
а 

Также можно вывести уравнение Беллмана для Q-функций, вспомнив, что ожидае­
мым общим вознаграждением за принятие действия является его немедленное воз­
награждение плюс обесцениваемая полезность результирующего состояния, что, 
в свою очередь, можно выразить в терминах Q-функции : 

Q(s, a) = L P(s' l s, a)[R(s, a, s 1) + 1U(s')] =  
s '  

= L P(s' 1 s, a)[R(s, а, s') + "1 max Q(s', а')]. 
а ' s '  

( 1 7 .8) 
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Решение уравнений Беллмана для U ( или для Q) дает нам то, что необходимо, 
чтобы найти оптимальную стратегию. Q-функция появляется вновь и вновь в ал­
горитмах решения задач МОР, поэтому в дальнейшем мы будем использовать для 
нее следующее определение. 

function Q-VALUE(mdp, s, а, И) returns значение полезности 

return LP(s' 1 s, a)[R(s, а, s') + 1U[s']] 
s '  

1 7  . 1 .3. Шкалы вознаграждений 

В главе 1 6  отмечалось, что шкала полезностей может быть произвольной : аф­
финное преобразование оставляет оптимальное решение без изменений. Можно 
заменить U(s) значением l./(s) = mU(s) + Ь, где т и Ь являются любыми константа­
ми при условии, что т > О. Из определения полезностей как обесцениваемых сумм 
вознаграждений легко увидеть, что в МОР подобное преобразование вознагражде­
ний также оставит оптимальную страrегию без изменений: 

R'(s, а, s') = mR(s, а, s') + Ь. 

Однако было установлено, что аддитивное разложение вознаграждения полез­
ностей приводит к значительно большей свободе в определении вознаграждений. 
Пусть Ф(s) - любая функция состояния s .  Тогда, в соответствии с ► теоремой 
формировании (shaping theorem), следующая трансформация оставляет опти­
мальную стратегию неизменной: 

R'(s, а, s') = R(s, а, s') + 1Ф(s') - Ф(s). ( 1 7 .9) 

Чтобы показwгь, что это утверждение является истинным, нужно доказwгь, что два 
марковских процесса принятия решений (МОР), Ми М, имеют идентичные опти­
мальные стратегии, пока они различаются только своими функциями вознаграж­
дения, как это определено в уравнении ( 1 7.9). Начнем с уравнения Беллмана для 
Q - Q-функции для МОР М: 

Q(s, а) = LP(s' 1 s, a)[R(s, a, s') + 1 m� Q(s', а')] . 
s '  а 

Теперь пусть Q'(s, а) = Q(s, а) - Ф(s); включив эту подстановку в данное уравне­
ние, получим 

Q'(s, а) + Ф(s) = LP(s' 1 s, a)[R(s, а, s') + 1 max(Q'(s', а') + Ф(s'))] . 
s '  а ' 

Затем это уравнение упрощается до 

Q'(s, a) = "" P(s' l s, a)[R(s, a, s') + "jФ(s') - Ф(s) + 1 max Q'(s', a')] =  L- а '  s ' 

= L P(s' 1 s, a)[R'(s, а, s') + 1 m� Q'(s', а')] . 
s ' а 
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Другими словами, Q'(s, а) удовлетворяет уравнению Беллмана для МОР М. Те­
перь можно извлечь оптимальную стратегию для М, используя уравнение ( 1 7 . 7) : 

-тt�, (s) = argmax Q'(s, a) = argmax Q(s, a) - Ф(s) = argmax Q(s, a) = -тtм (s). 
а а а 

Функцию Ф(s) часто называют ► потенциалом, по аналогии с электриче­
ским потенциалом (напряжением), порождающим электрические поля .  Член 
1Ф(s') - Ф(s) функционирует как градиент потенциала. Таким образом, если Ф(s) 
имеет более высокое значение в состояниях, которые имеют более высокую полез­
ность, то добавление 1Ф(s') - Ф(s) к вознаграждению приводит к тому, что агент 
"поднимается" в полезности. 

На первый взгляд может показаться довольно нелогичным, что таким спосо­
бом можно изменить вознаграждение, не изменяя оптимальной стратеги . Но со­
мнения рассеются, если вспомнить, что все стратегии являются оптимальны­
ми при функции вознаграждения, которая всюду является нулевой. А это означает, 
что в соответствии с теоремой формирования все стратегии являются оптималь­
ными для любого вознаграждения, основанного на потенциале в виде R(s, а, s') = 
1Ф(s') - Ф(s). Интуитивно понятно, что это имеет место потому, что при таком воз­
награждении не имеет значения, по какому пути агент переходит от А к В. (Это 
утверждение проще всего понять, когда 1 = 1 : по любому пути сумма вознаграж­
дения свернется в Ф(В) - Ф(А), поэтому все пути будут одинаково хороши.) Таким 
образом, добавление к вознаграждению, основанному на потенциале, любого дру­
гого вознаграждения не должно приводить к изменению оптимальной стратегии. 

Гибкость, обеспечиваемая теоремой формирования, означает, что можно реаль­
но помочь агенту, сделав немедленное вознаграждение таким, чтобы оно более 
прямо отражало то, что агент должен делать. И действительно, если установить 
Ф(s) = U(s), то жадные стратегии 'ТtG относительно модифицированного вознаграж­
дения R' также будут оптимальной стратегией: 

-тtG (s) = argmax L P(s' 1 s, a)R'(s, а, s 1
) = 

а s ' 

= argmax L P(s' 1 s, a)[R(s, а, s') + "jФ(s1) - Ф(s)] = 
а s '  

= argmax L P(s' 1 s, a)[R(s, а, s') + 1U(s') - U(s)] = 
s '  

= argmax L P(s' 1 s, a)[R(s, а, s') + 1U(s')] = 
а s '  

= -тt*(s) (по уравнению ( 1 7 .4)). 

Безусловно, чтобы установить Ф(s) = U(s), необходимо знать U(s), поэтому 
бесплатных пирожков здесь нет, но все же есть значительная ценность в отно­
шении определения функции вознаграждения, которая будет настолько полезной, 
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насколько это возможно. Данный метод в точности соответствует тому, что делают 
дрессировщики, давая животному небольшое угощение за каждый выполненный 
им этап в намеченной последовагельности. 

17 .1.4. Представление MDP 

Простейшим способом представления P(s' 1 s, а) и R(s, а, s') являются большие 
трехмерные таблицы размером ISl21AI - Это хорошо для небольших задач, таких как 
мир 4 х 3, для которого таблицы будут иметь по 1 1 2 х 4 = 484 записи. В некоторых 
случаях таблицы будут разреженными - большинство записей в них будет равно 
нулю, поскольку из каждого состояния s переход возможен только в ограниченное 
количество состояний s', а это означает, что таблицы имеют размер O(ISI IA I). Одна­
ко для более крупных задач даже разреженные таблицы оказываются слишком 
большими. 

Как и в главе 1 6, где для создания сетей принятия решений байесовские сети 
были расширены с помощью узлов действий и полезности, можно представить 
задачи МОР, расширив динамические байесовские сети (OBN, см. главу 1 4) с по­
мощью узлов решений, вознаграждений и полезности для создания ► динамиче­
ских сетей принятия решений (dynamic decision networks - OON). Сети OON 
являются развернутым представлением в соответствии с терминологией, пред­
ставленной в главе 2, поэтому они, как правило, обеспечивают экспоненциальное 
снижение вычислительной сложности относительно атомарного представления и 
позволяют моделировагь довольно существенные реальные задачи. 

На рис. 1 7 .4 представлена OON, построенная на основе OBN, приведенной на 
рис. 1 4. 1 3, б (раздел 1 4 .5). Она включает некоторые элементы более реалистич­
ной модели для мобильного робота, который способен заряжать свой аккумулятор. 
Здесь состояние S1 декомпоновано на четыре следующих переменных состояния. 

• Переменная Х, включает две координагы местоположения в клеточном мире 
плюс сведения об ориентации. 

• Переменная Х, определяет скорость изменения Х,. 
• Переменная Charging, имеет значение true, когда робот подключен к заряд­

ному устройству. 
• Переменная Battery1 характеризует уровень заряда аккумуляторной батареи 

робота, который моделируется целым числом в диапазоне от О до 5. 

Пространство состояний для задачи МОР представляет собой декартово про­
изведение диапазонов этих четырех переменных. Действие здесь является множе­
ством А1 переменных действия, состоящее из переменной Plug/Unplug, имеющей 
три значения (plug (подключен), unplug (отключен) и поор (нет данных)), пере­
менной LeftWheel (левое колесо), представляющей мощность, потребляемую дви­
гагелем левого колеса, и переменной RightWheel (правое колесо), представляющей 
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мощность, потребляемую двигателем правого колеса. Множество действий этой 
задачи представляет собой декартово произведение диапазонов этих трех перемен­
ных. Обратите внимание, что каждая переменная действия влияет только на неко­
торое подмножество переменных состояния .  

Рис. 1 7.4. Динамическая сеть принятия решения дл я  мобильного робота с перемен­
ными состояния, представляющими уровень заряда батареи, состояние зарядки ак­
кумулятора, местоположение и скорость, а также переменные действия для двигате­
лей левых и правых колес и подключения к устройству зарядки аккумулятора 

Общая модель перехода - это условное распределение Р(Хн 1 1 Х1, Ai), которое 
можно вычислить как произведение условных вероятностей из сети DDN. Возна­
граждением в данном случае является единственная переменная, которая зависит 
только от переменной местоположения Х ( скажем, за прибытие в пункт назначе­
ния) и от переменной Charging, поскольку робот должен платить за использован­
ную им электроэнергию, т.е. в данной конкретной модели вознаграждение не за­
висит от действия или состояния результата. 

Сеть на рис. 1 7 .4 бьmа спроецирована на три этапа в будущее. Обратите внима­
ние, что эта сеть включает узлы вознаграждения для этапов t, t + 1 и t + 2, но узел 
полезности есть только для этапа t + З .  Так сделано потому, что агент должен мак­
симизировать (обесцениваемую) сумму всех будущих вознаграждений, а U(X1+ 3) 
представляет собой вознаграждение наперед для всех этапов от t + 3 и далее. Если 
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досrупно эвристическое приближение для И, таким способом оно может быть 
включено в представление сети МОР и использовано вместо ее дальнейшего рас­
ширения. Подобный подход тесно связан с использованием поиска с ограничени­
ем глубины и функций эвристической оценки для игр, представленных в главе 5. 

Другой интересной и хорошо изученной задачей МОР является игра Тетрис 
(рис. 1 7.5, а). Переменными состояния для этой игры являются CurrentPiece (теку­
щий блок), NextPiece (следующий блок) и особая переменная Fi/led (заполнено), 
представляющая собой битовый вектор, включающий один бит для каждой из кле­
ток на игровом поле 1 О х  20. Таким образом, пространство состояний имеет 
7 х 7 х 2200 ;:::::: 1062 состояний. Сеть OON для игры Тетрис показана на рис. 17.5, 6. 
Обрагите внимание, что переменная Filled1+ 1 является детерминированной функци­
ей or Fi/led, и А,. Как оказалось, для игры Тетрис любая страгегия является допу­
стимой (достигает конечного состояния): так или иначе в конечном итоге игровое 
поле всегда заполняется, несмотря на любые усилия, направленные на его очистку. 

Next 

.. 

1At1+ 1I 

а) б) 

Рис. 1 7.S. а) Игра Тетрис. Т-образный блок, находящийся в средине верхней части 
игрового поля, может быть опущен вниз в любой ориентации и в любой горизон­
тальной позиции. Если строка оказывается заполненной, она удаляется, содержимое 
строк над ней опускается, а агент получает одно очко. Следующий блок (здесь L-об­
разный блок вверху справа) становится текущим блоком, и появляется новый сле­
дующий блок, тип которого будет случайным образом выбран из семи возможных. 
Игра заканчивается, когда игровое поле оказывается заполненным блоками до са­
мого верха. б) динамическая сеть принятия решений (DDN) для задачи МОР, пред­
ставляющей игру Тетрис 
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17 .2. Алгоритмы для задач MDP 
В этом разделе представлены четыре различных алгоритма для решения задач 

МОР. Первые три, итерация по значениям, итерация по стратегиям и линейное 
программирование, позволяюr получить точные решения в автономном режиме. 
Четвертым типом является семейство неавтономных приближенных алгоритмов, 
которое включает ► планирование по методу Монте--Карло. 

1 7  .2. 1 . Алгоритм итерации по значениям 

Основой алгоритма ► итерации по значениям, применяемого для решения за­
дач МОР, является уравнение Беллмана ( 1 7  .5) .  Если существует п возможных со­
стояний, то количество уравнений Беллмана также равно п, по одному для каждо­
го состояния. Эти п уравнений содержат п неизвестных - полезностей состояний. 
Поэтому можно было бы заняться поиском решений системы этих уравнений, что­
бы определить полезности. Однако существует одна проблема: эти уравнения яв­
ляюrся нелинейными, поскольку оператор "max" - нелинейный оператор. В то 
время как системы линейных уравнений могут быть быстро решены с использо­
ванием методов линейной алгебры, поиск решения систем нелинейных уравнений 
более проблемаrичен. Один из возможных вариантов - использоваrь итератив­
ный подход. В этом случае нужно начать с произвольных исходных значений по­
лезностей, вычислить правую часть уравнения и подставить ее в левую, тем са­
мым обновляя значение полезности каждого состояния с учетом полезностей его 
соседних состояний. Подобная операция повторяется до тех пор, пока не достига­
ется равновесие. 

Пусть U;(s) - значение полезности для состояния s на i-й итерации. Каждый 
этап итерации, называемый ► обновлением Беллмана, выглядит следующим об­
разом: 

U;+ 1 (s) � max L P(s' I s, a)[R(s, a, s') + 1U; (s')], 
a EA(s) 

8
, 

( 1 7 . 1 0) 

где предполагается, что это обновление применяется одновременно ко всем состо­
яниям на каждой итерации. Если обновление Беллмана используется неопределен­
но большое количество раз, то гарантируется достижение равновесия (см . приве­
денный ниже раздел "Сходимость алгоритма итерации по значениям"), и в этом 
случае конечные значения полезности должны представлять собой решения урав­
нений Беллмана. В действительности они также представляюr собой уникш,ьные 
решения, и соответствующая страrеrия (полученная с помощью уравнения ( 1 7 .4)) 
является оптимальной. Детальный алгоритм, включающий условие завершения, 
когда полезности будут "достаrочно близкими", представлен на рис. 1 7 .6. Обра­
тите внимание на использование в нем функции Q-V ALUE, определенной в конце 
раздела 1 7  . 1 .2 . 
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function VALUE-ITERATION(mdp, f) returns функция полезности 
inputs: mdp, задача МDР с состояниями S, действиями А (s ), моделью 

перехода P(s' 1 s, а), вознаграждениями R(s, а, s' ), 
коэффициентом обесценивания 1 

f, максимально допустимая ошибка определения полезности 
любого состояния 

local variaЬles: И, И', векторы полезностей для состояний из S, исходно 
равные нулю 

repeat 

б, максимальное относительное изменение полезности 
любого состояния во время итерации 

И +- U'; Б +- 0  
for each состояние s in S do 

U'[s] +- maxa E A(s) Q-VALUE(mdp, s, а, И) 
if I U'[s] - U[s] 1 > б then б +- 1  U'[s] - U[s] 1 

until б ::;  f ( l - 1)/1 
return И 

Рис. 1 7 .6. Алгоритм итерации по значениям для вычисления полезностей состоя­
ний. Условие завершения работы взято из уравнения ( 1 7  . 1 2) 

Можно применить алгоритм итерации по значениям к миру 4 х 3 ,  представ­ленному на рис. 1 7  . 1 ,  а. Начиная с исходных значений, равных нулю, полезности изменяются, как показано на рис. 1 7 . 7, а. Обратите внимание на то, как состоя­ния, находящиеся на различных расстояниях от квадрата (4,3), накапливают от­рицательное вознаграждение до тех пор, пока в какой-то момент не обнаружива­ется путь к состоянию (4,3 ), после чего значения полезности начинают возрастать. Алгоритм итерации по значениям может рассматриваться как способ 
распространения информации через пространство состояний с помощью ло­кальных обновлений .  

Сходимость аnrоритма итерации по значениям 

Выше уже говорилось, что алгоритм итерации по значениям в конечном итоге всегда сходится к уникальному множеству решений уравнений Беллмана. В этом разделе показано, почему так происходит. По ходу обсуждения будут представле­ны некоторые полезные математические идеи и получены определенные методы оценки ошибки в значении функции полезности, возвращаемом при преждевре­менном завершении работы алгоритма. Это полезно, поскольку означает, что ко­личество выполняемых итераций алгоритма не обязательно должно стремиться к бесконечности. Изложение материала в этом разделе является достаточно фор­мальным. 
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Рис. 1 7.7. а) График, показывающий изменение полезностей выбранных состояний 
в процессе работы алгоритма итерации по значениям. б) Количество итераций по 
значениям, необходимое для гарантированного получения ошибки, не превышаю-
щей t = c·Rmax для различных значений с, как функция от коэффициента обесцени­
вания 1 

Основной концепцией, используемой при доказательстве того, что алгоритм 
итерации по значениям сходится, является ► сжатие (contraction). Грубо гово­
ря, функция сжатия - это функция одного аргумента, которая после ее после­
довательного применения к двум различным входным значениям вырабатывает 
два выходных значения, которые "ближе друг к другу" по меньшей мере на не­
которую постоянную величину, чем первоначальные входные значения. Напри­
мер, функция "деления на два" представляет собой функцию сжатия, поскольку 
после деления двух чисел на два разница между ними уменьшается наполовину. 
Обратите внимание, что функция "деления на два" имеет фиксированную точ­
ку, а именно - нуль, которая остается неизменной в результате применения этой 
функции. На основании данного примера можно установить два важных свойства 
функций сжатия. 

• Функция сжатия имеет только одну фиксированную точку; если бы было две 
фиксированные точки, они бы не приближались друг к другу после приме­
нения функции, поэтому такая функция не соответствовала бы определению 
функции сжатия. 

• После применения функции к любому аргуменrу полученное значение 
должно стать ближе к фиксированной точке (поскольку фиксированная точ­
ка не смещается), поэтому в пределе многократное повторное применение 
функции сжатия всегда приводит к достижению фиксированной точки. 
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Теперь предположим, что обновление Беллмана (уравнение ( 1 7 . 1 0)) рассма­
тривается как оператор В, который используется для одновременного обновления 
значений полезности каждого состояния. В результате уравнение Беллмана при­
нимает вид U = В U, а уравнение обновления Беллмана может быть переписано сле­
дующим образом: 

U;+ 1 � BU;. 

Далее нужно найти способ измерения расстояний между векторами полезно­
стей. Мы будем использовать ► нормализованный максимум (тах norm), по­
зволяющий измерить "длину" вектора по абсолютному значению его наибольше­
го компонента: 

1 1 И I I = max IU(s) I . 

Исходя из этого определения, можно утверждать, что "расстоянием" между 
двумя векторами, 1 1  U - UI I , будет максимальная разность между любыми двумя 
соответствующими элементами. Основным матемпическим результатом данного 
раздела является следующее утверждение: пусть U; и U;' - любые два вектора по­
лезностей. В таком случае получим следующее: 

I IBU; - BU/ l l :::; 1 I I U; - U;' I I . ( 1 7 . 1 1 ) 

Эrо означает, что ♦ обновление Беллмана представляет собой функцию сжатия 
на коэффициент 1, применяемую к пространству векторов полезностей. (В упраж­
нении 1 7  .8 даются некоторые рекомендации в отношении доказательства этого 
утверждения .) Следовпельно, алгоритм итерации по значениям всегда сходится к 
уникальному решению уравнений Беллмана, при условии, что 1 < 1 . 

Свойство сжатия также можно использовать для анализа скорости сходимости 
к решению. В частности, можно заменить значение U;' в уравнении ( 1 7  . 1 1 ) истин­
ными полезностями U, для которых BU= U. В этом случае будет получено следу­
ющее неравенство: 

I IBU; - U l l :::; 1 I I U; - U i 1 . 
Поэтому, если I I U; - U I I  рассмпривпь как ошибку в оценке U;, то можно уви­

деть, что при каждой итерации эта ошибка уменьшается на коэффициент, по мень­
шей мере равный 1· Эrо означает, что процедура итерации по значениям сходится 
экспоненциально быстро. Можно рассчитmъ количество требуемых итераций следу­
ющим образом. Прежде всего вспомним, что из уравнения ( 1 7  . 1 )  следует, что полез­
ности всех состояний ограничены значением ±Rmax / ( 1  -1). Эrо означает, что макси­
мальная начальная ошибка определяется соотношением 1 1  U0 - U 1 1  :::; 2Rmax / ( 1  - 1) .  
Если предположить, что для достижения ошибки, не превышающей Е, необходимо 
выполнить N итераций, то, поскольку ошибка на каждой итерации уменьшается по 
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меньшей мере на величину 1, можно записать следующее соотношение: 
-·( 2Rmax / ( 1 - 1) � Е. Взяв логарифмы, можно определить, скольких итераций будет 
достаточно: 

N = Г log(2Rmax / Е (1 - 1)) / log(l / 1) 1 .  
На рис. 17. 7, б показано, как количество итераций N изменяется в зависимости 

от 1 при различных значениях отношения Е / Rmax· Положительной особенностью 
здесь является то, что по причине экспоненциально быстрой сходимости значе­
ние N не очень сильно зависит от отношения Е / Rmax, а отрицательной особенно­
стью - то, что N быстро возрастает по мере приближения значения 1 к 1 .  Следо­
вательно, можно добиться ускорения сходимости, если сделать 1 малым, но это 
сильно сужает горизонт агента, практически лишая его возможности обнаружи­
вать долговременные последствия своих действий. 

Приведенный выше анализ предельной ошибки позволяет получить некото­
рое представление о том, какие факторы влияют на продолжительность выполне­
ния данного алгоритма, но иногда сам этот подход оказывается слишком консер­
вативным способом принятия решения о прекращении итераций. Для этой цели 
также можно использовать предел, связывающий ошибку с размерами обнов­
ления Беллмана в каждой конкретной итерации. На основании свойства сжатия 
(уравнение ( 17 .11 )) можно показать, что если обновление невелико (т.е. не про­
исходит значительного изменения полезности ни одного состояния), то ошибка 
также является небольшой по сравнению с истинным значением функции полез­
ности. Точнее, 

(17.12) 
Именно это условие завершения используется в алгоритме V ALUE-ITERATION, при­
веденном на рис. 17 .6. 

До сих пор мы анализировали ошибку в значении функции полезности, возвра­
щаемом алгоритмом итерации по значениям. ♦ Однако фактически для агента го­
раздо важнее то, насколько успешно он будет действовать, принимая решения на основе 
данной функции полезности. Предположим, что при выполнении алгоритма итера­
ции по значениям после выполнения i итераций агент получает оценку И; истин­
ной полезности И и определяет максимальную ожидаемую полезность (MEU) 
стратегии 11; на основе прогнозирования на один шаг вперед с использованием зна­
чения И; ( как в уравнении ( 17 .4) ). Будет ли выбранное в итоге поведение почти 
столь же хорошим, как и оптимальное поведение? Эrо крайне важный вопрос для 
любого реального агента, и бьто показано, что ответ на него является положитель-
ным. Значение U7t; (s) - это полезность, достигаемая, если, начиная с состояния s, 
осуществляется стратегия 11;, а ►убыточность стратегии I I  U7t; - И I I  - это самая 
большая часть полезности, которую агент может потерять, осуществляя 
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стратегию 11; вместо оптимальной стратегии 11* . Убыточность стратегии 11; связа­
на с ошибкой в значении полезности И; следующим неравенством: 

( 1 7 . 1 3 ) 
На практике часто происходит так, что стратегия -к; становится оптимальной за­

долго до того, как сходится значение И;. На рис. 1 7 .8  показано, как максимальная 
ошибка в значении И; и убыточность стратегии приближаются к нулю по мере вы­
полнения итераций алгоритма итерации по значениям для среды 4 х 3 со значени­
ем 1 = 0,9. Стратегия -к; становится оптимальной при i = 5, даже несмотря на то, что 
при этом максимальная ошибка в значении И; все еще остается равной 0,5 1 .  

Максимальная 
ошибка --

Убыточность 
стратегии 

О 2 4 6 8 10 12 1 4  
Количество итераций 

Рис. 1 7.8. Максимальная ошибка I I  И; - И I I  в оценках полезности и убыточность 
стратегии 1 1 U'f{i - И 1 1 как функции от количества выполненных итераций в алгорит­
ме итерации по значениям для клеточного м ира 4 х 3 

Теперь у нас есть все необходимое для использования алгоритма итерации по 
значениям на практике. Известно, что этот алгоритм сходится к правильным зна­
чениям полезности; ошибку в оценках полезностей можно ограничить, даже если 
выполнение алгоритма итерации по значениям будет остановлено после некото­
рого количества итераций; а также можно ограничить убыточность стратегии, 
связанную с осуществлением соответствующей стратегии с максимальной ожи­
даемой полезностью. В качестве заключительного замечания отметим, что все ре­
зультаты, приведенные в данном разделе, соответствуют случаю применения обес­
ценивания полезностей с коэффициентом 1 < 1 .  Если же 1 = 1 и среда содержит 
терминальные состояния, то можно вывести аналогичное множество результатов 
оценки сходимости и определения предельных значений ошибок, если выполня­
ются некоторые формальные условия. 



Глава 1 7. Принятие сложных решений 329 

1 7.2.2. Алгоритм итерации по стратегиям 

В предыдущем разделе было показано, что есть возможность выработать оп­
тимальную страгегию, даже если оценка функции полезности является неточной. 
Если очевидно, что одно действие лучше по сравнению со всеми остальными, то 
нет необходимости точно определять истинные значения величины полезности всех 
рассматриваемых состояний. Эrа идея подсказывает альтернативный метод поиска 
оптимальных стратегий. В алгоритме ► итерации по стратегиям, начиная с неко­
торой исходной страrегии -тt0, чередуется выполнение следующих двух этапов. 

• ► Оценка стратегии. При заданной стратегии 'ТТ; вычисляется И; = U'I{; -
полезность каждого состояния, если стратегия 'ТТ; будет осуществлена. 

• ► Усовершенствование стратегии. Вычисляется новая стратегия с макси­
мальной ожидаемой полезностью 'ТТ;+ 1 , с использованием прогноза на один 
этап, основанного на значении И; (как в уравнении ( 1 7.4)). 

Алгоритм завершает свою работу после того, как этап усовершенствования 
стратегии не приводит к изменению значений полезности. Известно, что в этот 
момент функция полезности И; представляет собой фиксированную точку обнов­
ления Беллмана и, следовательно, является решением уравнений Беллмана, а это 
значит, что стратегия 'ТТ; должна быть оптимальной. Поскольку в каждом конечном 
пространстве состояний количество возможных стратегий является конечным и 
можно показать, что каждая итерация приводит к определению лучшей страгегии, 
алгоритм итерации по стратегиям должен всегда завершать свою рабоrу. Эrот ал­
горитм приведен на рис . 1 7 . 9 .  Как и в случае алгоритма итерации по значениям, 
в нем используется функция Q-VALUE, определенная в конце раздела 1 7 . 1 .2 . 

Но как можно реализовать процедуру POLICY-EVALUATION? Как оказалось, сде­
лать это намного проще по сравнению с решением стандартных уравнений Бел­
лмана (а именно это происходит в алгоритме итерации по значениям), поскольку 
действие, применяемое в каждом состоянии, зафиксировано в соответствии с вы­
бранной стратегией. Стратегия 'ТТ; определяет действие 'TT;(s), выполняемое в со­
стоянии s на i-й итерации. Эrо означает, что можно воспользоваться упрощенной 
версией уравнения Беллмана (уравнение ( 1 7 . 5)), где полезность состояния s (в со­
ответствии со страгегией 'ТТ;) связывается с полезностями его соседних состояний: 

U;(s) = L P(s' 1 s, 'TT; (s))[R(s, 'TT; (s), s') + 1 U;(s'). 
s' 

( 1 7 . 1 4) 

Например, предположим, что 'ТТ; - это стратегия, показанная на рис. 1 7  .2, а. 
В таком случае имеет место -тt; ( l ,  1 ) = Ир, 'TT; ( l  ,2) = Ир и так далее, а упрощенные 
уравнения Беллмана принимают следующий вид: 

U;( l , 1 )  = О,8[-0,04 + U;( l ,2)] + 0, 1 [-0,04 + U;(2, 1 ) + О, 1 [-0,04 + U;( l , 1 )] ] ,  
U;( l ,2) = О,8[-0,04 + U;( l ,3)] + О,2[-0,04 + U;( l ,2)] 
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и так далее для всех состояний. Важным момекrом является то, что эти уравнения 
линейные, поскольку в них оператор "max" бьт удален. Для п состояний имеется 
п линейных уравнений с п неизвестными, которые могут быть решены точно за 
время О(п3) с помощью стандартных методов линейной алгебры. Если модель пе­
рехода является разреженной - т.е. из любого состояния переход возможен толь­
ко в небольшое число других состояний, - процесс решения может потребовать 
еще меньше времени. 

function POLICY-ITERATION(mdp) returns стратегия 
inputs :  mdp, задача MDP с состояниями S, действиями A (s), моделью 

перехода P(s' 1 s, а) 
local variaЫes : И, вектор полезностей для состояний из S, исходно 

равный нулю 

repeat 

'J'C, вектор стратегии, индексированный по состоянию, 
со случайными исходными значениями 

И - POLICY-EVALUATION ('J'C, И, mdp) 
unchanged? - истина 
for each состояние s in S do 

а*- argmax Q-VALUE(mdp, s, а, И) 
a E A(s) 

if Q-VALUE(mdp, s, а*, И) > Q-VALUE(mdp, s, 'J'C [s] , И) then 
'J'C [s] - а* ; unchanged? - ложь 

until unchanged? 
return 'J'C 

Рис. 1 7.9. Алгоритм итерации по стратегиям для вычисления оптимальной стра­
тегии 

Для небольших пространств состояний оценка стратегии с использованием 
точных методов решения часто является наиболее эффективным подХодом, но для 

больших пространств состояний затраты времени О(п3) могут оказаться чрезмер­
ными. К счастью, точная оценка стратегии вовсе не обязательна. Вместо этого 
можно выполнить некоторое количество упрощенных этапов алгоритма итерации 
по значениям (они будут упрощенными, поскольку стратегия зафиксирована) и по­
лучить достаточно хорошую аппроксимацию полезности. Упрощенное обновле­
ние Беллмана для этого процесса определяется таким соотношением: 

U;+ 1 (s) +-- L P(s' 1 s, 1<;(s))[R(s, 1<;(s), s') + "j U;(s')] , s' 
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и, несколько раз повторив определяемую в нем операцию подстановки, можно 
успешно получить следующую оценку полезности . Результирующий алгоритм по­
лучил название ► модифицированная итерация по стратегиям. 

Алгоритмы, описанные в данной главе до этого момента, требуют одновремен­
ного обновления полезности или стратегии для всех состояний. Как выяснилось, 
применение такой организации работы не является строго необходимым. В дей­
ствительности на каждой итерации можно выбирать любое подмножество со­
стояний и применять к нему либо тот, либо другой вид обновления (усовершен­
ствование стратегии или упрощенную итерацию по значениям). Такой наиболее 
общий алгоритм называется ► асинхронной итерацией по стратегиям. При со­
блюдении определенных условий выбора исходной стратегии и функции полезно­
сти гарантируется сходимость асинхронной итерации по стратегиям к некоторой 
оптимальной стратегии. При этом свобода выбора для работы любых состояний 
означает, что могут быть разработаны гораздо более эффективные эвристические 
алгоритмы, например алгоритмы, которые сосредоточиваются на обновлении зна­
чений тех состояний, которые с наибольшей вероятностью будут достигнуты при 
осуществлении хорошей стратегии.  Не имеет смысла заниматься планированием 
результатов действий, которые никогда не будут выполнены. 

1 7  .2.3. Линейное программирование 

Линейное программирование (Linear programming - LP), которое кратко 
упоминалось в главе 4 (раздел 4.2), является общим подходом для постановки за­
дач оптимизации с ограничениями. В настоящее время существует много досrуп­
ных решателей LP промышленного уровня . Учитывая, что уравнения Беллмана 
включают множество операций суммирования и нахождения максимумов, види­
мо, не вызовет удивления тот факт, что решение задачи МОР может быть сведено 
к решению подходящим образом сформулированной задачи ЛП. 

Основная идея правильной формулировки задачи ЛП состоит в принятии в каче­
стве переменных полезностей U(s) для каждого состояния s, если при этом отметить, 
что полезности для оптимальной страгегии будут самыми высокими из числа дости­
жимых, что согласуется с уравнениями Беллмана. На языке линейного программи­
рования это означает, что мы стремимся минимизировать U(s) для всех s с учетом 
приведенных ниже неравенств для каждого состояния s и каждого действия а: 

U(s) � L P(s' 1 s, a)[R(s, а, s') + "t U(s')] . 
s' 

В результате устанавливается связь между динамическим программированием 
и линейным программированием, для которого алгоритмы и вопросы сложности 
уже были изучены достаточно глубоко. Например, исходя из того факта, что зада­
чи линейного программирования решаются за полиномиальное время, можно по­
казать, что и задачи МДП можно решить за полиномиальное время относительно 
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количества состояний и действий, а также количества битов, необходимых для 
определения модели.  Практика показала, что использование решателей LP редко 
оказывается столь же эффективным, как применение методов динамического про­
граммирования для решения задач МОР. Более того, хотя полиномиальное вре­
мя обычно считается хорошим показателем, количество состояний часто бывает 
слишком большим. И наконец, не следует забывать, что даже самый простой и 
наименее информированный поисковый алгоритм из главы 3 выполняется за ли­
нейное время в зависимости от количества состояний и действий. 

17.2.4. Неавтономные алгоритмы для задач MDP 

Алгоритмы итерации по значениям и итерации по стратегиям являются авто­
номными: подобно алгоритму А* из главы 3 ,  они находят оптимальное решение 
проблемы, которое затем может быть выполнено простым агентом. Но в случае 
достаточно больших задач МДП, таких как игра Тетрис, модель МОР которой 
включает 1 062 состояний, найти точное решение в автономном режиме, даже при 
использовании алгоритма с полиномиальными временными затратами, невозмож­
но. Поэтому бьmо разработано несколько методов приближенного автономного ре­
шения задач МДП, - некоторые из них рассматриваются в разделе "Библиогра­
фические и исторические заметки" в конце этой главы и в главе 22, "Обучение с 
подкреплением". 

В этом разделе обсуждаются неавтономные алгоритмы, подобные тем игровым 
алгоритмам из главы 5,  в которых агент выполняет значительный объем вычисле­
ний в каждой точке принятия решения, вместо того чтобы действовать в первую 
очередь согласно заранее просчитанной информации.  

Наиболее прямолинейным подходом фактически является упрощение алгорит­
ма EXPEC11MINIMAX для деревьев игр с узлами жеребьевки: алгоритм ЕХРЕСТIМАХ 
строит дерево попеременно из узлов МАХ и узлов жеребьевки, как показано на 
рис. 1 7  . 1  О. (Здесь есть небольшое отличие от стандартного EXPECТIMINIMAX: воз­
награждения имеются на нетерминальных, равно как и на терминальных перехо­
дах.) К нетерминальным листьям дерева может быть применена функция оценки, 
или им могут быть присвоены значения по умолчанию. Решение может быть из­
влечено из дерева поиска путем запоминания значения полезности из листьев с 
выбором среднего значения для узлов жеребьевки и максимального значения в уз­
лах принятия решения. 

Для задач, в которых коэффициент обесценивания 1 не слишком близок к 1, по­
лезным понятием будет «::-горизонт. Пусть Е будет заданной границей абсолютной 
ошибки в полезностях, вычисленной по дереву алгоритма ЕХРЕСТIМАХ ограничен­
ной глубины, в сравнении с точными полезностями в модели МОР. Тогда «::-гори­
зонтом будет глубина дерева Н - такая, что сумма всех вознаграждений ниже лю­
бого листа на этой глубине будет меньше Е. Грубо говоря, все из того, что может 
произойти ниже Н, будет нам безразлично, поскольку находится слишком далеко в 
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будущем .  Так как сумма  вознагражден и й  за пределами Н ограничена 
� Rmax / ( 1 - 1), глубины Н = Г logg f( 1 - 1) / Rmax l будет достаточно. Следовательно, 
построение дерева на эту глубину дает нам почти оптимальные решения . Напри­
мер, при 1 = 0,5 ;  f: = О, 1 и Rmax = 1 получаем Н = 5, что кажется вполне разумным. 
С другой стороны, если при тех же прочих условиях 1 = 0,9; то Н = 44, что кажется 
гораздо менее разумным ! 

Рис. 1 7. 10. Часть дерева алгоритма ЕХРЕСТIМАХ для задачи МDР мира 4 х 3 с корнем 
в квадрате (3,2). Треугольные узлы - это узлы МАХ, а круглые - узлы жеребьевки 

В дополнение к ограничению глубины также возможно избежать потенциально 
огромного фактора ветвления в узлах жеребьевки. (Например, если все условные 
вероятности в модели перехода DBN отличны от нуля, то вероятности перехода, 
задаваемые как произведения условных вероятностей, также будут ненулевыми, 
а это означает, что каждое состояние имеет некоторую вероятность перехода в лю­
бое другое состояние.) 

Как отмечалось в разделе 1 3 .4, ожидания относительно распределения веро­
ятностей Р можно аппроксимировать с помощью генерации N выборок из Р и ис­
пользования выборочного среднего. В математической форме это выглядит так: 

L P(x)f(x) � � I Лх;). 
х i= I 

Поэтому, если коэффициент ветвления является очень большим, а это означа­
ет, что существует очень много возможных значений х, хорошее приближение к 
значению узла жеребьевки может быть получено путем выборки ограниченного 
количества результатов действия. Как правило, выборки будут ориентированы на 
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наибш,ее вероятные результаты, поскольку именно они, скорее всего, и будут сге­
нерированы. 

Если внимательно посмотреть на дерево, приведенное на рис. 1 7  . 1  О, то мож­
но заметить нечто удивительное: на самом деле это не дерево. Например, корне­
вой узел (3,2) также является и листовым узлом, поэтому следует рассматривать 
это построение как граф, а также ограничить значение листа (3 ,2) той же величи­
ной, что и значение корня (3,2), поскольку они представляют одно и то же состоя­
ние. Факrически эта цепочка размышлений быстро возвращает нас к уравнениям 
Беллмана, которые связывают значения всех состояний с значениями соседних с 
ними состояний. Разведанные состояния факrически представляют собой подзада­
чу МОР исходной задачи МОР, и эти подзадачи МОР могут быть решены с исполь­
зованием любого из алгоритмов, обсуждавшихся в этой главе, что предоставит ре­
шение для текущего состояния. (Граничным состояниям обычно присваивается 
фиксированное оценочное значение.) 

Этот общий подход называется ► динамическим программированием в ре­
альном времени (real-time dynamic programming - ► RTDP) и он весьма бли­
зок к алгоритму LRTA*, обсуждавшемуся в главе 4. Алгоритмы такого типа могут 
быть весьма эффективными в проблемных областях среднего размера, таких как 
клеточные миры; в больших проблемных областях, подобных игре Тетрис, име­
ют место две проблемы. Во-первых, пространство состояний таково, что любое 
управляемое множество разведанных состояний содержит очень мало повторяю­
щихся состояний, поэтому можно также использовать простое дерево алгоритма 
EXPECTIMAX. Во-вторых, простой эвристики для пограничных узлов может ока­
заться недостаточно, чтобы направлять действия агента, особенно если вознаграж­
дения сильно разрежены. 

Одним из возможных решений является применение обучения с подкреплени­
ем для получения гораздо более точной эвристики (см. главу 22). Другой подход 
заключается в том, чтобы смотреть в модели МДП дальше, используя вариант по­
иска по дереву методом Монте-Карло, обсуждавшийся в разделе 5 .4. В действи­
тельности алгоритм UCT, представленный на рис. 5 . 1 0, первоначально был раз­
работан именно для задач МОР, а не для игр. Изменения, которые потребуется 
внести в него для решения задач МDР, а не игровых задач, минимальны: они нуж­
ны главным образом из-за того, что противник (здесь это природа) является стоха­
стическим, а также из-за необходимости отслеживать вознаграждения, а не только 
выигрыши и проигрыши. 

Применительно к миру 4 х 3 производительность алгоритма UCT не особенно 
впечатляет. Как показано на рис. 1 7  . 1 1 ,  требуется в среднем 1 60 прогонов, чтобы 
достичь общего вознаграждения в размере 0,4, тогда как оптимальная стратегия 
имеет ожидаемое общее вознаграждение в размере 0,7453 при движении из на­
чального состояния (см. рис. 17.3). Одна из причин, по которой алгоритм UCT мо­
жет испытывать затруднения применительно к этой задаче, состоит в том, что он 
строит дерево, а не граф, и использует (для аппроксимации) алгоритм EXPECTIMAX, 
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а не динамическое программирование. Данный мир 4 х 3 является очень "запутан­
ным": хотя в нем существует только девять нетерминальных состояний, прогоны 
алгоритма UCT часто включают более 50 действий.  

0,5 
0,4 

8 � 0,3 
в = 

'8 � 0,2 

8 ё, 0, 1 = о:1 о � = 
8' i-0, l 

-0,2 

-0,3 +-' ....... --.----,.-...---,.--.---,,-... 

О W � � W I OO IW l� I� 

Количество прогонов 

Рис. 1 7. 1 1 .  Производительность алгоритма UCT, представленная в виде функции от 
количества прогонов на один ход для мира 4 х 3, с использованием случайной стра­
тегии в каждом прогоне. Приведенные величины являются средними значениями 
для 1 ООО выполнений алгоритма для каждой точки данных 

Алгоритм UCT, кажется, лучше подходит для игры Тетрис, в которой прого­
ны проходят достаrочно далеко в будущее, чтобы дагь aremy представление о том, 
сработает ли в конечном счете потенциально рискованный ход или же приведет к 
огромному скоплению блоков. Вот один из особенно интересных вопросов:  на­
сколько полезной может оказагься страгегия простой модели, например та, кото­
рая позволит избегать нагромождения блоков друг на друга и обеспечит их уклад­
ку настолько низко, насколько это возможно. 

17 .3. Задачи о бандитах 
Название этого класса задач происходит от сленгового прозвища игровых ав­

томатов, - в Лас-Вегасе такие автоматы (слот-машины) называют однорукими 
бандитами. Игроку предоставляется возможность бросить в автомат монетку, по­
тянуть за рычаг и забрать свой выигрыш (если он будет). Обобщенный вариант, 
► п-рукий бандит, имеет п рычагов. За каждым рычагом закреплено фиксирован­
ное, но неизвестное игроку распределение вероятностей выигрыша, и каждый раз, 
когда игрок тянет за какой-либо из рычагов, делается выборка из соответствующе­
го этому рычагу неизвестного распределения. 

Задача игрока - при каждом броске в автомат очередной монетки выбрать, 
за какой из рычагов потянуть: за тот, который уже дал наибольшую выплmу, или, 
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может быть, за тот, который еще не опробован? Это пример вездесущего компро­
мисса между экеплуатацией текущего наилучшего действия с целью получения 
вознаграждения и иеследованием ранее неизвестных состояний и действий для 
получения информации, которая в некоторых случаях может быть использована 
для выработки лучшей стратегии, обеспечивающей долгосрочное получение боль­
шего вознаграждения. В реальном мире нам постоянно приходится выбирать меж­
ду продолжением текущего, относительно комфортного существования и прыж­
ком в неизвестность в надежде обрести лучшую жизнь. 

Задача п-рукого бандита - это формальная модель для реальных проблем во 
многих жизненно важных областях, таких как принятие решения, какой из п воз­
можных новых методов лечения лучше применить, чтобы исцелиться от болезни, 
какую из п возможных инвестиций выбрать, чтобы вложить часть своих сбереже­
ний, какой из п предлагаемых исследовательских проектов профинансировать или 
какое из п имеющихся рекламных объявлений показать пользователю, зашедшему 
на определенную веб-страницу. 

Первые работы по этой проблеме начали проводить в США во время Вто­
рой мировой войны, и она показала себя настолько неподдающейся, что ученые 
стран-союзников предложили "подбросить эту задачу ученым Германии в каче­
стве мощного инструмента интеллектуального саботажа" (Виттле [2332] ,  1 979). 

Как оказалось, ученые как во время войны, так и после нее, пытались дока­
зать "очевидно истинные" факты в отношении задач о бандитах, которые на самом 
деле являлись ошибочными. (Как сказал Брэдт и соавт. ([285], 1 956), "Есть мно­
го хороших свойств, которыми оптимальные стратегии не обладают".) Например, 
обычно предполагалось, что оптимальная стратегия в конечном итоге будет опи­
раться на рычаг, наилучший в долгосрочной перспективе; тогда как на самом деле 
существует конечная вероятность того, что оптимальная стратегия опирается на 
неоптимальный рычаг. Сейчас у нас имеется четкое теоретическое понимание за­
дач о бандитах, а также разработаны полезные алгоритмы их решения . 

Имеется несколько разных определений ► задачи о бандите, - одно из самых 
ясных и общих приведено ниже. 

• Каждая рука (рычаг) М; является ► марковеким процеесом вознагражде­
ния (Markov reward process - MRP), т.е .  задачей МОР с только одним воз­
можным действием а;. Он имеет состояния S;, модель перехода P;(s' 1 s, а;) и 
вознаграждение R1(s, а;, s1) . Рука определяет распределение для последова­
тельностей вознаграждений R;,o, R;, 1 , R;.2, . . . , где каждый R;,1 является случай­
ной величиной. 

• Общая задача о бандите является задачей МОР: пространство состояний зада­
ется декартовым произведением S = S1 х . . .  х Sn; действиями являются а 1 , • • •  
ап; модель перехода обновляет состояние в зависимости от того, какая рука М; 
была выбрана, в соответствии с ее конкретной моделью перехода, оставляя 
друmе руки без изменений; коэффициент обесценивания равен 1· 
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Данное определение является очень общим и охватывает широкий спектр ва­
риантов. Ключевым свойством является то, что руки независимы в сочетании с 
тем фактом, что одновременно агент может работать только с одной рукой. Мож­
но определить еще более общую версию, в которой частичные усилия могут быть 
применены ко всем рукам одновременно, но суммарное усилие для всех рук огра­
ниченно. Основные результаты, описываемые в этом разделе, могут быть перене­
сены и на этот случай. 

Ниже показано, как в указанных рамках можно сформулировать типичную за­
дачу о бандите, но для начала мы рассмотрим более простой частный случай де­
терминированных последовательностей вознаграждения .  Пусть "i = 0,5, и предпо­
ложим, что у автомата есть два рычага, обозначенных как М и  М1 • Многократное 
повторное нажатие рычага М приводит к последовательности вознаграждений 
О; 2; О; 7,2; О; О; . . .  , тогда как многократные повторные нажатия рычага М1 дают 
результат 1 ,  1 ,  1 ,  . . .  (рис. 1 7  . 1 2, а). Если сначала необходимо выбрать тот или иной 
рычаг, а затем придерживаться этого выбора, то принять обоснованное решение 
можно посредством вычисления полезности ( суммарного обесцениваемого возна­
граждения) для каждого из рычагов. 

И(М) = ( 1 ,0 х О) + (0,5 х 2) + (О,52 
х О) + (О,5 3 

х 7,2) = 1 ,9 

И(М1 ) = L о,51 = 2,0 
1 = 0 

� О; 2 ;  О; 7,2 ; О; О; О; . . .  

l:2:l1I - ) , 
м 

Em 
1 ,  1 ,  1 ,  1 ,  1 ,  1 ,  1 ,  . . . 

М1 
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Рис. 17. 12. а) Простая детерминированная задача о двуруком бандите. Рычаги мож­
но нажимать в любом порядке, при этом каждый из них реализует приведенные по­
следовательности вознаграждений. б) Более общий случай задачи о бандите, опре­
деленной на рис. а, где первый рычаг выдает произвольную последовательность 
вознаграждений, а второй всегда выдает фиксированное вознаграждение л 
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Можно решить, что в данном случае лучшим выбором является рычаг М1 , но 
если немного подумать, то станет понятно, что следует начать с М, а затем пере­
ключиться на рычаг М1 , - после получения четвертого вознаграждения. В этом 
случае получим последовательность вознаграждений S = О; 2; О; 7,2; 1 ;  1 ;  1 ; ... , по­
лезность которой будет равна 

U(S) = ( 1 ,0 х О) + (0,5 х 2) + (О,52 х О) + (О,5 3 х 7,2) + L 0,51 = 2,025. 1 = 4  

Следовательно, стратегия S, предусматривающая переключение с рычага М на 
рычаг М1 в нужный момент времени, будет лучше, чем постоянный выбор любо­
го из двух рычагов. Фактически стратегия S является оптимальной для этой зада­
чи: переключение в любой другой момент времени приводит к меньшему суммар­
ному вознаграждению. 

Давайте немного обобщим эту задачу: пусть теперь первый рычаг М выда­
ет произвольную последовательность вознаграждений R0, R1 , R2, • • • (которая мо­
жет быть известна или неизвестна), а второй рычаг М>- выдает вознаграждения л, 
л, >.., ... где л - некоторая известная фиксированная константа ( см. рис. 17 .1 2, 6). 
В литературе этот вариант называют задачей ► однорукого бандита, поскольку 
формально он эквивалентен случаю, когда у автомата есть только один рычаг М, 
который выдает вознаграждения Ro, R1 , R2, • • •  при стоимости л каждого его нажа­
тия. (Нажатие рычага М является эквивалентом не нажатия рычага М>., так что 
каждый раз оно отменяет вознаграждение л.) При наличии только одного рыча­
га единственный возможный выбор состоит в том, чтобы вновь нажать его или 
прекратить нажатия. Если нажать на первый рычаг Т раз (т.е. в моменты времени 
О, 1, ... , Т - 1 ), то говорят, что Т - это ► время останова. 

Возвращаясь к нашей версии задачи с Ми М>., давайте предположим, что после 
Т нажатий на первый рычаг оптимальной стратегией в конечном итоге будет пер­
вый раз нажать второй рычаг. Поскольку никакой новой информации от этого дей­
ствия не поступит (мы уже знаем, что вознаграждение будет равно л), в момент 
Т + 1 мы будем находиться в той же ситуации, и, следовательно, оптимальной стра­
тегией будет сделать тот же выбор. 

Таким образом, можно сказать, что оптимальной стратегией является много­
кратное нажатие рычага М до момента времени Т, а затем переход к нажатию ры­
чага М>- в течение всего остального времени. Вполне может оказаться, что Т= О, 
если стратегия предполагает немедленный выбор рычага М>., или же Т= оо ,  если 
стратегия вообще не предполагает выбора рычага М>., либо значение Т будет нахо­
диться где-то между этими крайностями. Теперь давайте рассмотрим такое значе­
ние л, что оптимальная стратегия будет точно безразлична между двумя варианта­
ми: а) нажатие рычага М до наилучшего времени останова с последующим 
переключением на рычаг М>- в течение всего остального времени и 6) немедлен­
ный выбор рычага М>-. На переломном этапе мы имеем 
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( 1 7 . 1 5) 

Эго уравнение определяет своего рода "значение" для М с точки зрения его 
способности обеспечить поток регулярных вознаграждений.  Числитель дро­
би представляет полезность, тогда как знаменатель может рассматриваться как 
"обесцениваемое время", поэтому значение описывает максимальную получае­
мую полезность на единицу обесцениваемого времени.  (Важно помнить, что Т 
в уравнении - это время останова, которое определяется правилом останова, а 
не просто целым числом; оно сводится к простому целому числу только тогда, 
когда М является детерминированной последовательностью вознаграждения . )  
Значение, определенное в уравнении ( 1 7 . 1 5 ), называется ► индексом Гиттин­
са для М. 

Замечательным свойством индекса Гиттинса является то, что он предоставляет 
очень простую оптимальную стратегию для любой задачи о бандитах: ♦ нажать 
рычаг, который имеет самый высокий индекс Гиттинса, а затем обновить индексы Гит­
тинса. Более того, поскольку индекс рычага М; зависит только от свойств этого 
рычага, оптимальное решение о первой итерации может быть вычислено за время 
О(п), где п - количество рычагов. А поскольку индексы Гиттинса для тех рыча­
гов, которые не выбирались, остаются неизменными, каждое решение после пер­
вого можно вычислить за время О( 1 ) .  

17 .3 .1. Вычисление индекса Гипинса 

Для того чтобы получить полное представление об индексе Гиттинса, давайте 
вычислим значения числителя, знаменателя и дроби в уравнении ( 1 7  . 1 5) для раз­
личных возможных значений времени останова для детерминированной последо­
вательности вознаграждений О, 2, О, 7 ,2, О, О, О, . . .  

т 1 2 3 4 5 6 
R1 о 2 о 7,2 о о 
r,,,{R1 0,0 1 ,0 1 ,0 1 ,9 1 ,9 1 ,9 
r,1' 1 ,0 1 ,5 1 ,75 1 ,875 1 ,9375 1 ,9687 
Дробь 0,0 0,6667 0,57 1 4 1 ,0 1 33 0,9806 0,965 1 
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Очевидно, что с этого момента дробь будет только уменьшаться, поскольку числитель остается постоянным, тогда как знаменатель продолжает увеличивать­ся. Таким образом, индекс Гиттинса для этого рычага равен 1 ,0 1 33 ,  максимально­му значению, достигаемому дробью. В сочетании с рычагом М>. с фиксированным вознаграждением О <  л :5;; 1 ,0 1 33 ,  оптимальная стратегия включает получение пер­вых четырех вознаграждений от М с  последующим постоянным переключением на М>.- Для л > 1 ,0 1 33 оптимальная стр�пегия сразу предусматривает выбор М>.-Для того чтобы рассчитать индекс Гиттинса для обобщенного рычага М с  те­кущим состоянием s, достЗ10чно просто сделать следующее наблюдение: в пере­ломный момент, когда оптимальная стр�пегия становится безразличной к выбору между рычагом Ми  рычагом М>. с фиксированным вознаграждением, значение вы­бора М является таким же, как и значение выбора бесконечной последовательно­сти >..-вознаграждений. Предположим, что М было расширено так, что в каждом состоянии М агенту предоставляется два варианта действий: либо продолжать работу с М на прежних условиях, либо выйти из игры и получить бесконечную последовательность >..-воз­награждений (рис. 1 7. 1 3, а). Эrо превращает М в  модель MDP, оптимальная стра­тегия которой состоит лишь в определении оптимального момента остановки пра­вила для М. Следов�пельно, значение оптимальной стр�пегии в этой новой модели MDP будет равно значению бесконечной последовательности из >..-вознагражде­ний, определяемой как л / ( l - 1) .  Поэтому достаточно просто решить эту задачу MDP . . .  но, к сожалению, значение л, когорое нужно вставить в MDP, нам неиз­вестно, поскольку это именно то, что мы пытаемся вычислить. Однако нам точно известно, что в переломный момент оптимальная стратегия становится безразлич­ной к выбору между М и  М>., поэтому вариант получения бесконечной последова­тельности >..-вознаграждений можно заменить вариантом возврата и перезапуска работы с М из начального состояния s. (Говоря более точно, в каждом состоянии мы добавляем новое действие, которое имеет те же вознаграждение и исходы, что и действие, доступное в s.) Эгот новый вариант MDP, MS, называется ► перезапу­щеввой МDР и приведен на рис. 1 7  . 1 3 , б. Мы получили обобщенный результат: индекс Гиттинса для рычага М в  со­стоянии s равен 1 - 1, умноженному на значение оптимальной стратегии для пе­резапущенной MDP мs . Эту задачу MDP можно решить с помощью любого из алгоритмов, обсуждавшихся в разделе 1 7 .2 .  Алгоритм итерации по значениям, примененный к модели мs, приведенной на рис. 1 7 . 1 3 , б, дает значение 2,0266 для начального состояния, поэтому мы имеем л = 2,0266 - ( 1 - 1) =  1 ,0 1 33 ,  как и в пре­дыдущем расчете. 
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б) 

Рис. 1 7.13. а) Последовагельность вознаграждений М= О; 2; О; 7;2; О; О; О; . . .  , расши­
ренная в каждой точке возможностью выбора переключения на рычаг с постоянным 
вознаграждением М,л· б) Перезапущенная MDP, оптимальное значение которой в точ­
ности эквивалентно оптимальному значению для MDP на рис. а, по меньшей мере в 
точке, где оптимальная стратегия является безразличной к выбору между М и  Мх 

17 .3.2. Многорукий бандит по Бернулли 

о 

Возможно, простейший и самый известный пример задач о бандитах - это 
► бандит по Бернулли, у которого каждая рука М; выдает вознаграждение О или 1 
с фиксированной, но неизвестной вероятностью µ,;. Состояние руки М; определя­
ется с помощью счетчиков s; и /;, фиксирующих количество успехов (единиц) и 
неудач (нулей) соответственно на данный момент для данной руки. Вероятно­
сти перехода предсказывают, что следующий результат будет I с вероятностью 
(s;) / (s; + /;) или О - с вероятностью ({;) /  (s; + /;). Счетчики инициализируются зна­
чением 1 ,  так что начальными вероятностями являются 1 /2, а не 0/0.4 Марковский 
процесс вознаграждения представлен на рис. 1 7  . 1 4, а. 

Мы не можем просто применить трансформации из предыдущего раздела с це­
лью расчета индекса Гиттинса для руки бандита по Бернулли, потому что она име­
ет бесконечно много состояний. Однако можно получить очень точное приближе­
ние за счет решения усеченной модели MDP с состояниями вплоть до s; + f; = 1 00 
и 1 = 0,9. Эти результаты приведены на рис. 1 7  . 1 4, б, - инrуитивно они кажуrся 
разумными: мы видим, что, вообще говоря, руки с более высокими вероятностями 
получения выплаты являются предпочтительными, но здесь также есть ► бонус за 
разведку, связанный с руками, которые были опробованы лишь несколько раз. На­
пример, индекс для состояния (3,2) выше, чем индекс для состояния (7,4) (0,7057 
против 0,6922), хотя значение оценки для состояния (3,2) ниже (0,6 против 0,6364). 

4 Здесь вероятности - это вероятности байесовского процесса обновления с априор­
ным распределением Beta( l , l )  (см. раздел 20.2.5). 
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( 1 , 1 ) 
R= A=O Индекс Гипинса 

1 ,0 
0,8 
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Рис. 1 7. 1 4. а) Состояния, вознаграждения и вероятности перехода для бандита по 
Бернулли. б) Индексы Гипинса для состояний процесса бандита по Бернулли 

1 7.3.3. Приблизительно оптимальные 
стратегии в задачах о бандитах 

10 

Вычисление индексов Гиттинса для более реалистичных задач редко бывает 
простым.  К счастью, общие свойства, отмеченные в предыдущем разделе (а имен­
но - желаrельность некоторой комбинации оценочной стоимости и неопределен­
ности), допускают создание простых страrегий, которые оказываются "почти та­
кими же хорошими", как оптимальная страrегия. 

В первом классе методов используется ► верхняя граница достоверности или 
эвристика UCB ( Upper Confidence Bound), введенная ранее, при поиске по дереву 
методом Монте-Карло (рис. 5 . 1 1 в разделе 5 .4). Основная идея состоит в том, что­
бы использоваrь выборки из каждой руки для установления доверительного ин­
тервала значения руки, т.е. диапазона, в пределах которого это значение может 
быть оценено с высокой степенью достоверности. Заrем выбирается рука с самой 
высокой верхней границей ее доверительного интервала. Верхняя граница - это 
текущее среднее значение оценки IJ,; плюс некоторое краrное стандартному откло­
нению неопределенности в значении. Стандартное отклонение пропорционально 
,J1 / N; , где N; - количество выборок для руки М;. Отсюда получаем приблизи­
тельное значение индекса для руки М;, определяемое как 

UCB(M; ) = µ; + g(N) / fjii;, 
где g(N) - надлежащим образом выбранная функция от N, общего количества 
выборок, взятых для всех рук. Стратегия UCB - это просто выбор руки с са­
мым высоким UСВ-значением. Обраrите внимание, что UСВ-значение не является 
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индексом в строгом понимании, поскольку оно зависит от N, общего количества 
выборок, выполненных для всех рук, а не только этой руки самой по себе. 

Точное определение функции g обусловливает сожаление относительно ясно­
видящей стратегии, в которой просто выбирается лучшая рука, что ведет к оп­
тимальному среднему вознаграждению µ * .  Известный результат Лея и Роббин­
са ([ 1 33 8], 1 985) показывает, что для случая без обесценивания не существует 
возможных алгоритмов, имеющих сожаление, возрастающее медленнее, чем 
O(log N). Несколько различных вариантов функции g приводят к страгеrии UCB, 
соответствующей этому росту, например можно использовать вариант g(N) = 
(2log(l + N loy;-N)) 1 12 • 

Второй метод, ►выборка Томпсона (Томпсон [2207], 1 933 ), предусматрива­
ет выбор руки случайным образом в соответствии с вероятностью, что эта рука 
фактически является оптимальной, исходя из выборок, уже сделанных на теку­
щий момент. Предположим, что Р;(µ;) является текущим распределением вероят­
ностей для истинного значения руки М;. Тогда простой способ реализации вы­
борки Томпсона заключается в генерации одной выборки из каждого Р;, а затем 
отбора наилучшей выборки. Этот алгоритм также имеет сожаление, возрастаю­
щее как O(log N). 

1 7  .3.4. Неиндексируемые варианты 

Исследование задач о бандитах частично мотивировалось необходимостью те­
стирования новых методов лечения тяжелобольных пациентов. Для подобных за­
дач цель максимизации общего числа успешных результатов за установленный пе­
риод времени имеет вполне очевидный смысл: каждый успешный тест означает, 
что жизнь спасена, а каждый неуспешный - что жизнь потеряна. 

Однако если слегка изменить принятые допущения, возникает другая пробле­
ма. Предположим, что вместо определения наилучшего способа лечения для каж­
дого нового пациента-человека решено испытывать различные новые препараты 
на образцах бактериальных культур с целью принять решение, какой из этих пре­
паратов наилучший. Затем выбранный препарат будет запущен в производство, 
а все остальные варианты будут отклонены. В подобном сценарии не существу­
ет никаких дополнительных расходов, связанных с гибелью бактерий, - бактери­
альная культура для каждого теста имеет фиксированную стоимость, однако наша 
задача состоит не в том, чтобы минимизировать количество неудачных тестов: на 
самом деле мы просто пытаемся принять правильное решение настолько быстро, 
насколько это возможно. 

Задачу выбора наилучшего варианта при таких условиях называют ► задачей 
отбора. Задачи подобного типа очень широко распространены в промышленных 
и кадровых контекстах. Очень часто требуется принять решение, кого из постав­
щиков следует выбрать для обеспечения того или иного технологического процес­
са либо кого из кандидатов взять на работу. Задача отбора внешне схожа с задачей 
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о бандитах, но они имеют различные математические свойства. В частности, ♦ 
для задач отбора не существует индексной функции. Доказательство этого факта тре­
бует представить какой-либо сценарий, в котором оптимальная стратегия меня­
ет прежнее предпочтение между двумя руками, М1 и М2 , когда добавляется тре­
тья рука, М3 • 

В главе 5 было введено понятие метарассуждений при решении задач, таких 
как выбор, какие вычисления выполнить в процессе поиска по дереву игры, пре­
жде чем сделать ход. Такого рода метарассуждения также являются задачей отбо­
ра, а не задачей о бандитах. Очевидно, что развертывание или оценка узла требу­
ет одинакового количества времени независимо от того, какое выходное значение 
будет получено, высокое или низкое. Возможно, может показаться удивительным, 
что алгоритм поиска по дереву методом Монте-Карло (см. раздел 5 .4) показал себя 
настолько успешным, принимая во внимание тот факт, что он пытается решить 
задачу отбора, используя эвристику UCB, которая была разработана для задач о 
бандитах. Вообще говоря, можно ожидать, что оптимальные алгоритмы решения 
задач о бандитах будут требовать выполнения гораздо меньшего количества иссле­
дований, чем оптимальные алгоритмы выбора, поскольку в первых предполагает­
ся, что неудачное испытание стоит реальных денег. 

Важным обобщением процесса задачи о бандитах является ► суперпроцесс за­
дачи о бандитах (bandit superprocess - ► BSP), в котором каждая рука представ­
лена полным марковским процессом принятия решения в собственном праве вме­
сто ее представления как марковского процесса вознаграждения только с одним 
возможным действием . Все остальные свойства остаются теми же: руки независи­
мы, только с одной рукой (или с ограниченным их количеством) можно работать 
одновременно и существует единственный коэффициент обесценивания. 

В качестве примеров задач BSP можно привести саму нашу повседневную 
жизнь, когда в каждый момент приходится заниматься лишь одной задачей, даже 
если несколько задач требуют внимания; проект-менеджмент при нескольких про­
ектах; совместное обучение нескольких учеников, нуждающихся в индивидуаль­
ном руководстве, и т.д. Общий термин для обозначения всего этого - ► многоза­
дачность, и она настолько вездесуща, что на это уже никто не обращает внимания : 
в реальном мире при постановке задачи принятия решения аналитики редко спра­
шивают, есть ли у их клиента другие задачи, не связанные с этой задачи. 

Можно рассуждать следующим образом : "Если существует п непересекаю­
щихся задач МОР, то очевидно, что в целом оптимальная стратегия строится на 
основе оптимальных решений отдельных MDP. При известной ее оптимальной 
стратегии 11"; каждая задача MDP превращается в марковский процесс вознаграж­
дения, где в каждом состоянии s существует только одно действие 11";(s) . Поэто­
му суперпроцесс п-рукого бандита сокращается до процесса п-рукого бандита". 
Например, если строительная компания имеет только одну команду строителей и 
при этом должна построить несколько торговых центров, то, просто следуя здра­
вому смыслу, можно заключить, что необходимо разработать оптимальный план 
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строительства для каждого торгового центра, а заrем решить задачу о бандите для 
определения, куда отправлять команду строителей в каждый из дней. 

Хотя это предположение звучит весьма правдоподобно, оно ошибочно. В дей­
ствительности глобально оптимальная страrеrия для BSP может включаrь действия, 
которые будут локально неоптимальны с точки зрения той входящей в нее MDP, 
в которой они будут предприняты. Причиной здесь является наличие других MDP, 
в которых действие изменяет баланс между краrкосрочным и долгосрочным воз­
награждениями в некотором компоненте MDP. Фактически это ведет к тенденции 
к жадному поведению в каждой MDP (поиск краrкосрочных вознаграждений), по­
скольку нацеливание на получение долгосрочного вознаграждения в одной задаче 
MDP может вызваrь задержку получения вознаграждения во всех остальных MDP. 

Например, предположим, что оптимальный локальный график строительства 
одного торгового центра обеспечивает сдачу в аренду первой торговой площадки 
через 1 5  недель, тогда как неоптимальный график предполагает больший уровень 
затраr, но обеспечивает сдачу первой торговой площадки в аренду через 5 недель.  
Если предполагается построить четыре торговых центра, то может быть лучше 
для каждого из них воспользоваrься неоптимальным графиком, поскольку тогда 
арендная плаrа от них начнет поступаrь через 5 ,  1 О, 1 5  и 20 недель, а не через 1 5, 
30, 45 и 60. Другими словами, то, что является задержкой на 1 О недель для первой 
MDP, для четвертой MDP превращается в задержку на 40 недель.  В общем случае 
глобально и локально оптимальные страrегии обязаrельно совпадают только тог­
да, когда коэффициент обесценивания равен 1 ,  - в этом случае нет никаких по­
терь от задержки в получении вознаграждений в любой MDP. 

Следующий вопрос - как решаrь задачи BSP. Очевидно, что глобально опти­
мальное решение для BSP может быть вычислено путем его преобразования в гло­
бальное MDP на декартовом произведении пространств состояний рук. Количе­
ство состояний будет возрастаrь экспоненциально относительно количества рук в 
BSP, а значит, такой подход будет ужасно непрактичным . 

Вместо этого можно воспользоваrься разреженной природой взаимодействий 
между руками.  Эrо взаимодействие возникает исключительно из-за ограниченной 
способности агента обслуживать руки одновременно. В некоторой степени такое 
взаимодействие может быть смоделировано понятием ► альтернативной стоимо­
сти: сколько полезности будет утеряно на данном этапе времени, если не выделить 
этот этап другой руке. Чем выше альтернаrивная стоимость, тем больше необхо­
димость генерации ранних вознаграждений для данной руки. В некоторых случа­
ях оптимальная страrегия в данной руке не зависит от альтернаrивной стоимости. 
(Эrо тривиально верно для марковского процесса вознаграждения, поскольку су­
ществует только одна страrегия.) В этом случае оптимальная страrегия может быть 
применена путем преобразования руки в марковский процесс вознаграждения. 

Такая оптимальная стратегия, если она существует, называется ► доминиру­
ющей стратегией . Как оказалось, добавляя действия к состояниям, всегда можно 
создаrь ослабленную версию MDP (см. раздел 3 .6.2) таким образом, чтобы у нее 



346 Часть IV. Неопределенные знания и рассуждения в условиях неопределенности 

была доминирующая стратегия, которая в конечном счете даст верхнюю грани­
цу для значения действия руки. Нижняя граница может быть вычислена путем ре­
шения каждой руки по отдельности (что может дать общую неоптимальную стра­
тегию), а затем вычисления индексов Гиттинса. Если нижняя граница действия 
одной руки будет выше, чем верхние границы всех других действий, то задача ре­
шена. Если нет, то сочетание поиска с опережением (/ook-ahead) и перерасчета 
границ гарантированно позволит в конечном счете определить оптимальную стра­
тегию для BSP. При таком подходе относительно большие BSP (1 040 состояний 
или более) могут быть решены за несколько секунд. 

17 .4. Марковские процессы принятия решений 
в частично наблюдаемых средах 

В описании марковских процессов принятия решений, приведенном в разде­
ле 17 . 1, предполагалось, что среда является полностью наблюдаемой. При исполь­
зовании этого предположения агент всегда знает, в каком состоянии он находится. 
Эго предположение, в сочетании с предположением о марковости модели перехода, 
означает, что оптимальная стратегия зависит только от текущего состояния . 

Когда среда является лишь частично наблюдаемой, то очевидно, что ситуа­
ция становится менее ясной. Агент не всегда точно знает, в каком состоянии он 
находится, поэтому не может выполнить действие 'TT(s), рекомендуемое для этого 
состояния. Более того, полезность состояния s и оптимальное действие в состоя­
нии s зависят не только от s, но и от того, насколько много агент знает, находясь 
в состоянии s. По этим причинам ► задачи МDР в частично наблюдаемой сре­
де (Partially ObservaЬle МDР - POMDP, читается как "пом-ди-пи") обычно рас­
сматриваются как намного более сложные по сравнению с обычными задачами 
MDP. Однако невозможно игнорировать необходимость решения задач POMDP, 
поскольку реальный мир полон таких задач. 

1 7  .4. 1 . Определение задач POMDP 

Чтобы найти подход к решению задач POMDP, вначале необходимо должным 
образом их определить. Любая задача POMDP состоит из тех же компонентов, что 
и задача MDP - модели перехода P(s' 1 s, а), действий A(s) и функции вознаграж­
дения R(s, а, s'), - но также имеет модель восприятия Р(е I s). Здесь, как и в гла­
ве 1 4, модель восприятия задает вероятность получения свидетельства е в состоя­
нии s. 5 Например, клеточный мир 4 х 3 ,  представленный на рис. 1 7  . 1 , можно 
преобразовать в POMDP, добавив зашумленный или частичный датчик вместо 
предположения, что агент точно знает свое местоположение. Так, можно 

5 Модель восприятия также может зависеть от действия и результирующего состоя­
ния, но это изменение не является фундаментальным. 
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использовать зашумленный четырехбитовый датчик, предложенный в разделе 
1 4.3 .2, сообщающий о наличии или отсутствии стены с каждой из четырех сторон 
света с точностью 1 - f .  

Как и в случае задач MDP, компактные представления для больших задач 
POMDP можно получить, используя динамические сети принятия решений 
(см. раздел 1 7 . 1 .4). Мы добавляем переменные восприятия Е,, исходя из предполо­
жения, что переменные состояния Х, не могут быть непосредственно наблюдаемы. 
Тогда модель восприятия задачи POMDP задается как Р(Е, 1 Х,). Например, можно 
добавить переменные восприятия к сети DDN, представленной на рис. 1 7.4, такие 
как BatteryMeter, для оценки фактического заряда Battery, и Speedometer, для оцен­
ки величины вектора скорости Х, . Ультразвуковой датчик Walls, может дать оцен­
ку расстояния до ближайшей стены в каждом из четырех основных направлений 
относительно текущей ориентации робота, - эти значения будут зависеть от его 
текущего положения и ориентации Х,. 

В главах 4 и 1 4  рассм�привались задачи планирования в недетерминированных 
и частично наблюдаемых вариантах среды и бьmо определено доверительное со­
стояние - множество фактических состояний, в которых может находиться 
агент - как ключевая концепция для описания и вычисления решений. В задачах 
POMDP доверительное состояние Ь превращается в распределение вероятностей 
по всем возможным состояниям, как в главе 1 4. Например, начальное доверитель­
ное состояние в задаче POMDP для клеточного мира 4 х 3 может представлять со­
бой равномерное распределение для девяти нетерминальных состояний и нули -
для терминальных состояний, т.е. 

Мы будем использовать обозначение b(s) для ссылок на вероятность, присвоен­
ную фактическому состоянию s в доверительном состоянии Ь. Агент может вычис­
лить свое текущее доверительное состояние как распределение условных вероят­
ностей по фактическим состояниям при заданной последоВ1Пельности восприятий 
и действий, имевших место до сих пор. Такая задача, по сути, сводится к зада­
че фильтрации, рассматривавшейся в главе 1 4. Основное рекурсивное уравнение 
фильтрации (см. уравнение ( 1 4 .5)  в разделе 14.2 . 1 )  показывает, как вычислить но­
вое доверительное состояние из предыдущего доверительного состояния и нового 
свидетельства. Для решения задач POMDP необходимо также учитываrь действие, 
но результаr, по сути, остается тем же самым. Если предыдущим доверительным 
состоянием бьmо Ь, з�пем агент выполнил действие а и как результаr восприятия 
получил свидетельство е, то новое доверительное состояние определяется вычис­
лением вероятностей нынешнего пребывания в состоянии s' для каждого s' по сле­
дующей формуле: 

b'(s') = aP(e l s')L P(s' 1 s, a)b(s), 
s 
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где а - нормализующая константа, при использовании которой сумма вероятно­
стей доверительных состояний становится равной 1 .  По аналогии с оператором 
обновления для фильтрации (см .  раздел 1 4 .2 . 1 )  это уравнение можно сокращен­
но записать как 

Ь' = а FORWARD(b, а, е). ( 1 7 . 1 6) 

В задаче POMDP для клеточного мира 4 х 3 предположим, что агент выполняет 
действие Left и его восприятие сообщает о наличии одной стены рядом . Тогда 
вполне вероятно (хотя и не гарантированно, поскольку и исполнительный меха­
низм перемещения, и датчик зашумлены), что агент в настоящее время находится 
в квадраге (3, 1 ) .  В упражнении 1 7 . 1 5  предлагается вычислить точные значения ве­
роятностей для нового доверительного состояния. 

Основная концепция, необходимая для понимания сути задач POMDP, состоит 
в следующем : ♦ оптимальное действие зависит только от текущего доверитель­
ного состояния агента. А это означает, что оптимальную стратегию можно описать 
путем отображения 11*(Ь) из доверительных состояний на действия. Она не зави­
сит от фактического состояния, в котором агент находится . И это очень хорошо, 
поскольку агент не знает своего фактического состояния и все, что ему извест­
но, - это лишь его доверительное состояние. Следовательно, цикл принятия ре­
шения агентом в задаче POMDP можно разбить на следующие три этапа. 

1 .  Учитывая текущее доверительное состояние Ь, выполнить действие 
а = 11*(Ь) . 

2. Получить результаты восприятия - свидетельство е. 
3 .  Установить текущее доверительное состояние равным FORWARD(b, а, е) и по­

вторить ту же процедуру. 

Можно рассматривать задачи POMDP как требующие поиска в пространстве 
доверительных состояний, во многом аналогично тем методам, которые применя­
лись для решения бессенсорных задач и задач в условиях непредвиденных ситуа­
ций, описанных в главе 4. Основное различие состоит в том, что в задачах POMDP 
пространство доверительных состояний является непрерывным, поскольку дове­
рительное состояние POMDP - это распределение вероятностей. Например, до­
верительное состоян ие для клеточного мира 4 х 3 представляет собой точку в 
] ] -мерном непрерывном пространстве. Любое действие изменяет не только физи­
ческое состояние, но и доверительное состояние, поскольку оно влияет на получа­
емые агентом результаты восприятия. Следовательно, действие оценивается (по 
меньшей мере, частично) в соответствии с информацией, которую агент получает 
как результаг его выполнения. Таким образом, задачи POMDP должны включать 
стоимость информации в качестве одного из компонентов задачи принятия реше­
ний (см . раздел 1 6 .6). 

Давайте внимательнее рассмотри м  результаты действий .  В частности, рас­
считаем вероятность того, что агент, находящийся в доверительном состоянии Ь, 
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достигнет доверительного состояния Ь' после выполнения действия а. Если из­
вестны действие и последующее восприятие, то уравнение ( 1 7  . 1 6) должно обе­
спечить получение детерминированного обновления доверительного состояния: 
Ь' = FORWARD(b, а, е). Безусловно, результаты последующего наблюдения еще не 
известны, поэтому агент может перейти в одно из нескольких возможных довери­
тельных состояний Ь', в зависимости от результатов восприятия, которые будут по­
лучены после выполнения данного действия. Вероятность получения в результате 
восприятия свидетельства е, при условии, что действие а было выполнено в дове­
рительном состоянии Ь, определяется путем суммирования по всем фактическим 
состояниям s', которых агент может достичь: 

P(e l a, b) = L P(e l a, s' , b)P(s' 1 а, Ь) 
s ' = L P(e l s')P(s' l a, b) 
s ' = L P(e l s')L P(s' l s , a)b(s). 
s ' s 

Обозначим вероятность достижения состояния Ь' из Ь, если дано действие а, как 
Р(Ь' 1 Ь, а). В таком случае вероятность можно рассчитать следующим образом: 

P(b ' l b, a) = L P(b ' l e, a, b)P(e l a, b) 
е ( 1 7. 1 7) 

= L P(b' I e, a, b)L P(e l s ')LP(s' 1 s, a)b(s), 
е s ' s 

где Р(Ь' 1 е, а, Ь) равно 1 ,  если Ь' = FORWARD(b, а, е), и О - в противном случае. 
Уравнение ( 1 7  . 1 7) можно рассматривать как определение модели перехода для 

пространства доверительных состояний. Можем также определить функцию воз­
награждения для доверительных состояний, которая выводится из ожидаемого 
вознаграждения для переходов в фактические состояния, в которых может ока­
заться агент. Здесь мы используем прОС'I)'Ю форму р(Ь, а) - ожидаемое вознаграж­
дение, если агент выполняет действие а в доверительном состоянии Ь: 

р(Ь, а) = Lb(s) L P(s 1 1 s , a)R(s, а, s'). 
s s ' 

Совместно Р(Ь' 1 Ь, а) и р(Ь, а) определяют полностью наблюдаемую задачу МОР 
в пространстве доверительных состояний. Более того, можно показать, что опти­
мальная стратегия для этой задачи МОР, Тi*(Ь), является также оптимальной стра­
тегией для исходной задачи РОМОР. Другими словами, ♦ решение любой задачи 
POMDP в пространстве физических состояний можно свести к решению задачи МОР в со­
ответствующем пространстве доверительных состояний. Этот факт, вероятно, ста­
нет менее удивительным, если вспомнить, что по определению доверительное со­
стояние всегда является наблюдаемым для агента. 
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1 7  .5. Алгоритмы для решения задач POMDP 
Выше было показано, как свести задачу POMDP к задаче МДП, но полученная 

МДП будет иметь непрерывное (и, как правило, многомерное) пространство со­
стояний. А это означает, что необходимо перепроектировать алгоритмы динами­
ческого программирования, представленные в разделах 1 7  .2. 1 и 1 7  .2 .2, где пред­
полагалось конечное пространство состояний и конечное число действий. Здесь 
будет описан алгоритм итерации по значениям, разработанный специально для за­
дач POMDP, а затем представлен неавтономный алгоритм принятия решений, по­
добный тем, которые были разработаны для игр в главе 5. 

17.5.1. Алгоритм итерации по значениям для задач POMDP 

В разделе 1 7  .2. 1 описывается алгоритм итерации по значениям, в котором вы­
числяется по одному значению полезности для каждого состояния. При беско­
нечно больщом количестве доверительных состояний необходимо найти более 
разумный подход. Рассмотрим оптимальную стратегию 11* и ее применение в кон­
кретном доверительном состоянии Ь: согласно стратегии генерируется действие, 
затем для каждого последующего восприятия доверительное состояние обновля­
ется и генерируется новое действие, и т.д. Следовательно, для данного конкретно­
го доверительного состояния Ь эта стратегия в точности эквивалентна условному 
плану, как он был определен в главе 4 для недетерминированных и частично на­
блюдаемых задач. Вместо того чтобы думать о стратегиях, давайте подумаем об 
условных планах, а также о том, как ожидаемая полезность от выполнения фикси­
рованного условного плана будет изменяться в зависимости от исходного довери­
тельного состояния. Можно сделать два следующих замечания. 

1 .  Пусть полезность от выполнения фиксированного условного плана р, начи­
ная с физического состояния s, будет o.p(s). Тогда ожидаемая полезность от 
выполнения плана р в доверительном состоянии Ь будет просто �sb(s)ap(s) 
или Ь • о.р, если рассматривать их в качестве векторов. Следовательно, ожи­
даемая полезность фиксированного условного плана изменяется линейно от­
носительно Ь и, значит, соответствует гиперплоскости в пространстве дове­
рительных состояний. 

2. В любом заданном доверительном состоянии Ь оптимальная стратегия бу­
дет выбирать для выполнения условный план с самой высокой ожидаемой 
полезностью, т.е. при оптимальной стратегии ожидаемая полезность состо­
яния Ь является просто полезностью этого условного плана: U(b)= l..f\b) = 
= maxpb • о.р. Если оптимальная стратегия 11 *  выбирает для выполнения 
план р, начиная с состояния Ь, то будет разумно ожидать, что она может 
выбрать для выполнения план р и в доверительных состояниях, которые 
очень близки к состоянию Ь. В действительности, если ограничить глубину 
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условных планов, то может иметь место только конечное множество таких 
планов и непрерывное пространство доверительных состояний в общем 
случае может быть разделено на регионы, каждый из которых соответствует 
конкретному условному плану, оптимальному для этого региона. 

Из этих двух наблюдений следует, что функция полезности И(Ь) доверительных 
состояний, представляя собой максимум коллекции гиперплоскостей, будет кусоч­
но-линейной и выпуклой. 

Чтобы проиллюстрировать этот вывод, воспользуемся простым миром с двумя 
состояниями, - обозначим их как А и В. В этом мире есть два действия: Stay -
оставаться на месте с вероятностью 0,9 и Go - перейти в другое состояние с ве­
роятностью 0,9. Также определены вознаграждения :  R(· ,  • , А) = О и R(· ,  • , В) = 1 ;  т.е .  
любой переход, оканчивающийся в состоянии А, имеет нулевое вознаграждение, 
а за любой переход, оканчивающийся в состоянии В, выдается вознаграждение 1 .  
На данный момент примем коэффициент обесценивания "1 = 1 .  Датчик выдает пра­
вильную информацию о текущем состоянии с вероятностью 0,6. Очевидно, что 
areнry следует выбрать действие Stay, когда он в состоянии В, и выполнить дей­
ствие Go, когда он в состоянии А. Проблема в том, что он не знает наверняка, где 
находится ! 

Преимущество мира с двумя состояниями в том, что его пространство дове­
рительных состояний может быть визуализировано в одном измерении, посколь­
ку две вероятности, Ь(А) и Ь(В), в сумме дают 1 .  На рис. 1 7 . 1 5 , а ось х представ­
ляет доверительное состояние, определяемое как Ь(В), т.е. вероятность того, что 
агент находится в состоянии В. Теперь давайте рассмотрим два одноэтапных пла­
на, план [Stay] и план [Go], выполнение каждого из которых приводит к получе­
нию следующего вознаграждения за один переход. 

a1s1ayJ(A) = 0,9R(A , Stay, А) + 0 , 1R(A , Stay, В) = 0 , 1  
a1s1aJ]{B) = 0 , 1R(B, Stay, А) + 0 ,9R(B, Stay, В) =  0,9 
а1001(А) = 0 , 1R(A , Go, А) + 0 ,9R(A ,  Go, В) = 0 ,9 
а1001(В) = 0,9R(B, Go, А) + 0 , 1R(B, Go, В) = 0 , 1  

Гиперплоскости ( в  данном случае это линии) для ожидаемых полезностей 
Ь · a1s,ayJ и Ь · a1GoJ показаны на рис. 1 7 . 1 5 , а, а их общий максимум представлен 
утолщенной линией . Следовательно, эта утолщенная линия представляет собой 
функцию полезности для задачи с конечным горизонтом, допускающим толь­
ко одно действие, и в каждом "кусочке" кусочно-линейной функции полезности 
оптимальное действие является первым действием соответствующего условного 
плана. В данном случае оптимальная одноэтапная стратегия состоит в том, что­
бы выбирать действие Stay, когда Ь(В) > 0,5, и действие Go - в противном случае. 

Когда у нас есть полезности ap(s) для всех условных планов р глубины 1 в ка­
ждом физическом состоянии s, можно вычислить полезности для условных планов 
глубины 2, рассматривая каждое возможное первое действие, каждое возможное 



352 Часть IV. Неопределенные знания и рассуждения в условиях неопределенности 

последующее восприятие, а затем выполнение каждого варианта плана глубины 1 
для каждого восприятия. 

(Stay; if Percept = А then Stay else Stay] 
[Stay; if Percept = А then Stay else Go] 
[Go; if Percept = А then Stay else Stay] 

Всего существует восемь различных планов глубины 2; их полезность приведена на 
рис. 1 7  . 1 5, б. Обраnпе внимание, чrо из эmх восьми планов четыре, показанные пунк­
тирными линиями, являются неоmимальными во всем пространстве доверкrельных 
состояний, - говорят, что эти планы ► доминируемые (dominated), и поэтому нет 
необходимости продолжаrь их рассмогрение. Есть еще четыре недоминируемых пла­
на, каждый из юrорых является оптимальным в определенной области, как показано 
на рис. 1 7  . 1 5, в. Эrи области делят пространство доверительных состояний на части. 

t 
,., о 
а 
t:::: 

t 
Q ,., о 
а 
t:::: 

3,0 3,0 
2,5 2,5 
2,0 .о 2,0 

<.J 

1 ,5 
Q 1 ,5 = ,., 

[Go] о 
1 ,0 а 1 ,0 t:::: 
0,5 0,5 
о о о 0,2 0,4 0,6 0,8 о 0,2 0,4 0,6 0,8 

Вероятность состояния В Вероятность состояния В 
а) б) 

3,0 7,5 
2,5 7,0 
2,0 � 6,5 <.J 

Q 

1 ,5 = 6,0 ,., 
1 ,0 а 5,5 t:::: 
0,5 5,0 
о 4,5 о 0,2 0,4 0,6 0,8 о 0,2 0,4 0,6 0,8 

Вероятность состояния В Вероятность состояния В 
в) г) 

Рис. 1 7. 1 5. а) Полезность двух одноэтапных планов как функция исходного до­
верительного состояния Ь(_В) для мира с двумя состояниями, - соответствующая 
функция полезности приведена утолщенной линией. б) Полезности для восьми раз­
личных двухэтапных планов. в) Полезности для четырех недоминируемых двух­
этапных планов. r) Функция полезности для оптимальных восьмиэтапных планов 
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Повторим приведенную выше процедуру ДJ]Я планов глубины 3 и т.д. В общем 
случае пусть р - условный план глубины d, начальным действием которого явля­
ется а, а подплан глубины (d - 1 )  ДJ1Я восприятия е есть р.е. Тогда можно записать : 

ap
(s) = L P(s ' I  s, a) [R(s, а, s 1) +  "IL P(e I s ')ap .e (s 1)] .  ( 1 7 . 1 8) 

s '  е 

Это рекурсивное выражение естественным образом дает нам алгоритм ите­
рации по значениям, который приведен на рис. 1 7 . 1 6 . Структура этого алгорит­
ма и его анализ ошибок аналогичны базовому алгоритму итерации по значениям, 
приведенному на рис. 1 7  .6  в разделе 1 7  .2 . 1 .  Основное различие в том,  что вме­
сто вычисления одного значения полезности ДJ]Я каждого состояния в алгоритме 
POMDP-VALUE-ITERATJON поддерживается коллекция недоминируемых планов с 
их гиперплоскостями полезности. 

function POMDP-VALUE-lTERATION (pomdp, f) returns функция полезности 
inputs: pomdp, задача POMDP с множеством состояний S, множеством действий А (s ), 

моделью перехода P(s' 1 s, а), моделью восприятия P(e l s), 
вознаграждениями R(s), коэффициентом дисконтирования 1 

f, максимальная допустимая ошибка для полезности в любом состоянии 
local varlaЫes: И, И', множества планов р со связанными векторами полезности о.Р 

U' +- множество, содержащее только пустой план [ ] ,  с вектором O.[J(s) = R (s) 
repeat 

И +- И' 
И' +- множество всех планов, состоящих из действия и, для каждого возможного 

следующего восприятия, плана в И с векторами полезности, 
вычисленными в соотвествии с уравнением ( 1 7 . 1 8) 

lJ' +- REM0VE-DoMINATED-PLANS(U') 
until MAX-DIFFERENCE(U, И') :s f ( l - "{) /"{ 
return И 

Рис. 1 7. 16. Высокоуровневый эскиз алгоритма итерации по значениям для задач 
POMDP. Этап REM0VE-D0MINATED-PLANS и тест МAX-DIFFERENCE обычно реали­
зуются в виде линейных программ 

Сложность алгоритма зависит, прежде всего, от того, сколько планов сгенери­
ровано. При заданных IA I действиях и I E I  возможных восприятиях, существует 

O(IEld-1) I A I различных планов глубины d. Даже ДJ]Я скромного мира с двумя состоя-
ниями при d = 8 это 2255 планов. Устранение доминируемых планов исключитель­
но важно ДJ]Я сокращения этого дважды экспоненциального роста: число недоми­
нируемых планов при d= 8 составляет всего 1 44.  Функция полезности ДJ]Я этих 
1 44 планов представлена на рис. 1 7 . 1 5 , г. 
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Обратите внимание, что промежуточные доверительные состояния имеют бо­
лее низкое значение, чем состояние А и состояние В, поскольку в промежуточ­
ных состояниях агеmу не хватает информации, необходимой для выбора хорошего 
действия. Вот почему информация имеет ценность в смысле, определенном в раз­
деле 1 6.6, и оптимальные стратегии в задачах POMDP часто включают действия 
по сбору информации. 

При наличии такой функции полезности выполняемая стратегия может быть 
извлечена за счет анализа, какая из гиперплоскостей является оптимальной при 
любом заданном доверительном состоянии Ь, и выполнения первого действия в 
соответствующем плане. На рис. 1 7  . 1 5, г соответствующая оптимальная стратегия 
все та же, что и для планов глубины 1 :  выбирать действие Stay, когда Ь(В) > 0,5, 
и действие Go - в противном случае. 

На практике алгоритм итерации по значениям, приведенный на рис. 1 7  . 1 6, яв­
ляется безнадежно неэффективным для задач сколько-нибудь большего разме­
ра, - даже задача POMDP для клеточного мира 4 х 3 для него слишком сложна. 
Основной причиной является то, что при наличии п недоминируемых условных 
планов на уровне d этот алгоритм строит IA I • п½Е½ условных планов на уровне 
d + 1 и только затем исключает из них доминируемые. При четырехбитовом датчи­
ке IE I равно 1 6, а количество недоминируемых планов п может исчисляться сотня­
ми, что делает сиrуацию совершенно безнадежной. 

Поскольку этот алгоритм был разработан в 1 970-х годах, за прошедшие годы 
уже было предложено несколько улучшений, включая более эффективные формы 
алгоритма итерации по значениям и различные варианты алгоритма итерации по 
стратегиям. Некоторые из них обсуждаются в разделе "Библиографические и исто­
рические заметки" в конце этой главы. Однако в общем случае нахождение опти­
мальных стратегий для задач POMDP является очень сложной проблемой (класс 
PSPACE-hard, т.е. действительно очень трудно). В следующем разделе описывает­
ся другой, приблизительный метод решения задач POMDP, основанный на поис­
ке с опережением. 

17.5.2. Неавтономные алгоритмы решения задач POMDP 

Базовая схема неавгономноrо РОМDР-агента проста: он начинает рабоrу с не­
которого априорного доверительного состояния; он выбирает действие, полага­
ясь на некоторый процесс обдумывания, основанный на его текущем доверитель­
ном состоянии; после выполнения действия он получает результаты восприятия и 
обновляет свое доверительное состояние, используя алгоритм фильтрации; затем 
процесс повгоряется вновь. 

Одним очевидным выбором для процесса обдумывания является алгоритм 
EXPECTIMAX из раздела 1 7  .2 .4, - за исключением использования в его дереве до­
верительных состояний, а не физических состояний в качестве узлов принятия ре­
шения. Узлы жеребьевки в РОМDР-дереве имеют ветви, помеченные возможными 
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результагами восприятия и ведущие к следующему доверительному состоянию, с 
переходными вероятностями, определяемыми по уравнению ( 1 7  . 1 7). Фрагмент де­
рева доверительных состояний алгоритма EXPECTIMAX для задачи РОМDР клеточ­
ного мира 4 х 3 показан на рис. 17 .17. 

Рис. 1 7. 1 7. Часть дерева алгоритма ЕХРЕСТIМАХ для задачи POMDP клеточного 
мира 4 х 3 с равномерным исходным доверительным состоянием. Доверительные 
состояния представлены с затенением, пропорциональным вероятности нахождения 
в соответствующем квадрате 

Временная сложность исчерпывающего поиска на глубину d составляет 
O(IA ld · IEI"), где IA I задает количество досrупных действий, а IEI определяет коли­
чество возможных результагов восприятия. (Обратите внимание, что это намного 
меньше, чем количество возможных условных планов глубины d, генерируемых ал­
горитмом итерации по значениям.) Как и в случае полностью наблюдаемой среды, 
генерация выборок в узлах жеребьевки представляет собой хороший способ сокраще­
ния фактора ветвления без чрезмерного снижения точности окончагельного решения. 
Следовагельно, сложность приблизительного неавтономного принятия решений в за­
дачах POMDP может оказаrься не намного выше, чем в задачах МДП. 

Для очень больших пространств состояний точная фильтрация невозможна, по­
этому агент будет вынужден использовагь приблизительный алгоритм фильтра­
ции, например фильтрации частиц (см. раздел 1 4. 5 .3) .  В этом случае доверитель­
ными состояниями в дереве алгоритма ЕХРЕСТIМАХ становятся коллекции частиц, 
а не точные распределения вероятностей. Также для задач с продолжительными 
горизонтами, возможно, потребуется применить вариант с многократным повторе­
нием прогонов в пределах отведенного времени, используемый в алгоритме UCT 
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(см. рис. 5 . 1 1 ) .  Комбинацию алrоритма фильтрации частиц и алгоритма UCT при­
менительно к задачам РОМDР принято называrь частично наблюдаемым планиро­
ванием по методу Монте-Карло, или ► РОМСР (Partially Observahle Monte Car/o 
P/anning). При представлении модели в виде DDN алгоритм РОМСР - по край­
ней мере, в принципе - применим к очень большим и реалистичным задачам 
РОМDР. Короткий (и довольно удачный) пример того, насколько компетентное по­
ведение алгоритм РОМСР способен генерироваrь в задаче POMDP для клеточного 
мира 4 х 3, показан на рис. 1 7. 1 8. 

... . . .  
Рис. 17.18. Последовательность восприятий, доверительных состояний и действий в 
эадаче POMDP для клеточноrо мира 4 х 3 с погрешностью датчика стены Е = 0,2. 06-
раrите внимание, насколько беэопасны первые действия Left - они едва ли приведут 
в квадрат ( 4,2), но позволяют свести предполагаемые варианты местоположения аген­
та к небольшому количеству возможных мест. После действия Ир агент полагает, что, 
вероятнее всеrо, он находится в квадрате (3,3), но таюке возможно, что он в квадрате 
( 1 ,3). К счастью, действие RighJ является хорошей идеей в обоих этих случаях, так что 
агент выполняет ero и выясняет, что он находился в квадрэ:rе ( 1 ,3), а теперь находится 
в квадрате (2,3). Заrем он еще раз выполняет действие RighJ и достигает цели 

Неавтономные РОМDР-агенты на основе динамических сетей принятия ре­
шений имеюr ряд преимуществ по сравнению с агентами других, более простых 
конструкций, представленных в предыдущих rnaвax. В частности, они могут дей­
ствовать в частично наблюдаемых стохастических средах и способны легко пере­
сматривать свои "планы" с целью учета неожиданных свидетельств. При соответ­
ствующих моделях восприятия они способны справляться с отказами датчиков и 
могут планировать действия по сбору информации. Они демонстрируют "изящ­
ную деградацию" под давлением времени и в сложных средах, используя различ­
ные методы аппроксимации. 

Так чего не хватает? Основным препятствием для развертывания таких агентов 
в реальном мире является их неспособность генерировать успешное поведение 
в течение достаточно длительного промежутка времени. В случайных или почти 
случайных сценариях у них нет никакой надежды получить какое-либо положи­
тельное вознаграждение, скажем, за накрытие стола для обеда, что может потре­
бовать десятки миллионов отдельных действий по управлению двигателями. Для 
исправления ситуации представляется необходимым позаимствовать некоторые 
идеи иерархическоrо планирования, обсуждавшиеся в разделе 1 1 .4. На момент на­
писания данной rnавы еще не было найдено удовлетворительных и эффективных 
способов применения этих идей в частично наблюдаемых стохастических средах. 
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В этой главе показано, как использовать знания о мире Д11Я принятия решений, 
даже если результаrы действий являюrся неопределенными, а вознаграждения за 
действия могут оставаrься недос1)'пными до тех пор, пока не будет осуществлен 
целый ряд действий. Основные моменты заключаюrся в следующем. 

• Задачи последовательного принятия решений в стохастических средах, на­
зываемые также марковскими процессами привитии решений (Markov 
Decision Process - МDР), определяюrся с помощью моделей перехода, за­
дающих вероятностные результаты действий, и функции вознаграждении, 
указывающей, какое вознаграждение соответствует каждому состоянию. 

• Полезность последовательности состояний представляет собой сумму всех 
вознаграждений вдоль этой последоваrельности, которая, возможно, со вре­
менем подвергается обесцениванию. Решением задачи MDP является стра­
теrия, в которой с каждым состоянием, достижимым для агента, связа­
но некоторое решение. Оптимальная стратегия максимизирует полезность 
встречающейся последовательности состояний при ее осуществлении. 

• Полезностью состояния является ожидаемая сумма вознаграждений при 
осуществлении оптимальной стратегии, начиная с этого состояния. Алго­
ритм итерации по значениям действует по принципу итеративного реше­
ния уравнений, связывающих полезности каждого состояния с полезностя­
ми его соседних состояний. 

• В алгоритме итерации по стратеrиим чередуются этап вычисления полез­
ностей состояний согласно текущей стратегии и этап усовершенствования 
текущей стратегии по отношению к текущим полезностям. 

• Задачи MDP в частично наблюдаемой среде, или задачи POMDP, являются 
гораздо более трудными для решения, чем задачи MDP. Они могут быть ре­
шены путем преобразования в задачу MDP в непрерывном пространстве до­
верительных состояний и применения уже разработанных для этого случая 
алгоритмов итерации по значениям или итерации по страrегиям .  Оптималь­
ное поведение при решении задач POMDP должно предусматривать сбор 
информации для уменьшения неопределенности и, соответственно, приня­
тия лучших решений в будущем. 

• Для вариантов среды POMDP может быть создан агент, действующий на ос­
нове теории принятия решений. В таком агенте динамическаи сеть приви­
тии решений используется для представления модели перехода и модели 
восприятия, для обновления его доверительного состояния и для проmоза 
возможных последовательностей действий в прямом направлении. 

Мы вернемся к задачам МDР и POMDP в rnaвe 22, где рассматриваюrся методы 
обучении с подкреплением, позволяющие агеН1)' совершенствовать свое поведе­
ние на основании собственного опыта. 
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Библиографические и исторические заметки 
Идеи, лежащие в основе современного подхода к анализу задач последователь­

ного принятия решений, разрабатывал Ричард Беллман во время работы в кор­
порации RAND начиная с 1 949 года. Как сказано в его автобиографии (Беллман 
[ 1 67], 984), термин "динамическое программирование" он ввел, чтобы скрыть от 
известного свой фобией к научным исследованиям министра обороны Чарльза 
Уилсона тот факт, что его группа занималась математикой. (Это едва ли может 
быть абсолютно верно, потому что первая статья, в которой он использовал этот 
термин (Беллман [ 1 63 ], 1 952), появилась еще до того, как Уилсон стал министром 
обороны в 1 953 году.) В книге Беллмана Dynamic Programming ([ 1 69], 1 957) был 
заложен прочный фундамент новой области исследований и введен алгоритм ите­
рации по значениям. 

Шепли ([2042], 1 953) фактически также описал алгоритм итерации по значе­
ниям независимо от Беллмана, но его результаты не получили широкого призна­
ния в сообществе исследователей операций, - возможно, потому, что они были 
представлены в более общем контексте марковских игр. Хотя оригинальные фор­
мулировки уже включали обесценивание, его анализ с точки зрения стационарных 
предпочтений был предложен Купмансом ([ 1 28 1  ], 1 972). Теорема формирования 
была предложена в работе Нга и соавт. [ 1 674] ( 1 999). 

В тезисах докторской диссертации Рона Говарда ([ 1 073], 1 960) были предло­
жены алгоритм итерации по стратегиям и идея среднего вознаграждения при ре­
шении задач с бесконечным горизонтом. Несколько дополнительных результатов 
бьmо предложено Беллманом и Дрейфусом ([ 1 68], 1 962). Идея использования сжа­
тых отображений в ходе анализа алгоритмов динамического программирования 
принадлежит Денардо ([60 1 ], 1 967). Модифицированный алгоритм итерации по 
стратегиям описан в работах Ньюнена ([2259], 1 976) и Путермана и Шина ([ 1 828], 
1 978). Алгоритм асинхронной итерации по стратегиям был проанализирован Уи­
льямсом и Бердом ([23 52], 1 993), которые также доказали свойство граничной 
убыточности стратегии, рассматриваемое в уравнении ( 1 7  . 1 3  ). Общее семейство 
алгоритмов уборки по приоритетам нацелено на ускорение сходимости к опти­
мальной стратегии посредством эвристического упорядочения по значению и рас­
четов обновления стратегии (Мур и Аткесон [ 1 6 1 3], 1 993 ; Андре и др. [52], 1 998; 
Уингейт и Сеппи [2358], 2005). 

Формулировка задач MDP как задач линейного программирования была рас­
смотрена де Геллинком ( [556], 1 960), Манне ([ 1 485] ,  1 960), и Д'Эпену ([608], 
1 963). Хотя линейное программирование традиционно считалось ус,упающим ди­
намическому программированию в качестве метода точного решения задач MDP, 
де Фариас и Рой ([5 52], 2003) показали, что можно использовать линейное про­
граммирование и линейное представление функции полезности для получения до­
казуемо хороших приближенных решений очень больших задач MDP. Пападими­
триу и Цициклис ([  1 727], 1 987), а также Литтман и соавт. ([ 1 420], 1 995) приводят 
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общие результаты по вычислительной сложности задач МОР. Йинью Йе ([240 1 ], 
20 1 1  ) проанализировал взаимосвязь между методом итерации по стратегиям и 
симплекс-методом линейного программирования и доказал, что для фиксирован­
ного коэффициента обесценивания "/ время выполнения итерации страrегии зави­
сит полиномиально от количества состояний и действий. 

Плодотворные работы Саттона ([2 1 56], 1 988) и Уоткинса ([2299], 1 989) по при­
менению методов обучения с подкреплением для решения задач МОР сыграли 
важную роль в ознакомлении сообщества разработчиков в области искусственно­
го интеллекта с задачами МОР. (В более ранней работе Уэрбоса [2324] (1 977) со­
держались во многом аналогичные идеи, но они не были развиты до такой же 
степени.) Задачи МОР подтолкнули исследователей в области ИИ в направлении 
использования более выразительных представлений, позволяющих охватить гораз­
до большие задачи, чем при использовании традиционного атомарного представ­
ления на основе матриц перехода. 

Основные идеи по созданию архитеюуры агента с использованием динамиче­
ских сетей принятия решений бьти предложены Дином и Канадзава ([570], 1 989). 
Татмен и Шахтер ([2 1 83], 1 990) показали, как применять алгоритмы динамическо­
го программирования к моделям OON. Несколько авторов установили связь меж­
ду задачами МОР и задачами планирования ИИ, разработав вероятностные формы 
компактного представления STRIPS для моделей перехода (Веллман [23 1 7], 1 990; 
Кёниг [ 1 257], 1 99 1 ). В книге Planning and Control Дина и Уэллмана ([572], 1 99 1 )  
эта связь исследуется очень глубоко. 

В более поздних работах над ► структурными MDP (Бутилье и др. [267], 
2000; Коллер и Парр [ 1 268], 2000; Гуэстрин и др. [93 1 ], 2003) используются струк­
турные представления функции значения, а также модели перехода при доказуе­
мом улучшении в сложности. В концепции ► реляционных МDР (Бутилье и др. 
[268], 200 1 ;  Гуэстрин и др. [930], 2003) сделан еще один шаг и используются уже 
струюурные представления для работы в проблемных областях со многими свя­
занными объектами. Задачи МДП и РОМОР с открытой вселенной (Шривастава и 
др. [2 1 20], 20 1 4) также допускают неопределенность в отношении существования 
и идентичности объектов и действий. 

Многие авторы разработали приближенные неавтономные алгоритмы для 
принятия решений в задачах МОР, часто явно заимствуя их из более ранних 
подходов в области ИИ к поиску в реальном времени и ведения игр (Уэрбос 
[2323], 1 992 ; Дин и др. [5 69], 1 993 ; Тэш и Расселл [2 1 77], 1 994). Работа Бар­
то и соавт. ([ ) 3 8], 1 995)  над RTOP (real-time dynamic programming - динами­
ческое программирование в режиме реального времени) предоставила общую 
основу для понимания работы таких алгоритмов и их связи с обучением с под­
креплением и эвристическим поиском. Анализ ограниченного по глубине алго­
ритма ЕХРЕСТIМАХ с выборкой в случайных узлах был проведен Кирнсом и соавт. 
([ 1 2 1 0], 2002). Алгоритм UCT, упоминавшийся в этой главе, был проанализи­
рован Коксисом и Чепешвари ([ 1 25 ) ], 2006) и заимствован из ранних работ о 
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случайных прогонах для оценки значения состояний (Абрамсон [8] , 1 990; Брюг­
манн [327], 1 993 ; Чанг и др. [39], 2005). 

Задачи о бандитах были предложены Томпсоном ([2207] , 1 933), но приобрели 
известность лишь после Второй мировой войны благодаря работе Герберта Роб­
бинса ([ 1 893] ,  1952). Брадт и соавт. ([285], 1 956) подтвердили первые результаты, 
касающиеся правил останова для задачи однорукого бандита, что в конечном итоге 
привело к наиболее значимым результатам, полученным Джоном Гиттинсом (Гит­
тинс и Джоне [866], 1974; Гитrинс [865], 1 989). Катехакис и Вейнотт ([11 96], 1 987) 
предложили перезапуск МОР как метод вычисления индексов Гиттинса. Учебник 
Берри и Фристедта ( [  1 95] ,  1 985) охватывает множество вариантов основной за­
дачи, в то время как в простом и понятном интерактивном учебнике Фергюсона 
([730], 2001) задачи о бандитах связываются с задачами останова. 

Лей и Роббинс ( [ 1 3 38], 1 985) инициировали исследование асимптотического 
сожаления оптимальной стратегии в задачах о бандитах. Эвристика UCB была 
введена и проанализирована Ауэром и соавт. ([90], 2002). Суперпроцессы задачи 
о бандитах (bandit superprocesses - BSP) бьmи впервые изучены Нэшем ([ 1 659], 
1 973), но эти результаты оставались малоизвестными в области ИИ. Хедфилд-Ме­
нелл и Рассел ([944], 20 1 5) описали эффективный алгоритм ветвей и границ, спо­
собный решать относительно большие задачи BSP. Задачи отбора были введены 
Беххофером ([ 1 52], 1 954). Хей и соавт. ( [988], 20 1 2) разработали более формаль­
ную основу для задач метарассуждений, показав, что для отбора простые экзем­
пляры подходят лучше, чем задачи о бандитах. Они также доказали удовлетво­
рительный результат, что ожидаемая вычислительная стоимость оптимальной 
вычислительной стратегии никогда не бывает выше ожидаемого выигрыша в ка­
честве решения, хотя существуют случаи, когда оптимальная стратегия может, с 
некоторой вероятностью, продолжать вычисления и после того, как точка любого 
возможного выигрыша уже была пройдена. 

Обнаружение того факта, что любая частично наблюдаемая МОР может быть 
преобразована в обычную МОР в пространстве доверительных состояний, при­
надлежит Астрому ([87], 1965) и Аоки ([59], 1 965). Первый полный алгоритм для 
точного решения РОМОР - по сути, алгоритм итерации по значениям, представ­
ленный в этой главе - был предложен Эдвардом Сондиком ([2 1 09] , 1 971 ) в те­
зисах его докторской диссертации. (Более поздняя журнальная статья Смоллву­
да и Сондика ([2083 ] ,  1 973) содержит некоторые ошибки, но более доступна.) 
Лавджой ([ 1 446] , 199 1 )  дает обзор первых двадцати пяти лет исследований в об­
ласти РОМОР, делая несколько пессимистические выводы о целесообразности ре­
шения больших задач. 

Первым значительным вкладом в рамках ИИ бьm алгоритм Witness (Кассандра 
и др. [3 78] , 1994; Каэлблинr и др. [ 1165 ] ,  1 998) - усовершенствованная версия 
алгоритма итерации по значениям для задач РОМОР. Вскоре были разработаны 
другие алгоритмы, в том числе основанные на подходе, предложенном Хансеном 
( [959], 1 998), который предусматривает инкрементное построение стратегии с 
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помощью конечного автомата, состояния которого определяют возможные дове­
рительные состояния агента. 

В последнее время работа в области ИИ была сосредоточена на точечных ме­
тодах итерации по значениям, когда на каждой итерации генерируются условные 
планы и а-векторы для конечного множества доверительных состояний, а не для 
всего пространства доверительных состояний. Лавджой ([ 1 446], 1 99 1 )  предложил 
такой алгоритм для фиксированной сетки точек, - подход, также принятый Боне­
том ([246], 2002). Во влиятельной статье Пино и соавт. [ 1 790] (2003) предлагает­
ся генерация достижимых точек с помощью моделирования траектории некоторым 
жадным образом. По наблюдениям Спана и Влассиса ([2 1 1 2] ,  2005), следует гене­
рировmъ планы только для небольшого, случайно выбранного подмножества точек, 
что позволит улучшить планы от предыдущей итерации для всех точек в множестве. 
Шани и соавr. ([203 7], 20 1 3 )  предоставили обзор этих и других усовершенствований 
в точечных алгоритмах, которые уже привели к успешному решению задач с тыся­
чами состояний. Поскольку задачи POMDP относятся к классу PSPACE-hard (Папа­
димитриу и Цициклис [ 1 727], 1 987), дальнейший прогресс в авrономных методах их 
решения может потребовать использования преимуществ различных видов струюу­
ры функций значения, вытекающих из развернутого представления модели. 

Неавтономный подход для задач POMDP - использование упреждающего по­
иска для выбора действия в текущем доверительном состоянии - впервые ис­
следовался Сатией и Лейвом ( [ 1 980], 1 973).  Использование выборки в случайных 
узлах аналитически исследовалось Кернсом и соавт. ([ 1 206], 2000) и Нгом и Джор­
даном ( [ 1 675],  2000). Алгоритм РОМСР был предложен Сильвером и Венессом 
([2062], 20 1 1 ). 

С разработкой достаточно эффективных ал горитмов аппроксимации для за­
дач POMDP их использование в качестве моделей для задач реального мира по­
стоянно возрастало, особенно в образовании (Рафферти и др. [ 1 844], 20 1 6), ди­
алоговых системах (Янг и др. [24 1 1 ], 20 1 3  ), робототехнике (Хсяо и др. [ 1 079] , 
2007; Хьюн и Рой [ 1 1 08],  2009) и при разработке самоуправляемых автомобилей 
(Форбес и др. [750] ,  1 995 ; Баи и др. [ 1 1 2] ,  20 1 5) .  Важным крупномасштабным 
применением является система Airborne Coll ision Avoidance System Х (ACAS Х), 
которая удерживает самолеты и беспилотные летательные аппараты от столкно­
вений в воздухе. В этой системе POMDP на нейронных сетях используются для 
выполнения функции аппроксимации. Система ACAS Х значительно повышает 
безопасность полетов в сравнении с устаревшей системой TCAS, которая была 
построена в 1 970-е годы с использованием технологии экспертных систем (Ко­
хендерфер [ 1 250],  20 1 5 ; Джулиан и др. [ 1 1 59], 20 1 8) .  

Принятие комплексных решений также изучалось экономистами и психоло­
гами .  Они выяснили, что лица, принимающие решения, не всегда рациональны 
и могут не придерживаться в точности того поведения, которое следует из мо­
делей, обсуждавшихся в этой главе . Например, когда человеку предоставляется 
выбор, большинство предпочитает 1 00 долл.  сегодня вместо гарантированных 



362 Часть IV. Неопределенные знания и рассуждения в условиях неопределенности 

200 долл. в течение двух лет, но те же самые люди предпочитают 200 долл. в те­
чение восьми лет вместо 1 00 долл . в течение шести лет. Один из вариантов ин­
терпретации этого результата заключается в том, что люди не используют ад­
дитивные экспоненциально обесцениваемые вознаграждения; возможно, они 
используют ► гиперболические вознаграждения (для небольших значений ги­
перболическая функция уменьшается быстрее, чем экспоненциально убывающая 
функция). Эга и другие возможные интерпретации обсуждаются Рубинштейном 
( [ 1 929], 2003). 

В учебниках Берцекаса ( [200], 1 987) и Путермана ([  1 827], 1 994) дается подроб­
ное введение в методы решения задач последовагельного принятия решений и ди­
намическое программирование. Учебник Берцекаса и Цицикаса ( [20 1 ] , 1 996) до­
полнительно включает тему обучения с подкреплением . Сагтон и Барто ([2 1 59], 
20 1 8) освещают тот же круг вопросов, но в более доступном стиле. Сигу и Бюф­
фе ( [2058], 20 1 0), Маусам и Колобов ([ 1 5 1 7] ,  20 1 2), а также Кочендерфер ( [ 1 250], 
20 1 5) рассматривают задачу последовательного принятия решений с точки зрения 
ИИ. Кришнамурти ([ 1 3 1 1  ], 20 1 6) предоставляет полное освещение области реше­
ния задач POMDP. 

Упражнения 
17. 1 .  Для клеточного мира 4 х 3, представленного на рис. 1 7 . 1 ,  рассчитайте, какие 

квадраты могут быть достигнуты из квадрата ( 1 ,  1 )  с помощью последовательно­
сти действий [Ир, Ир, Right, Right, Right] и с какими вероятностями. Обьясните, 
как эти вычисления связаны с задачей прогнозирования (см. раздел 1 4 .3) для 
скрытой марковской модели. 

17 .2. Для клеточного мира 4 х 3 ,  представленного на рис. 17 . 1 ,  рассчитайте, какие 
квадраты могут быть достигнуты из квадрата ( 1 ,  1 )  с помощью последовательно­
сти действий [Right, Right, Right, Ир, Ир] и с какими вероятностями. Обьясните, 
как эти вычисления связаны с задачей прогнозирования (см. раздел 1 4 .3) для 
скрытой марковской модели. 

17.3. Выберите конкретный член множества стратегий, являющихся оптимальными 
для R(s) > О, как показано на рис. 1 7 .2, б, и вычислите долю времени, которое 
агент в пределе проводит в каждом состоянии, если стратегия выполняется бес­
конечно. (Подсказка. Создайте матрицу вероятностей перехода между состояни­
ями, соответствующую выбранной стратегии, затем см. упражнение 1 4 .2.) 

17.4. Предположим, что в качестве полезности последовательности состояний опре­
делено максимальное вознаграждение, полученное в любом из состояний этой 
последовательности. Покажите, что данная функция полезности не приводит к 
формированию стационарных предпочтений между последовательностями со­
стояний. Остается ли возможность определить такую функцию полезности на 
состояниях, что принятие решений на основе полезности MEU позволит сфор­
мировать оптимальное поведение? 
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17.5. Может ли любая задача конечного поиска быть точно преобразована в такую 
марковскую задачу принятия решений,  что ее оптимальное решение будет так­
же оптимальным решением исходной задачи поиска? Если да, то объясните, как 
преобразовать эту задачу и как выполнить обратное преобразование решения, 
а если нет, объясните, почему это невозможно (в частности, приведите контр­
пример). 

17.6. Иногда задачи MDP формулируются на основе функции вознаграждения R(s, а), 
которая зависит от выполненного действия, либо на основе функции вознаграж­
дения R(s, а, s'), которая зависит и от результирующего состояния. 
а) Запишите уравнения Беллмана для этих двух формулировок. 
6) Покажите, как можно преобразовагь задачу MDP с функцией вознагражде­

ния R(s, а, s') в другую задачу MDP с функцией вознаграждения R(s, а) - та­
кую, что оптимальные стратегии в новой задаче MDP будут точно соответ­
ствовать оптимальным страгегиям в первоначальной задаче МОР. 

в) Выполните аналогичные действия для преобразования задачи MDP с функ­
цией вознаграждения R(s, а) в задачу МОР с функцией вознаграждения R(s). 

17. 7. Для среды, показанной на рис. 1 7. 1 ,  найдите все пороговые значения для R(s ), 
такие что оптимальная стратегия изменяется при пересечении этого порога. 
Вам понадобится способ расчета оптимальной страгегии и ее значения для фик­
сированных R(s). (Подсказка. Докажите, что значение любой фиксированной 
страгегии изменяется линейно в зависимости от R(s).) 

17.8. Уравнение ( 1 7. 1 1 )  в разделе 1 7 .2. 1 показывает, что оператор Беллмана является 
функцией сжатия. 
а) Покажите, что для любых функций/ и g 

1 maxaf(a) - maxa g (a) 1 � maxa lf(a) - g (a) 1 -
6) Запишите выражение для 

1 (BU; - BU/)(s) 1 ,  

а затем примените результат и з  п .  а, чтобы завершить доказательство того, 
что оператор Беллмана является функцией сжатия. 

17.9. В этом упражнении рассматриваются задачи MDP с двумя игроками, которые 
соответствуют играм с нулевой суммой и поочередными ходами, подобными 
описанным в главе 5 .  Примем, что игроки обозначены как А и В, и пусть R(s) ­
вознаграждение игрока А в состоянии s. (Вознаграждение игрока В всегда равно 
ему и противоположно.) 
а) Пусть Ил(s) - полезность состояния s, когда очередь хода в состоянии s при­

надлежит игроку А, а Uв(s) - полезность состояния s, когда очередь хода в 
состоянии s принадлежит и гроку В. Все вознаграждения и полезности вы­
числяются с точки зрения игрока А (как в минимаксном дереве игры). Запи­
шите уравнения Беллмана, определяющие Ил(s) и Uв(s). 

6) Объясните, как с помощью этих уравнений реализовmъ алгоритм итерации по 
значениям для двух игроков, и определите подходящий критерий останова. 
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в) Рассмотрите игру, приведенную на рис. 5 . 1 8. Нарисуйте пространство со­
стояний (а не дерево игры), показывая ходы игрока А сплошными линиями, 
а ходы и грока В - пунктирными линиями. Обозначьте каждое состояние 
значением R(s). Вы обнаружите, что удобнее всего расположить состояния 
(sA, sв) в виде двухмерной решетки, используя в качестве "координат" значе­
ния SA И Sв. 

г) Теперь примените алгоритм итерации по значениям для двух игроков, чтобы 
найти решение этой игры, и определите оптимальную стратегию. 

17.10. Рассмотрите клеточный мир 3 х 3, приведенный на рис. 1 7  . 1 9, а. Модель перехода 
такая же, как в случае клеточного мира 4 х 3, представленного на рис. 1 7  . 1 :  в 80% 
случаев агент перемещается в выбранном направлении, а в остальных случаях со­
вершает переход под прямым углом к нему. Примените к этому миру алгоритм 
итерации по значениям для каждого значения r из числа приведенных ниже. Ис­
пользуйте обесценивание вознаграждения с коэффициентом обесценивания 0,99. 
Приведите стратегию, полученную для каждого случая. Обьясните своими слова­
ми, почему данное значение r приводит к соответствующей стратегии. 
а) r = - 100 
б) r = -3 
в) r = O  
r) r = +3 

r - 1  в +5 0  - 1  

- 1  - 1  - 1  Start 

-1  -1  -1  -5 0 + 1  

а) 

- 1  - 1  

+ l  + 1  

' ' '  

. .  ' 

' ' '  

б) 

- 1 - 1 - 1 Е] 

+ l  + l  + 1  в 

Рис. 1 7. 19. а) Клеточный мир З х  3 для упражнения 1 7. 1 0 .  Указано вознаграждение 
за каждое состояние. Верхний правый квадрат является конечным состоянием. 
б) Клеточный мир 1 0 1  х 3 для упражнения 1 7. 1 1  (в середине пропущено 93 одинако­
вых столбца). Начальное состояние Start имеет вознаграждение О 

17.11.  Рассмотрите клеточный мир 1 О 1 х 3, приведенный на рис. 1 7  . 1 9, 6. В начальном 
состоянии Start у агента есть выбор из двух детерминированных действий, 
Ир (вверх) или Down (вниз), но в других состояниях у агента есть лишь одно де­
терминированное действие - Right (вправо). При использовании обесценивае­
мой функции вознагражден ия для каких значений коэффициента обесценива­
ния "1 агент должен выбрать действие Ир, а для каких - действие Down? Вы­
числите полезность каждого действия как функцию от "1· (Обратите внимание, 
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что этот простой пример на самом деле отражает множество реальных ситуа­
ций, в которых нужно взвесить значение немедленного действия в сравнении с 
возможными постоянными долгосрочными последствиями, такими как выбор 
сброса загрязняющих веществ в озеро.) 

17.12. Рассмотрите задачу МОР без обесценивания, имеющую три состояния, ( 1 ,  2, 3), 
с вознаграждениями - 1 ,  -2 и О соответственно. Состояние 3 является терми­
нальным. В состояниях l и 2 имеются два возможных действия, а и Ь. Модель 
перехода описана ниже. 
- В состоянии l действие а переводит агента в состояние 2 с вероятностью 0,8 

и оставляет агента в том же состоянии с вероятностью 0,2. 
- В состоянии 2 действие а переводит агента в состояние 1 с вероятностью 0,8 

и оставляет агента в том же состоянии с вероятностью 0,2. 
- Как в состоянии l ,  так и в состоянии 2 действие Ь переводит агента в состо­

яние 3 с вероятностью О, l и оставляет агента в прежнем состоянии с веро­
ятностью 0,9. 

Дайте ответы на следующие вопросы. 
а) Какие характеристики оптимальной стратегии в состояниях l и 2 могут быть 

определены качественно? 
б) Примените алгоритм итерации по стратегиям для определения оптималь­

ной стратегии и значения состояний l и 2, полностью демонстрируя каждый 
этап. Примите предположение, что исходная стратегия включает выполнение 
действия Ь в обоих состояниях. 

в) Как повлияет на работу алгоритма итерации по стратегиям включение в ис­
ходную стратегию действия а в обоих состояниях? Поможет ли применение 
обесценивания? Зависит ли оптимальная стратегия от коэффициента обесце­
нивания? 

17.13. Рассмотрим клеточный мир 4 х 3, приведенный на рис. 1 7  . 1 .  
а) Реализуйте имитатор для этой среды, такой, чтобы можно было легко изме­

нять ее географию. Некоторый код для решения указанной задачи уже нахо­
дится в интерактивном репозитории кода. 

б) Создайте агента с использованием алгоритма итерации по стратегиям и из­
мерьте его производительность в имитаторе среды, начиная с различных на­
чальных состояний. Выполните несколько экспериментов из каждого началь­
ного состояния и сравните среднее суммарное вознаграждение, полученное 
за каждый прогон, с полезностью состояния, как она определяется применя­
емым алгоритмом. 

в) Проведите эксперименты в среде с увеличенными размерами. Как изменяет­
ся время прогона алгоритма итерации по стратегиям в зависимости от разме­
ров среды? 

17.14. Как можно использовать алгоритм определения значения для расчета ожидае­
мых потерь, которые понесет агент, используя заданное множество оценок по­
лезности И и модель оценки Р, по сравнению с агентом, использующим пра­
вильные значения? 
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17.15. Пусть начальное доверительное состояние Ь0 для задачи POMDP клеточного 
мира 4 х 3, как она была определена в разделе 1 7.4. 1 ,  представляет собой равно­
мерное распределение по нетерминальным состояниям, т.е. 

( 1 1 1 1 1 1 1 1 1 о О) 
9 ' 9 ' 9 ' 9 ' 9 ' 9 ' 9 ' 9 ' 9 ' ' · 

Вычислите точное доверительное состояние Ь 1 после того, как агент выполнит 
действие Left и его даrчик засвидетельствует наличие одной стены по соседству. 
Загем рассчитайте доверительное состояние Ь2, предполагая, что вновь произо­
шло то же самое. 

17.16. Какова временная сложность выполнения d этапов алгоритма итерации по зна­
чениям для задачи POMDP в бессенсорной среде? 

17.17. Рассмотрите такую версию приведенной в разделе 1 7.5 . 1  задачи POMDP c дву­
мя состояниями, А и В, в которой датчик на 90% надежен в состоянии А, но 
не предоставляет информации в состоянии В (т.е. сообщает о нахождении в А 
или В с равной вероятностью). Проанализируйте, качественно или количествен­
но, функцию полезности и оптимальную стратегию для этой задачи. 



ГЛАВА 18 
Принятие решений при 

наличии  нескольких агентов 
В этой главе рассматривается, что делать, если в проблемной среде присут­
ствует более одного агента. 

1 8. 1 . Свойства мультиагентной среды 
До настоящего момента в основном предполагалось, что все процессы воспри­

ятия, планирования и действия осуществляет только один агент. Но в действитель­
ности это является чрезвычайно упрощающим предположением, не позволяющим 
охватить в теории ИИ многие установки реального мира. Поэтому в этой главе 
рассматриваются проблемы, возникающие в тех случаях, когда агент должен при­
нимать решения в средах, содержащих несколько действующих лиц. Такие среды 
называются ► мультиагеитиыми системами, а действующие в них агенты стал­
киваются с ► задачей мультиагентноrо планирования. Тем не менее, как будет 
показано ниже, точный характер задачи мультиагентноrо планирования - а зна­
чит, и методы, которые подходят для ее решения, - будет зависеть, прежде всего, 
от отношений между агентами в проблемной среде. 

1 8. 1 . 1 . Решения принимаются одним агентом 

Особенность первого варианта мультиагентной среды состоит в том, что, хотя 
она и содержит несколько действующих лиц, есть только одно лицо, принимающее 
решения.. В этом случае агент, принимающий решения, разрабатывает планы для 
всех других агентов и сообщает им, что делать. Предположение, что агенты будут 
просто делать то, что им говорят, называется ► предположением о доброжела­
тельности агента. Однако даже в этом простом случае планы с участием несколь­
ких исполнителей потребуют от них синхронизации своих действий. Исполните­
ли А и Б должны будут действовать одновременно для выполнения совместных 
действий (таких, как пение дуэтом), в разное время - для выполнения взаимно 
исключающих действий (таких, как зарядка аккумулятора, когда есть только одна 
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розетка) и последовательно - когда один обеспечивает предварительные условия 
для действий другого (например, А моет посуду, после чего В вытирает ее насухо). 

В одном особом случае имеется единственный принимающий решения агент с 
несколькими исполнительными механизмами (или эффекторами), которые могут 
работать одновременно, например человек, который может ходить и разговарив1rГь 
в одно и то же время. Такой агент должен осуществлять ► многоэффекторное 
планирование для успешного управления каждым эффектором, одновременно об­
рабатывая позитивные и негативные взаимодействия между исполнительными ме­
ханизмами. Когда исполнительные механизмы физически разделены на отдельные 
единицы - как в случае парка роботов доставки материалов и комплеюующих 
на заводе, - многоэффекторное планирование становится ► планированием для 
многих исполнителей (multibody p/anning). 

Планирование для многих исполнителей - это все еще "стандартная" зада­
ча одного агента до тех пор, пока необходимая информация от датчиков, по­
ступающая от каждого исполнителя, может быть объединена - либо центра­
лизовано, либо в каждом исполнителе, - чтобы сформировать общую оценку 
состояния мира, позволяющую контролировать ход выполнения общего плана. 
В этом случае можно полагать, что все множество исполнителей действует как 
единый агент. Когда ограничения в отношении обмена информацией делают та­
кой подход невозможным, СИ'I)'ация превращается в то, что иногда называют за­
дачей ► децентрализованного планирования. Возможно, такое определение 
неточно, потому что фаза планирования как раз централизована, а вот фаза вы­
полнения, по крайней мере частично, осуществляется исполнителями независи­
мо. В таких случаях подпланы, созданные для каждого исполнителя, возможно, 
должны будут включать четкие указания о необходимых действиях по комму­
никации с другими исполнителями. Например, несколько роботов-разведчиков, 
разбросанных по обширной территории, часто могут не иметь радиосвязи друг 
с другом и должны будут делиться своими результатами в то время, когда связь 
будет возможна. 

1 8. 1 .2. Решения принимаются многими агентами 

Второй возможный вариант проблемной среды - когда прочие действующие 
в ней исполнители также являются лицами, принимающими решения: у каждого 
из них есть свои предпочтения, и они выбирают и выполняют собственный план. 
Будем называть таких участников ► партнерами (counterparts). В этом случае до­
полнительно можно выделить два возможных варианта. 

• В первом случае, хотя имеется множество лиц, принимающих решения, все 
они преследуют ► общую цель. Это примерно соответствует СИ'I)'ации ком­
пании с несколькими работниками, в которой различные принимающие ре­
шения лица преследуют, можно надеяться, одну и 1)' же цель от имени ком­
пании. Основная проблема, с которой сталкиваются принимающие решения 
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исполнители в подобной сиrуации, - это ► задача координации: они долж­
ны быть уверены, что все участники всегда действуют в одном направлении и 
не нарушаг, даже случайным образом, выполнение планов друг друга. 

• Второй вариант - когда каждый принимающий решения исполнитель име­
ет собственные личные предпочтения, которым каждый из них и будет сле­
довать в меру своих способностей. Возможно, эти предпочтения окажутся 
диаметрально противоположными, как в играх с нулевой суммой, таких как 
шахматы (см. главу 5). Однако в большинстве случаев сиrуация в мультиа­
гентных средах будет гораздо сложнее из-за более запутанных отношений 
между предпочтениями агентов. 

Когда имеется несколько принимающих решения исполнителей, каждый из ко­
торых действует, исходя их собственных предпочтений, агент должен учитывагь 
предпочтения других агентов, а также тот факт, что эти другие агенты также при­
нимают во внимание предпочтения других агентов, и так далее. И это приводит 
нас в область ► теории иrр - теорию принятия страгегических решений. Имен­
но этот стратегический аспект рассуждений - каждый игрок принимает во вни­
мание, как могут действовать другие игроки - отличает теорию игр от теории 
принятия решений. Подобно тому, как теория принятия решений дает теоретиче­
скую основу для выработки решений в задачах ИИ с единственным агентом, те­
ория игр предоставляет теоретическую основу для принятия решений в мульти­
агентных системах. 

Использование слова "игра" в данном случае нельзя считагь идеальным: напра­
шивается вполне естественный вывод, что теория игр по большей части касается 
сугубо развлекательных занятий или искусственных сценариев . Однако нет ничего 
более далекого от правды. Теория игр - это теория ► принятия стратегических 
решений. Она используется при необходимости принятия решений в различных 
СИ'I)'ациях, включая аукционы на получение прав на бурение нефтяных скважин и 
прав на использование участка спектра радиочастот, процедуры объявления бан­
кротства, принятие решений о выпуске промышленной продукции и назначении 
цен на нее, а также национальную оборону, - сиrуации, связанные с денежными 
потоками в миллиарды долларов и многими человеческими жизнями.  В области 
ИИ теорию игр можно использовать двумя основными способами. 

1 .  ► Проектирование агента. Теория игр может использоваться агентом для 
анализа возможных решений и вычисления ожидаемой полезности для каж­
дого из них (в предположении, что другие агенты также действуют опти­
мальным образом согласно теории игр). Следовательно, теория игр позволя­
ет найти наилучшую стратегию против рационально действующего игрока 
и определить ожидаемый выигрыш для каждого игрока. 

2. ► Проектирование механизма. Если в среде присутствует много аген­
тов, то может существовагь возможность так определить правила действий 
в этой среде (т.е. правила игры, в которую должны играть агенты), чтобы 
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общее благосостояние всех агентов максимизировалось, если каждый агент 
принимает обоснованное теорией игр решение, максимизирующее его соб­
ственную полезность. Например, теория игр позволяет разрабатывать та­
кие протоколы для некоторого набора маршрутизаторов Интернета, чтобы 
каждый маршрутизатор стремился действовать в направлении максимиза­
ции глобальной пропускной способности. Проектирование механизма мо­
жет также использоваться для создания интеллектуальных мультиагентных 
систем, решающих сложные задачи распределенным образом. 

Теория игр предлагает ряд различных моделей, в каждой из которых использу­
ется собственный набор базовых допущений, - и здесь важно выбрать правиль­
ную модель для каждого случая. Самое важное различие заключается в том, сле­
дует ли считать данный случай кооперативной игрой. 

• В ► кооперативной игре между агентами возможно заключение обязываю­
щего соглашения (hinding agreement), которое будет обеспечивать их надеж­
ное сотрудничество. В мире людей устанавливать такие обязывающие со­
глашения помогают юридические контракты и социальные нормы. В мире 
компьютерных программ может оказаться возможным выполнение провер­
ки исходного кода, чтобы убедиться, что он будет следовать соглашению. 
Для анализа этой ситуации можно использовать теорию кооперативных игр. 

• Если заключение между игроками обязывающих соглашений невозможно, 
мы имеем дело с ► некооперативной игрой. Хотя сам этот термин пред­
полагает, что данная игра по природе конкурентна и любое сотрудничество 
в ней не представляется возможным, это не тот случай: здесь "некоопера­
тивная" просто означает, что в игре нет центрального соглашения, которое 
связывает всех агентов и гарантирует их сотрудничество. Но вполне может 
оказаться, что в процессе игры агенты самостоятельно решат установить со­
трудничество, потому что это будет в их собственных интересах . В подоб­
ных сИ1уациях используется теория некооперативных игр. 

Некоторые проблемные среды могут объединять в себе несколько разных изме­
рений. Например, компания доставки пакетов может применять независимое цен­
трализованное планирование для ежедневных маршрутов ее машин и самолетов, 
но оставить некоторые аспекты плана открытыми для автономных решений води­
телей и пилотов, которые в результате получают возможность самостоятельно ре­
агировать на особенности дорожного движения и погодных условий. Кроме того, 
цели компании и ее сотрудников приведены в соответствие (до некоторой степени) 
благодаря выплате ►стимулов (прибавок к зарплате и бонусов) - верный при­
знак того, что это истинная мультиагентная система. 
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18.1.3. Мультиагентное планирование 

В этом разделе мы не будем проводить различия между мноrоэффекторным 
окружением со многими исполнителями и мультиаrентным окружением, понимая 
любое из них под общим термином ► многосубъектное (multiactor) окружение и 
используя общий термин ► субъект или актор (actor) для эффекторов, исполни­
тельных механизмов и агентов .  Целью данного раздела является разработка спо­
собов определения моделей перехода, корректных планов и эффективных алго­
ритмов планирования для мноrосубъектноrо окружения . Корректным является тот 
план, который после _выполнения субъектами позволяет достичь цели. (Безуслов­
но, в истинном мультиаrентном окружении агенты могут не согласиться выпол­
нять некоторый конкретный план, но по крайней мере они будут знагь, какие пла­
ны будут работать, если они согласятся их выполнить.) 

Основная трудность в попытках построить удовлетворительную модель муль­
тиаrентных действий заключается в том, что необходимо как-то справиться с ще­
котливым вопросом ► взаимной совместимости (concurrency), который здесь 
просто означает, что планы каждого из агентов могут быть выполнены одновре­
менно. Чтобы рассуждагь о выполнении мноrосубъектных планов, сначала нужно 
найти такую модель мноrосубъектных планов, которая будет включагь удовлетво­
рительную модель параллельных действий. 

Кроме того, мноrосубъектное действие связано с целым рядом вопросов, ко­
торые не принимаются во внимание при планировании действий единственного 
агента. В частности, ♦ агенты должны учитывать, каким образом их собственные 
действия могут влиять на действия других агентов. Например, aremy будет необхо­
димо учитывагь, будут ли действия, выполняемые другими агентами, как-то ис­
кажагь предусловия его собственных действий, являются ли ресурсы, которые он 
намерен использовагь в процессе выполнения своей стратегии, разделяемыми и 
могут ли они быть полностью растрачены другими агентами; являются ли дей­
ствия взаимоисключающими; а склонный к оказанию помощи агент мог бы также 
учесть, как его действия могут облегчить действия другим. 

Чтобы ответить на эти вопросы, необходима модель параллельного действия, 
в рамках которой можно было бы эти действия правильно формулировать. Моде­
ли параллельных действий были основным направлением исследований в сообще­
стве компьютерных наук в течение десятилетий, но ни одна окончательная, обще­
принятая модель пока не достигла абсолютного преобладания. Тем не менее три 
следующих подхода получили достаточно широкое распространение. 

Первый подход предполагает ► чередующееся выполнение (interleaved 
execution) действий в соответствующих планах. Например, предположим, что есть 
два агента, А и В, со следующими планами.  

А : [а 1 , а2] 
В : [Ь 1 , Ь2] 
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Ключевая идея модели чередующегося выполнения состоит в том, что единствен­

ное. в чем мы можем быть уверены в отношении выполнения планов этих двух 

агентов, - порядок действий в соответствующих планах будет сохранен. Далее, 
если теперь предположить, что действия являюrся атомарными, то имеется шесть 

различных способов, которыми два приведенных выше плана могут быть выпол­

нены одновременно. 

[а 1 ,  а2, Ь 1 ,  Ь2] 
[Ь 1 , Ь2, а 1 ,  а2] 
[а 1 ,  Ь 1 ,  а2, Ь2] 
[Ь 1 ,  а 1 , Ь2, а2] 
[а 1 ,  Ь 1 , Ь2, а2] 
[Ь 1 ,  а1 ,  а2, Ь2] 

Для того чтобы план в модели чередующегося выполнения был корректным, 

• он должен быть корректным по отношению ко всем возможным вариантам чередо­

вания планов. Модель чередующегося выполнения широко применяется в сообще­

стве специалистов по параллельным вычислениям, поскольку это разумная модель 

того, как несколько потоков вычислений по очереди могут работать на одном про­

цессоре. Однако она не являюrся подходящей моделью для тех случаев, когда два 

действия выполняюrся в одно и то же время. Кроме того, количество последова­

тельностей чередования будет экспоненциально возрастать с увеличением числа 

агентов и действий: как следствие проверка плана на корректность, вычислитель­
но простая в среде с одним агентом, в модели чередующегося выполнения стано­

вится вычислительно сложной. 
Вторым подходом является ► истинный параллелизм, в котором не предприни­

мается попыток создать полностью упорядоченную последовательность действий. 

Действия остаюrся лишь частично упорядоченными: известно, что действие а 1 бу­

дет выполнено до действия а2, но ничего нельзя сказать в отношении упорядочения, 

скажем, действий а 1 и Ь 1 : любое из них может произойти раньше другого или они 

произойдут одновременно. Мы всегда можем "выпрямить" частично упорядочен­

ную модель параллельных планов в модель чередующегося выполнения, но в ре­

зультаrе будет утрачена информация о частичной упорядоченности. Хотя модели с 

частичным упорядочением являются, возможно, более удовлетворительными, чем 

модели чередующегося выполнения, соr:ласно теоретической оценке по параллель­

ности действия, на практике они не получили широко признания. 
Третий подход заключается в предположении идеальной ► синхронизации: име­

ются некие глобальные часы, к которым каждый агент имеет досrуп, каждое дей­

ствие выпмняется за один и ror же промежуток времени и действия в каждой точке 
совместного плана являются одновременными. Таким образом, действия всех аген­

тов выполняются синхронно, в ногу друг с другом (также может быть, что неко­

торые агенты выполняюr действие "нет операции", т.е. просто ждут, пока другие 
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агенты завершаг выполнение своих дейсrвий). Синхронное выполнение является не 
совсем полной моделью параллелизма реального мира, но имеет простую семанти­
ку, и по этой причине именно с этой моделью мы будем работагь дальше. 

Начнем с модели перехода. Для детерминированного случая с одним агентом 
это функция RESULT(s, а), возвращающая состояние, которое возникнет в резуль­
таге выполнения действия а, когда среда находится в состоянии s. В окружении с 
одним агентом может существовать Ь различных вариантов действия, и при этом 
значение Ь может быть довольно большим, особенно для представлений первого 
порядка со многими объектами, на которые можно воздействовагь, но схемы дей­
ствий, тем не менее, обеспечивают достаrочно краткое представление. 

В многосубъектном окружении с п субъектами-исполнителями единственное 
действие заменяется ► совместным действием (а 1 , • • • , ап) ,  где а; является действи­
ем, предпринятым i-м субъектом. И сразу же можно <Уrметить две проблемы: во-пер­
вых, необходимо описагь модель перехода для ьn различных совместных дейсrвий; 
во-вторых, это задача совместного планирования с коэффициентом ветвления ьп. 

Поскольку субъекты-исполнители все вместе помещены в многосубъектную 
систему с огромным коэффициентом ветвления, основным направлением иссле­
дований в многосубъектном планировании было ра:л,единение субъектов, насколь­
ко это возможно, - так, чтобы (в идеале) сложность задачи возрастала линейно в 
зависимости <Yr п, а не экспоненциально в зависимости <Yr ьп. 

Если субъекты никак не взаимодействуюr друг с другом, например имеется 
п субъектов, каждый из которых раскладывает пасьянс солитер, то достаrочно про­
сто решить п <Уrдельных задач. Если субъекты-акторы ► слабо св11завы, можем ли 
мы достичь чего-то близкого к подобному экспоненциальному улучшению? Без­
условно, это центральный вопрос во многих областях ИИ. Мы уже встречались с 
успешными методами решения для слабо связанных систем в контексте задач УО, 
где "древовидность" графа ограничений позволяла использоваrь эффективные спо­
собы решения (см. раздел 6.5.2), а также в контексте непересекающихся шаблонов 
баз данных (раздел 3.6.3) и аддитивных эвристик для планирования (раздел 1 1 .4). 

Стандартный подход к слабосвязанным задачам состоит в том, чтобы принять 
допущение, что эти задачи полностью разъединены, а затем со<УrВетсТВующим об­
разом исправить взаимодействия. Для модели перехода это означает написание 
схемы действий так, как если бы субъекты действовали независимо друг <Yr друга. 

Давайте посмотрим, как этот подход сработает для парной игры в теннис. 
В этом случае у нас есть два агента-теннисиста, которые образуюr команду с об­
щей целью - выиграгь магч против команды соперников. Давайте предположим, 
что в какой-то момент игры команда имеет целью отбить мяч, который бьm на­
правлен противником на их половину поля, и убедиться, что по крайней мере один 
из них находится под сеткой и контролирует ее. На рис. 1 8 . 1  представлены на­
чальные условия, цель и схема действий для этой задачи. Легко увидеть, что из 
начальных условий достичь цели можно с помощью ► совместного плава из 



374 Часть IV. Неопределенные знания и рассуждения в условиях неопределенности 

двух этапов, определяющего, что каждый из игроков должен сделать: игрок А дол­
жен переместиться в правый сектор к задней линии и отбить мяч, в то время как 
игрок В должен просто оставаться на месте у сетки. 

PLAN l :  А :  [Go(A, RightBaseline), Нit(A, Bal/)] 
В: [NoOp(B), NoOp(B)] . 

Actors(A ,  В)  
lnit(At (A ,  LeftBaseline) Л At (B, RightNet) Л 

Л Approaching(Ba/1, RightBaseline) Л Partner(A, В) Л Partner(B, А)  
Goal(Returned(Ball) Л (At (x, RightNet) V At(x, LeftNet)) 
Action (Нit(actor, Ball), 

PRECOND: Approaching(Ball, /ос) Л At(actor, /ос) 
EFFECT: Returned(Bal/)) 

Action (Go(actor, to), 
PRECOND: At(actor, /ос) Л to 1' /ос, 
EFFECT: At(actor, to) Л -,,4t(actor, /ос)) 

Рис. 18. 1 .  Задача парной игры в теннис. Два игрока, А и В, играют в одной команде 
и могут находиться в одном из четырех мест: LeftBaseline (слева, у задней линии), 
RightBaseline (справа, у задней линии), LeftNet (слева, под сеткой) и RightNet (спра­
ва, под сеткой). Мяч может быть обит, только если игрок находится в нужном ме­
сте. Действие NoOp является фиктивным, простым заполнителем, не имеющим ни­
какого эффекта. Обратите внимание, что каждое действие должно включать субъект 
в качестве аргумента 

Проблемы возникают в том случае, когда план диктует, что оба агента бьют по 
мячу в одно и то же время. В реальном мире это не сраб<УГает, но для действия Hit 
схема действий говорит, что мяч будет успешно отбит и в этом случае. Сложность 
в данной си,уации состоит в том, что предусловия ограничивают состояния, в ко­
торых данное действие может быть успешно выполнено, но не ограничивают дру­
гие параллельные действия, которые моrут помешать его выполнению. 

Решить э,у проблему можно путем расширения схемы действий одним но­
вым свойством - ► ограничением параллельности действии (concurrent action 
constraint) с указанием, какие действия должны или не должны выполняться одно­
временно. Например, действие Нit в этом случае можно описать следующим об­
разом: 

Action(Hit(actor, Ва/1), 
CONCURRENT: 'V Ь Ь :;zt actor => -,Hit(b, Ва/1) 
PRECOND: Approaching(Ba/1, /ос) Л At(actor, /ос) 
EFFECT: Returned(Ba/1)). 
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Другими словами, действие Нit будет иметь свой объявленный эффект только 
в том случае, если нет другого действия Hit, выполняемого другим агентом в это 
же самое время. (В подходе SATPLAN эта ситуация обрабагывалась бы с помощью 
частной аксиомы запрета действия.) И наоборот, для некоторых действий жела­
емый эффект будет достигнут только в том случае, когда одновременно выполня­
ется другое аналогичное действие. Например, чтобы принести на теннисный корт 
кулер с напитками, необходимы совместные действия двух агентов: 

Action(Carry(actor, cooler, here, there), 
CONCURRENT: 3 Ь Ь :;,t actor л Carry(b, cooler, here, there) 
PRECOND: At(actor, here) Л At(cooler, here) Л Cooler(cooler) 
EFFECT: At(actor, there) Л At(cooler, there) Л ,At(actor, here) Л 

Л ,At(cooler, here)). 
С такими типами схем действий любой из алгоритмов планирования, описан­

ных в главе 1 1 ,  при незначительных модификациях может быть адаптирован так, 
чтобы генерировать мноrосубъектные планы. В той степени, в которой связь меж­
ду подпланами является слабой - это означает, что ограничения параллелизма 
редко всrупают в силу в процессе построения плана, - можно ожидать, что раз­
личные эвристики, полученные для задач планирования с одним агентом, также 
будут эффективными и в мноrосубъектном контексте. 

1 8. 1 .4. Планирование при нескольких агентах: 
кооперация и координация 

Теперь давайте обратимся к истинному мультиаrентному окружению, в кото­
ром каждый агент выполняет собственный план. Для начала предположим, что 
цели и база знаний у всех агентов являются общими. Можно решить, что такое 
предположение сводит сиrуацию к мноrосубъектному случаю - каждый агент 
просто вычисляет общее совместное решение и выполняет свою часть этого ре­
шения. Увы, слово "общее" в определении совместного решения вводит в заблу­
ждение. Проблема в том, что может существовать более одного плана, ведущего к 
достижению одной и той же цели. Например, вот второй план, который также до­
стигает цели в приведенной выше задаче о командной игре в теннис: 

PLAN 2 :  А :  [Go(A , LeftNet), NoOp(A)] 
В: [Go(B, RightBase/ine), Нit(B, Ва/1)] .  

Если два агента смогут договориться о выполнении либо плана 1 ,  либо пла­
на 2, общая цель будет достигнута. Но если агент А выберет план 2, а агент В -
план 1 ,  то никто из них не отобьет мяч. И наоборот, если агент А выберет план 1, 
а агент В - план 2, то они, вероятно, столкнутся друг с другом и ни один из них 
не сможет отбить мяч. Агенты знают это, но как они смогут координировагь свои 
действия, чтобы убедиться, что эти действия соответствуют общему плану? 
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Одним из вариантов является принятие некоторого ► соглашения (convention) 
еще до начала совместной деятельности. Соглашение - это любое ограничение 
на выбор совместных планов. Например, соглашение "придерживаться своей сто­
роны корта" исключает план 1 ,  в результате чего оба партнера выбирают план 2 . 
Перед водителями на всех дорогах стоит задача не сталкиваться друг с другом, -
она (частично) решается принятием соглашения "придерживаться правой стороны 
дороги" в большинстве стран мира. Альтернативный вариант соглашения, "при­
держиваться левой стороны", действует одинаково хорошо до тех пор, пока все 
агенты, действующие в этой среде, его соблюдают. Аналогичные соображения 
применимы к развитию человеческого языка, где важно не то, на каком именно 
языке должен говорить каждый человек, а то, что все сообщество говорит на од­
ном языке. Когда подобные соглашения общеприняты и широко распространены, 
их называют ► социальными законами. 

При отсутствии соглашения агенты могут использовать общение (communica­
tion) для получения общих знаний о выполняемом совместном плане. Например, 
теннисист может крикнуть "Мой ! "  или "Твой! "  для указания на предпочтитель� 
ный совместный план. Общение не обязательно предполагает словесный обмен. 
Например, один игрок может неявно сообщить о предпочтительном совместном 
плане другому, просто выполнив его первую часть. Если агент А направился к сет­
ке, то агент В обязан отойти назад, к задней линии, чтобы отбить мяч, поскольку 
план 2 является единственным совместным планом, который начинается с того, 
что агент А направляется к сетке. Такой подход к координированию действия, ино­
гда называемый ► распознаванием плана (р/ап recognition), будет применим, 
если для безошибочного определения нужного совместного плана достаточно од­
ного действия (или краткой последовательности действий). 

1 8.2. Теория некооперативных игр 

Теперь пришло время познакомиться с ключевыми концепциями и аналитиче­
скими методами теории игр - теории, лежащей в основе принципов принятия ре­
шений в мультиагентных средах . Мы начнем обсуждение с теории некооператив­
ных игр. 

1 8.2. 1 . Игры с единственным ходом: нормальная форма игры 

Первая модель игры, которую мы рассмотрим, будет такой, в которой все игро­
ки действуют одновременно, а результат игры определяется, исходя из общего ре­
зультата действий, выбранных подобным образом. (В действительности совсем 
не важно, чтобы действия игроков выполнялись в одно и то же время, - главное, 
что имеет значение, это чтобы ни один из игроков до или во время выполнения 
действия не имел никаких сведений о выборе других игроков.) Подобные игры 
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называют ► играми в нормальной форме. Игра в нормальной форме определя­
ется с помощью трех компонентов. 

• ► Игроки, или агенты, которые должны принимать решения. Наибольшее 
внимание в исследованиях уделялось играм с двумя игроками, хотя достяrоч­
но часто рассмагриваются таюке игры с п игроками, где п > 2. Имена игроков 
мы будем записывагь с прописной буквы, например Ali и Во или О и Е. 

• Действия, которые могут быть выбраны игроками. В этой главе названия 
действий записываются строчными буквами, например опе или testify. В рас­
поряжении игроков могут находиться одинаковые или неодинаковые множе­
ства действий. 

• Функция вознаграждений, определяющая дrIЯ каждого игрока полезность 
каждой возможной комбинации действий всех игроков. Для игр с двумя игро­
ками функция вознаграждений дrIЯ игрока может быть представлена магри­
цей, в которой имеется строка дrIЯ каждого возможного действия одного игро­
ка, и столбец - дrIЯ каждого возможного выбора другого игрока. Пересечение 
выбранной строки и выбранного столбца определяет ячейку магрицы, в ко­
торой указано вознаграждение соответствующего игрока. В случае с двумя 
игроками принято обьединять две магрицы в одну ► матрицу выплат, в ко­
торой каждая ячейка содержит сведения о выплаrах обоим игрокам. 

Чтобы проиллюстрировать эти идеи, давайте рассмотрим пример игры в 
чет-нечет на двух пальцах (эту игру на пальцах называют также morra, от ита­
льянского слова camorra - группа). В этой игре участвуют два игрока, О (от 
odd- нечетный) и Е ( от even - четный), которые одновременно показывают один 
или два пальца. Обозначим общее количество показанных пальцев как/. Если чис­
ло/ является нечетным, игрок О получает/ долл. от игрока Е, а если число/- чет­
ное, то игрок Е получает/ долл. от игрока 0. 1 Маrрица выплаr дrIЯ игры в чет-не­
чет на двух пальцах выглядит следующим образом. 

О: один О: два 

Е: один Е = +2, 0 = -2 Е = -3, 0 = +3 

Е: два Е = -3, 0 = +3 Е = +4, 0 = -4 

Говорят, что Е - ► игрок строки, а О - ► игрок столбца. Так, например, в 
нижнем правом углу показано, что если игрок О выбирает действие два, а игрок Е 
также выбирает действие два, то вознаграждение дrIЯ Е равно 4, а дrIЯ О равно -4. 

1 Эта игра является развлекательной версией инспекционных игр. В таких играх ин­
спектор выбирает день осмотра объекта (например, ресторана или завода биологическо­
го оружия), а управляющий объекта выбирает день, чтобы скрыть все, что инспектор 
не должен видеть. Инспектор выигрывает, если выбранные дни оказываются разными, 
а управляющий объекта выигрывает, если они совпадают. 
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Прежде чем анализироваrь игру в чет-нечет на двух пальцах, стоит рассмотреть 
вопрос о том, зачем нам вообще нужны идеи теории игр: почему мы не можем ре­
шить задачу, стоящую (скажем) перед игроком Е, воспользовавшись аппаратом те­
ории принятия решений и методом максимизации полезности, которые уже неод­
нокраrно использовались в этой книге? Чтобы понять, почему, нужно еще кое-что: 
давайте предположим, что Е попытается найти лучшее действие для выполнения. 
Альтернаrивные варианты - действия один или два. Если игрок Е выберет действие 
один, то выплаrа будет либо +2, либо -3. Однако какой именно выигрыш Е получит 
на самом деле, будет зависеть от выбора, сделанноrо игроком О: самое большее, что 
может сделаrь Е как игрок строки, - это своим выбором определить расположение 
исхода игры в той или иной строке. Точно так же игрок О выбирает только столбец. 

Чтобы сделать оптимальный выбор между имеющимися возможностями, 
игрок Е должен учесть, как игрок О будет действовать в качестве рационального 
агента, принимающеrо решения. Но игрок О, в свою очередь, должен учитывать 
тот факт, что Е также является рациональным агентом, принимающим решения. 
Таким образом, принятие решений в мультиагентном окружении весьма отлича­
ется по характеру от принятия решений в окружении с одним агентом, поскольку 
игрокам необходимо принимать во внимание рассуждения друг друга. Роль ► кон­
цепций решения в теории игр состоит в том, чтобы попытаться сделаrь этот вид 
рассуждений точным. 

В теории игр термин strategy используется для обозначения тоrо, что ранее в 
этой книге называлось policy, т.е. ► стратегия. ► Чистая стратегия - это детер­
минированная стратегия; для игр, состоящих из одноrо хода, чистая стратегия со­
стоит всего лишь из одного действия. Как будет показано ниже, для многих игр 
агент может получить лучший результаr, используя ► смешанную стратегию, ко­
торая представляет собой рандомизированную стратегию, предусматривающую 
выбор конкретных действий среди доступных в соответствии с некоторым распре­
делением вероятностей. Смешанная стратегия, в которой действие а выбирается с 
вероятностью р, а в противном случае выбирается действие Ь, условно обознача­
ется как [р: а; (1 -р}: Ь]. Например, смешанной страrегией для игры в чет-нечет на 
двух пальцах может быть [0,5: один; 0,5:  два]. ► Профилем стратегии называется 
вариант присваивания страrегии каждому игроку. После тоrо как задан профиль 
страrегии, результат игры для каждоrо игрока принимает определенное числовое 
значение, а если игроки используют смешанные стратегии, то следует использо­
ваrь ожидаемую полезность. 

Итак, как следует агенту решить действовать в таких играх, как чет-нечет на 
двух пальцах? Теория игр предоставляет ряд концепций решения, в которых пред­
принимаются попытки определить рациональное действие с учетом убеждений 
агента об убеждениях другого агента. К сожалению, не существует единой кон­
цепции идеальноrо решения: сложно определить, что может означать "рациональ­
ный", когда каждый агент выбирает только часть профиля стратегии, определяю­
щеrо общий результат. 
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Первая концепция решения будет представлена с помощью, вероятно, самой 
известной игры в канонической теории игр - ► "Дилемма заключеиноrо". Эга 
игра построена на следующей истории: два отпетых грабителя, Али и Бо, были 
пойманы с поличным недалеко от места совершенного ими ограбления, и теперь 
следовагели допрашивают их по отдельности. Каждому из них прокурор предла­
гает сделку: если он даст свидетельство против своего напарника, указав на него 
как на главаря шайки грабителей, то его освободят за сотрудничество, а напарни­
ка осудят на 1 О лет тюрьмы. Однако если они оба дадут показания друг против 
друга, то оба получат по 5 лет тюрьмы. Али и Бо также знают, что если они оба 
просто откажутся давать показания, то получаг только по одному году заключе­
ния каждый за менее грубое правонарушение - владение краденым имуществом. 
В результате Али и Бо сталкиваются с так называемой дилеммой заключенного: 
должны ли они свидетельствовагь (testify) друг против друга или лучше отказагься 
(refuse) давать показания? Будучи рациональными агентами, Али и Бо хотят мак­
симизировагь свою ожидаемую полезность, что означает минимизацию количе­
ства лет, которые они проведут в тюрьме, - при этом каждый из них безразличен 
к благополучию другого игрока. Дилемма заключенного в этих условиях описыва­
ется следующей магрицей выплаг. 

Али: testify Али: refuse 
Бо: testify А = -5, В = -5 А = - 1 0, В = О 
Бо: refuse А = О, В = - 10  А = -1 , В = -1  

Теперь поставим себя на место Али. Он может проанализировагь матрицу вы­
плат следующим образом. 

• Предположим, что Бо даст показания - сыграет testify. Тогда я получу 5 лет, 
если буду свидетельствовагь против него, и 1 О лет - если откажусь, поэто­
му в данном случае лучше свидетельствовагь против него. 

• С другой стороны, если Бо отказывается - играет refuse, я буду освобо­
жден, если дам показания против него, и получу 1 год, если откажусь, так 
что свидетельствовать против него лучше и в этом случае. 

• Поэтому независимо от того, что решит делать Бо, для меня будет лучше 
дагь показания. 

Али обнаружил, что свидетельство (testify) является ► доминирующей стра­
тегией в этой игре. Говорят, что стратегия s для игрока р ► строго доминирует 
над страгегией s1, если результат стратегии s для игрока р лучше, чем результат 
страгегии s1 при любом выборе стратегии другим игроком (игроками). Страте­
гия s ► слабо доминирует над стратегией s', если s лучше, чем s' , по крайней 
мере в одном профиле стратегии, и не хуже - в любом другом. Доминирующей 
стратегией является такая стратегия, которая доминирует над всеми остальными. 
В теории игр обычным является предположение, что ♦ рациональный игрок всегда 
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будет выбирать доминирующую стратегию и избегать доминируемой стратегии. Бу­
дучи рациональным - по крайней мере, не желая, чтобы его считали иррацио­
нальным, - Али выбирает доминирующую страгегию. 

Нетрудно заметить, что рассуждения Бо будут идентичными: он также сделает 
вывод, что свидетельство против Али будет для него доминирующей стратегией, и 
примет решение играть testify. Результагом игры, в соответствии с анализом доми­
нирующих стратегий, будет то, что оба игрока выберут свидетельство и как след­
ствие получат по 5 лет тюрьмы. 

В СИ'I)'ации, подобной этой, когда все игроки выбираюг доминирующую страте­
гию, результаг игры называюг ► равновесием доминирующих стратегий. Термин 
"равновесие" выбран потому, что ни у одного игрока нет никакого стимула укло­
няться от своей части выигрыша: по определению, если они так сделали, значит, они 
не могли добиться большего, но могли получить худший результаг. В этом смысле 
равновесие доминирующих стратегий является очень сильной концепцией решения. 

Возвращаясь к дилемме заключенного, мы видим, что дw�емма, собственно, 
состоит в том, что исход равновесия доминирующих стратегий, когда оба игрока 
дают показания друг против друга, хуже для обоих игроков, чем результаг, кото­
рый бы они получили, если бы оба отказались давать показания. При выборе стра­
тегии (refuse, refuse) каждый из игроков в результате получает всего по одному 
году тюрьмы, что лучше для них обоих, чем 5 лет, которые каждый получает при 
выборе равновесия доминирующих страгегий. 

Существует ли какой-либо способ, с помощью которого Али и Бо могли бы 
формально прийти к результа'I)' (rejuse, rejuse)? Безусловно, для них обоих это до­
пустимый вариант - отказаться от дачи показаний, но очень трудно представить, 
как рациональные агенты могли бы сделать такой выбор, учитывая то, как данная 
игра настроена. Не забывайте, что это некооперативная игра: игрокам запрещено 
разговаривать друг с другом, поэтому они не могут заключить обоюдное соглаше­
ние о выборе варианта отказа от показаний. 

Однако все же можно бьmо бы добрагься до решения (rejuse, rejuse), если из­
менить условия игры. Можно преврагить ее в кооперативную игру, когда агентам 
разрешается заключать обоюдные соглашения. Или же можно преврагить ее в по­
вторяющуюся игру (repeated game ), когда игроки знают, что будут встречаться 
вновь; ниже будет показано, как это работает. Как альтернатива у игроков могут 
быть моральные убеждения, поощряющие сотрудничество и справедливость. Но 
это означало бы, что у них разные функции полезности, а значит, они и в этом слу­
чае будут играть уже в другую игру. 

Наличие у определенного игрока доминирующей стратегии существенно упро­
щает для него процесс принятия решений. Как только Али понял, что дача сви­
детельских показаний является доминирующей стратегией, ему уже требуется 
прикладывать какие-либо усилия, чтобы попытаться выяснить, что будет делать 
Бо, - просто потому, что он знает, что независимо от того, что сделает Бо, дача 
показаний будет его ► лучшим ответом. Тем не менее большинство игр не имеюг 
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ни доминирующих стратегий, ни равновесий доминирующих стратегий. Очень 
редко единственная страгеrия является лучшим ответом на все возможные страте­
гии партнеров. 

Следующая концепция решения, которую мы рассмотрим, слабее, чем равнове­
сие доминирующих стратегий, но она нашла гораздо более широкое применение. 
Она называется ► равновесием Нэша и получила свое название в честь Джона 
Форбса Нэша-младшеrо (1928-2015), который представил доказагельство соответ­
ствующей теоремы в своей докторской диссертации в 1950 году, - работа, за ко­
торую он был удостоен Нобелевской премии в 1994 году. 

Профиль стратегии представляет собой равновесие Нэша, если ни один игрок 
не может в одностороннем порядке изменить свою страгеrию и в результате полу­
чить более высокую выплату при условии, что все другие игроки сохранили свои 
стратегии выборов. Следовательно, при равновесии Нэша каждый из игроков од­
новременно выбирает лучший ответ на выбор всех своих противников. Равнове­
сие Нэша представляет собой стабильную точку в игре: стабильную в том смысле, 
что для любого игрока не существует рационального стимула отклониться от него. 
Однако равновесие Нэша представляет локальную стабильную точку: как будет по­
казано ниже, игра может включагь несколько равновесий Нэша. 

Поскольку доминирующая стратегия является наилучшим ответом на все стра­
тегии противников, очевидно, что любое равновесие доминирующих стратегий 
также должно быть равновесием Нэша (упражнение 18. 1 ). Следовательно, в ди­
лемме заключенного существует уникальное равновесие доминирующих страте­
гий, которое также является уникальным равновесием Нэша. 

Следующий пример игры демонстрирует, во-первых, что иногда игры могут не 
иметь ни одной доминирующей страгеrии, а во-вторых, что некоторые игры име­
ют несколько равновесий Нэша. 

Али: / Али: r 
Бо: t А =  1 0, В =  1 0  А = 0, В = О  
Бо: Ь А = О, В = О  А = 1 , В = 1 

Легко удостовериться, что в этой игре нет доминирующих стратегий для каж­
дого из игроков и, следовательно, нет равновесия доминирующих стратегий. Од­
нако профили стратегии (t, [) и (Ь, r) являются равновесиями Нэша. Вполне оче­
видно, что в интересах обоих агентов стремиться к одному и тому же равновесию 
Нэша - либо (t, [), либо (Ь, r), но, поскольку речь идет о проблемной области неко­
оперативной теории игр, игроки должны делать свой выбор независимо, не имея 
каких-либо знаний о выборе других игроков, и без какого-либо способа заключе­
ния с ними соглашений. Эго пример проблемы координации: игроки хотят коор­
динировагь свои действия глобально, чтобы все они выбирали действия, ведущие 
к одному и тому же равновесию Нэша, но должны делать это, используя только ло­
кальное принятие решений. 
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Бьm предложен ряд подходов к решению проблем координации. Одна идея за­
ключается в понятии ► узловых точек. Узловая точка в игре - это результат, КО'ГО­
рый некоторым образом вьщеляется для игроков как "очевидный" результат, с по­
мощью которого возможно скоординировать их выборы. Эrо, конечно же, не точное 
определение - то, что это означает, будет зависеть от конкретной игры. В приве­
денном выше примере есть, кстати, одна узловая точка: результат выбора (t, /) даст 
обоим игрокам существенно более высокую полезность, чем та, которую они по­
лучат, если скоординируют свой выбор на (Ь, r). С точки зрения теории игр оба ре­
зультата является равновесиями Нэша, но тот, кто предположит координацию дей­
ствий на варианте (Ь, r), должен быть действительно неадеквагным игроком. 

В некоторых играх нет равновесий Нэша в чистых стратегиях, как в приведен­
ной ниже игре под названием ► "Соответствие пенни" (matchingpennies). В этой 
игре Али и Бо одновременно выбирают одну из сторон монеты, орла или решку. 
Если они делают один и тот же выбор, то Бо дает Али 1 долл., а если их выбор был 
разным, то Али отдает Бо 1 долл. 

Али: орел A/i: решка 
Бо: орел A = l , B = - 1  A = -1 , B = l 
Бо:  решка А = - 1 , В = 1 A = l , B = - 1  

М ы  предлагаем читателю самостоятельно убедиться в том, что эта игра не име­
ет доминирующих стратегий и что ни один из результатов не является равновесием 
Нэша при чистых стратегиях. При любом исходе один из игроков сожалеет о сво­
ем выборе и предпочел бы ПОС'I)'ПИТЬ наоборот при данном выборе другого игрока. 

При поиске равновесия Нэша вся хитрость состоит в использовании смешан­
ных стратегий, т.е. надо позволить игрокам внести в их выборы элемент случай­
ности. Нэш доказал, что ➔ в каждой игре есть хотя бы одно равновесие Нэша при 
смешанных стратегиях. Это объясняет, почему равновесие Нэша является такой 
важной концепцией решения: для других концепций решения, таких как равнове­
сие доминирующих стратегий, нет гарантий, что они имеют место в каждой игре, 
но всегда можно получить решение, если обратиться к равновесиям Нэша при 
смешанных стратегиях. 

Для игры "Соответствие пенни" равновесие Нэша в смешанных стратегиях бу­
дет получено, если оба игрока выбирают орла или решку с равной вероятностью. 
Чтобы понять, что этот результат действительно является равновесием Нэша, 
предположим, что один из игроков выбирает результат с вероятностью, отличной 
от 0,5. Тогда другой игрок сможет использовать этот факт, вкладывая весь свой вес 
в конкретную стратегию. Например, предположим, что Бо выбирает орла с вероят­
ностью 0,6 (и, соответственно, решку - с вероятностью 0,4). Тогда Али достигнет 
лучших результатов, если также будет постоянно выбирать орла. Легко увидеть, 
что в подобном случае Бо, выбирающий орла с вероятностью 0,6, не сможет сфор­
мировать часть какого-либо равновесия Нэша. 
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1 8.2.2. Общественное благо 

В теории игр основная точка зрения состоит в том, что в процессе игры игроки 
всегда пытаются получить для себя наилучшие результаты, насколько это возмож­
но. Однако иногда будет поучительно придерживаться иной точки зрения. Пред­
положим, что вы - доброжешпельный, всеведающий субъекr, смотрящий на игру 
сверху и способный выбрать ее исход. Будучи доброжешпельным, вы хотите вы­
брать лучший всеобщий результат - такой, который был бы лучше для общества 
в целом, если можно так сказать. Как его следует выбирать? Какие критерии в этом 
случае можно применить? Это как раз то, что охватывается понятием ► обще­
ственного блага (social welfare). 

Вероятно, наиболее важным и наименее спорным критерием общественного 
блага является то, что вам следует избегать результатов, которые бесполезно рас­
ходуют полезность. Это требование отражено в концепции ► эффективности по 
Парето (Pareto optimality), получившей это название в честь итальянского эконо­
миста Вильфредо Парето (1848-1923). Результат является эффекrивным по Паре­
то, если нет другого результата, который улучшит положение одного игрока, не 
ухудшая положения кого-то другого. Если вы выбираете результат, который не яв­
ляется эффекrивным по Парето, то вы теряете полезность в том смысле, что мог­
ли бы дать больше полезности по крайней мере одному агенту, не затрагивая при 
этом интересов ни одного из других агентов. 

► Утилитарное общественное благо является показателем того, насколько хо­
рош полученный результат в общем целом. Утилитарное общественное благо для 
результата - это просто сумма полезностей, предоставленных игрокам по этому 
результату. Однако в отношении утилитарного общественного блага есть два клю­
чевых затруднения. Во-первых, в этом показателе учитывается сумма, а не рас­
пределение полезностей между игроками, так что может иметь место очень нерав­
ное распределение, если это будет способствовать максимизации общей суммы. 
Во-вторых, серьезное затруднение состоит в том, что в этом показателе предпо­
лагается использование общей шкш,ы для всех полезностей. Однако многие эко­
номисты утверждают, что такой подход недопустим, потому что полезность (ма­
ловероятные деньги) является весьма субъекrивной величиной. Если требуется 
решить, как поделить пачку печенья, следует ли отдать ее всю целиком монстру 
полезности, который заявил, что любит печенье в тысячу раз больше, чем кто-ли­
бо другой? Это вполне может максимизировать общую полезность согласно ее са­
мооценке, но вовсе не кажется правильным. 

Вопрос о том, как полезность будет распределена среди игроков, рассматри­
вается в исследованиях по ► эгалитарному общественному благу. Например, 
в одном предложении предполагается, что следует максимизировать ожидаемую 
полезность для наиболее обездоленного члена общества - максиминный под­
ход. Возможны и другие метрики, в том числе ► коэффициент Джинн, который 
подводит итог тому, насколько равномерно полезность будет распределена среди 
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игроков. Главное загруднение в таких предложениях связано с тем, что они могут 
пожертвовать большим количеством общего благосостояния ради небольших вы­
игрышей в распределении и, как простой утилитаризм, все еще оставаться во вла­
сти монстра полезности. 

Применение этих концепций к игре "Дилемма заключенного", обсуждавшей­
ся выше, объясняет, почему она называется дилеммой. Напомним, что в этой игре 
профиль стратегии (testify, testify) является равновесием доминирующих стратегий 
и единственным равновесием Нэша. Тем не менее это также единственный резуль­
тат, который не является эффективным по Парето. Результат профиля стратегии 
(rejuse, refuse) максимизирует как утилитарное, так и эгалитарное общественное 
благо. Таким образом, дилемма в игре "Дилемма заключенного" возникает потому, 
что очень сильная концепция решения (равновесие доминантных стратегий) при­
водит к результа'I)', который, по сути, не проходит любую проверку на то, что счи­
тается разумным результатом с точки зрения "общества". Тем не менее для отдель­
ных игроков в ней нет очевидных способов достичь лучшего решения. 

Вычисnение равновесий 
Теперь давайте рассмотрим ключевые вычислительные вопросы, связанные с 

обсуждавшимися выше концепциями .  Сначала обратимся к чистым стратегиям, 
в которых отсутствуют случайные элементы. 

Если игрокам дОС'I)'ПНО лишь конечное число возможных вариантов выбора, то 
для нахождения равновесий можно использовать исчерпывающий поиск: итерации 
по каждому возможному профилю стратегии с проверкой, получит ли какой-ли­
бо игрок благоприятное отклонение в этом профиле. Если нет, то это равновесие 
Нэша в чистых стратегиях. Доминирующие стратегии и равновесия доминирую­
щих стратегий можно вычислить с помощью аналогичных алгоритмов. К сожале­
нию, число возможных профилей стратегий для п игроков, каждому из которых 
дОС'I)'ПНО т возможных действий, определяется как тп, т.е. нереально большое для 
исчерпывающего поиска. 

Альтернативным подходом, который хорошо работает в некоторых играх, 
является ► близорукий наилучший ответ (также известный как последова­
тельный наилучший ответ): начните с выбора случайного профиля стратегии, 
а затем, если  какой-то игрок не будет использовать оптимальный выбор при за­
данных выборах других, переверните их выбор к оптимальному и повторите про­
цедуру. Этот процесс будет сходиться, если он приводит к профилю стратегии, 
в котором каждый игрок делает оптимальный выбор при заданных выборах дру­
гих игроков, т.е. к равновесию Нэша. Для некоторых игр алгоритм близорукого 
наилучшего ответа не сходится, но для других важных классов игр он сходится 
гарантированно. 

Вычисление равновесий смешанной стратегии алгоритмически намного слож­
нее. Для простоты мы сосредоточимся на соответствующих методах для игр с 
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нулевой суммой и лишь кратко прокомментируем возможности их распростране­
ния на другие игры в конце этого раздела. 

В 1 928 году фон Нейман разработал метод поиска оптимальной смешанной 
стратегии для игр с двумя игроками, называемых ► играми с нулевой суммой, -
игр, в которых общая сумма выигрышей всегда равна нулю (или некоторой кон­
станте, как объяснялось в разделе 5 . 1 . 1  ). Очевидно, что игра в чет-нечет является 
именно такой. В играх с двумя игроками и нулевой суммой вознаграждения всег­
да являются равными и противоположными, поэтому достаточно рассмотреть воз­
награждения только для одного игрока, который будет считаться максимизирую­
щим (так же, как и в главе 5). Применительно к игре в чет-нечет примем в качестве 
максимизирующего игрока Е, выбравшего себе в качестве выигрышного результа­
та четное количество пальцев, поэтому можно определить матрицу вознагражде­
ний на основе значений UE(e, о) - вознаграждения, получаемого игроком Е, если 
игрок Е выбирает действие е, а О - действие о. Метод фон Неймана называется 
методом ► макси мина и действует, как описано ниже. 

• Предположим, что правила игры были изменены таким образом, что игрок Е 
теперь вынужден раскрывать свою стратегию первым, а затем игрок О вы­
бирает свою стратегию, зная стратегию игрока Е.  Далее оцениваются ожи­
даемые результаты игры на основе выбранных стратегий .  В результате мы 
получаем игру, в которой ходы выполняются поочередно и к которой можно 
применить стандартный алгоритм минимакс из главы 5 . Допустим, что игра 
приводит к получению результата UE,o• Очевидно, что эта игра дает преиму­
щество игроку О, поэтому истинная полезность И данной игры ( с точки зре­
ния игрока Е) равна по меньшей мере И Е 0• Например, если рассматривают­
ся только чистые стратегии, то минимаксное дерево игры имеет корневое 
значение, равное -3 (рис. 1 8 .2, а), поэтому мы знаем, что И� -3 . 

• Теперь предположим, что правила были изменены таким образом, что пер­
вым свою стратегию вынужден раскрывать игрок О, а за ним следует 
игрок Е. В таком случае минимаксное значение этой игры становится рав­
ным Ио,Е, а поскольку игра складывается в пользу игрока Е, то известно, что 
полезность U самое большее равна Ио,Е• При использовании чистых страте­
гий это значение +2 (см . рис. 1 8 .2, б), поэтому известно, что U� +2 .  

Рассматривая эти два предположения совместно, можно прийти к заключению, 
что истинная полезность И решения исходной игры должна удовлетворять следу­
ющему неравенству: 

UE,o � И� Ио, Е или в нашем случае - 3 � И� 2 .  
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Рис. 18.2. а) и б) Минимаксные деревья игры в чет-нечет на двух пальцах, если 
игроки ходят по очереди, ведя игру на основе чистых стратегий. в) и г) Параметри­
зованные деревья игры, в которой первый игрок использует смешанную стратегию. 
Выплаты зависят от параметра вероятности (р или q) в смешанной стратегии. д) и 
е) Для любого конкретного значения параметра вероятности второй игрок будет вы­
бирать "наилучшее" из двух действий, поэтому значения для смешанной стратегии 
первого игрока задаются утолщенными линиями. Первый игрок выбирает параметр 
вероятности для смешанной стратегии в точке их пересечения 

q 
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Чтобы точно определить значение И, необходимо перейти к анализу смешан­
ных стратегий. Вначале отметим следующее: ♦ как только первый игрок раскро­
ет свою стратегию, второй игрок может также выбрать чистую стратегию. При­
чина этого проста - если  второй игрок использует смешанную стратегию, 
[р: опе;( ] -р) : two], то ожидаемая полезность этой игры представляет собой ли­
нейную комбинацию (р · Иопе + ( 1  -р) · Иrwo) полезностей чистых стратегий Иопе и 
Иrwo • Эта линейная комбинация ни при каких условиях не будет лучше по сравне­
нию с лучшим из значений Иопе и Иrwo, поэтому второй игрок может просто вы­
брать лучшее. 

С учетом этого замечания минимаксные деревья можно рассматривать как име­
ющие бесконечное количество ветвей, исходящих от корня, соответствующих 
бесконечному количеству смешанных стратегий, дос'I)'пных для выбора первым 
игроком. Каждая из этих ветвей ведет к узлу с двумя ветвями, соответствующими 
чистым стратегиям для второго игрока. Эти бесконечные деревья можно изобра­
зить как конечные, предусмотрев один "параметризованный" выбор у корня, как 
описано ниже. 

• СИ'I)'ация, когда игрок Е ходит первым, показана на рис. 1 8 .2, в. Игрок Е де­
лает из корневой позиции ход [р: опе; ( 1 -р ) : two ], а затем игрок О выбирает 
ЧИС'I)'Ю стратегию (и, следовательно, ход) с учетом значения р. Если игрок О 
выбирает ход опе, то ожидаемое вознаграждение (для Е) становится равным 
2р - 3 ( 1  -р) = 5р - 3; если игрок О выбирает ход two, то ожидаемое возна­
граждение равно -Зр + 4( 1 - р) = 4 - 7 р. Зависимости, выражающие величи­
ну этих двух вознаграждений, можно изобразить в виде прямых линий на 
графике, где р изменяется от О до 1 вдоль оси х, как показано на рис. 1 8 .2, д. 
Игрок О, минимизирующий стоимость игры, должен всегда выбирать наи­
меньшее значение на двух прямых линиях, как показано на этом рисунке 
утолщенными отрезками прямых. Поэтому наилучшее решение, которое мо­
жет принять игрок Е, выбирая ход из корневой позиции, состоит в том, что­
бы выбрать значение р, соответствующее точке пересечения и определяемое 
следующим образом : 

5р - 3 = 4 - 7р => р = 7/ 1 2 .  
Полезность для игрока Е в  этой точке равна ИЕ O = - 1 / 1 2 . 

• Если первым ходит игрок О, то складывается ситуация,  показанная 
на рис .  1 8 .2 ,  г. Игрок О в корневой позиции выбирает стратегию 
[q: опе; ( 1  - q): two], после чего игрок Е выбирает ход с учетом значения q. 
При этом выплаты определяются соотношениями 2q - 3 ( 1  - q) = Sq - 3 и 
-3q + 4( 1 - q) = 4 - 7q.2 И вновь, на рис. 1 8 .2, е показано, что наилучший ход, 

2 Это всего лишь совпадение, что эти уравнения такие же, как для р. Это совпадение 
возникает потому, что VE(one, two) = UE(two, опе) = -3 . Это также объясняет, почему оп­
тимальная стратегия одинакова для обоих игроков. 
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который может быть сделан игроком О из корневой позиции, заключается в выборе точки пересечения: 
5q - 3 = 4 - 7q ⇒ q = 7/ 1 2 . 

Полезность для игрока Е в этой точке равна Ио,Е = -1 / 1 2 .  
Теперь мы знаем, что истинная полезность оригинальной игры находится в пре­делах от -1 /1 2  до - 1 / 1 2, т.е. равна точно - 1 / 1 2 !  (Общий вывод состоит в том, что в эту игру лучше игрпь от имени игрока О, а не Е.) Кроме того, истинная полез­ность достигается при использовании смешанной стратегии [7/ 1 2 : опе; 5/ 1 2 : two], которой должны придерживпься оба игрока. Такая стрпегия называется ► мак­симиввым равновесием игры и является равновесием Нэша. Обратите внима­ние, что каждая составляющая стрпегия в равновесной смешанной стратегии имеет одну и ту же ожидаемую полезность. В данном случае и ход опе, и ход two имеют ту же ожидаемую полезность - 1 /1 2, что и сама смешанная стрпегия. Приведенный выше результп для игры в чет-нечет на двух пальцах представ­ляет собой пример общего результпа, полученного фон Нейманом : ♦ каждая игра 

с нулевой суммой с двумя игроками имеет максиминное равновесие, если разрешены сме­
шанные стратегии. Более того, каждое равновесие Нэша в игре с нулевой сум­мой является максиминным равновесием для обоих игроков. Игрок, принимаю­щий максиминную стрпегию, получает две гарантии: во-первых, ни одна другая стрпегия не может оказаrься лучше против соперника, который играет хорошо (хаrя некоторые другие стратегии могли бы быть лучше, если правильно исполь­зовпь промахи праrивника, который делает иррациональные ошибки). Во-вторых, игрок продолжает делпь то же самое, даже если его стрпегия будет раскрыта про­тивнику. Общий алгоритм поиска максиминных равновесий в играх с нулевой суммой несколько сложнее по сравнению с тем, что схематично показано на рис. 1 8 .2, д и е. Если количество возможных действий равно п, то смешанная стратегия пред­ставляет собой точку в п-мерном пространстве, а прямые линии становятся гипер­плоскостями. Возможно также, что над некоторыми чистыми стрпегиями для вто­рого игрока будут доминировпь другие стрпегии, так что они перестанут быть оптимальными по отношению к любой стрпегии для первого игрока. После уда­ления всех подобных стрпегий (а эту операцию может потребоваться выполнить неоднокрпно) оптимальным вариантом хода из корневой позиции становится са­мая высокая (или самая низкая) точка пересечения оставшихся гиперплоскостей. Поиск этого варианта представляет собой пример задачи линейного програм­мировави11 - максимизация целевой функции с учетом линейных ограничений. Такие задачи могут быть решены с помощью стандартных методов за время, по­линомиально зависящее ar количества действий (а также от количества битов, ис­пользуемых для определения функции вознаграждения, если углубиться в техни­ческие подробности). 
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Остается нерешенным следующий вопрос: как факrически должен действовать рациональный агент при ведении такой одноходовой иrры, как игра в чет-нечет? Рациональный агент логическим пуrем выявил тот факт, что [7/ 12 :  опе; 5/1 2 :  two] представляет собой максиминную равновесную страrегию и исходит из предпо­ложения, что знаниями об этом обладает и его рациональный противник. Агент может использовать игральную кость с 1 2  сторонами или генератор случайных чисел для выбора случайным образом хода, соответствующего этой смешанной страrегии, и в этом случае ожидаемое вознаrраждение для игрока Е будет равно - 1 / 1 2 . Или агент может просто решить сдешrrь ход опе или two. В любом случае для игрока Е ожидаемое вознаграждение остается тем же - 1/ 1 2 .  Любопытно то, что односторонний выбор конкретного действия не уменьшает ожидаемое возна­граждение для данного игрока, но если позволить другому aremy узнагь, что этот игрок принял такое одностороннее решение, то ожидаемое вознаrраждение и:ше­
нится, поскольку противник сможет откорректировагь свою страrегию соответ­ствующим образом. Найти равновесия в играх с ненулевой суммой несколько сложнее. Общий под­ход включает два этапа. На первом этапе необходимо перечислить все возможные подмножества из действий, которые могут образовывагь смешанные страгегии. Например, сначала проверьте все профили страrегий, в которых каждый игрок вы­полняет одно действие, загем - те, в которых каждый иrрок выполняет либо одно, либо два действия, и т.д. Количество таких проверок экспоненциально зависит от количества действий, поэтому может применяться только в относительно простых играх. На втором этапе для каждого профиля страгегий, включенного в список на первом этапе, необходимо провести проверку с целью определения, представ­ляет ли он некоторое равновесие. Такая задача выполняется пуrем решения ряда уравнений и неравенств, аналогичных используемым в случае с нулевой суммой. В игре с двумя игроками эти уравнения являются линейными и могут быть реше­ны с помощью основных методов линейного проrраммирования, но в случае трех или более иrроков они являются нелинейными и задача поиска их решения может оказагься очень сложной. 
1 8.2.3 . Повторяющиеся игры 

До сих пор рассматривались только иrры, состоящие из одного хода. Простей­шей разновидностью иrры, состоящей из нескольких ходов, является ► повтор11-ющаяся игра, в которой игроки снова и снова иrрают раунды из одноходовой игры, называемой ► игрой этапа. Профиль страrегий для повторяющейся иrры определяет выбор действия для каждого игрока на каждом временном интервале для всех возможных историй предыдущих выборов игроков. Сначала давайте рассмотрим случай, когда игра этапа повторяется фиксирован­ное, конечное и взаимно известное количество раундов - все эти условия необ­ходимы для выполнения последующего анализа. Давайте предположим, что Али 
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и Бо предложено иrрm-ь в повторяющуюся версию дилеммы заключенного и что 
оба они знают, что им придется провести ровно 1 00 раундов этой игры. В каждом 
раунде их будут спрашивать, какое действие они выбирают - testify или rejuse, 
а заrем они будут получаrь вознаграждение за этот раунд в соответствии с прави­
лами игры, которые бьmи приведены выше. 

После завершения 1 00 раундов определяется общая выплаrа для каждого игро­
ка - как сумма выплат этому игроку в каждом из 1 00 раундов. Какие страrегии 
должны выбрать Али и Бо, играя в эту игру? Рассмотрим следующий аргумент. 
Оба игрока знают, что 1 00-й раунд не будет повторяющейся игрой, т.е .  что ее ре­
зультат не сможет оказаrь влияния на будущие раунды. Таким образом, в сотом ра­
унде они фактически играют в обычную игру "Дилемма заключенного". 

Тогда, как было показано выше, они выберут в этом раунде профиль страrегии 
(testify, testify) - равновесие доминирующих страrегий для обоих игроков. Но как 
только будет определен результаr 1 00-ro раунда, 99-й раунд перестанет оказываrь 
влияние на последующие раунды, поэтому в нем также будет выбран профиль дей­
ствий (testify, testify). Следуя этому индуктивному аргументу, оба игрока должны 
выбирать действие testify в каждом раунде, заработав в сумме по 500 лет тюрем­
ного заключения на каждого. Этот тип рассуждений известен как ► обратная ин­
дукция; он играет фундаментальную роль в теории игр. 

Однако, если отбросить одно из трех принятых выше условий - фиксиро­
ванность, конечность или взаимную известность, - то индуктивный аргумент 
утратит свою силу. Предположим, что игра будет повторяться бесконечное коли­
чество раз. С математической точки зрения стратегия игрока в бесконечно по­
вторяющейся игре является функцией, отображающей каждую возможную ко­
нечную историю игры на выбор этого игрока в игре этапа в соответствующем 
раунде. Следовательно, стратегия рассматривает то, что произошло в игре ра­
нее, и принимает решение, какой выбор сделать в текущем раунде. Но мы не 
можем хранить бесконечную таблицу в конечном компьютере . Нам необходи­
ма конечная модель стратегий для игр, в которых будет разыгрываться беско­
нечное количество раундов. По этой причине стандартом представления страте­
гий для бесконечно повторяющихся игр являются конечные автоматы (finite state 
machines - FSM) с выходом. 

На рис. 1 8.3 представлен ряд страrегий конечных автоматов для повторяющей­
ся версии игры "Дилемма заключенного". Рассмотрим стратегию ► Око за Око 
(1it-for-Tat). Каждый овал - это состояние автомаrа, а внутри овала - выбор, ко­
торый будет сделан в соответствии с данной страгегией, если автомаr будет нахо­
диться в этом состоянии. В каждом состоянии есть по одной исходящей дуге для 
каждого возможного выбора агента-партнера: переход для определения следую­
щего состояния автомата выполняется по той исходящей дуге, которая соответ­
ствует выбору, сделанному другим игроком на данном этапе. Наконец, одно со­
стояние помечено входящей стрелкой, указывающей, что это состояние является 
начальным. Таким образом, при стратегии Око ЗА Око автомаr начинает работу 
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в состоянии refuse; если противник выбирает действие refuse, то автомаr остается 
в состоянии refuse, но если противник выбирает действие testify, то автомаr также 
переходит в состояние testify. Он будет оставаться в состоянии testify до тех пор, 
пока его противник будет выбирать действие testify, но если в некоторый момент 
противник выберет действие refuse, автомаr вернется в исходное состояние refuse. 
Другими словами, в стратегии Око ЗА Око автомаr начинает работу в состоянии 
refuse, а затем просто копирует то действие, которое противник выбрал в преды­
дущем раунде. 

ЯСТРЕБ ГОЛУ БЬ 

testify 

ВЕЧНАЯ КАРА Око зА Око 

ЗУ Б ЗА ЗУ Б 

refuse 

Рис. 18.3. Некоторые общие стратегии конечных автоматов с красочными названия­
ми для бесконечно повторяющейся игры "Дилемма заключенного" 

Стратегии ЯСТРЕБ и ГОЛУБЬ проще: в стратегии ЯСТРЕБ в каждом раунде вы­
бирается действие testify, тогда как в стратегии ГОЛУБЬ в каждом раунде выби­
рается действие refuse. Стратегия ВЕЧНАЯ КАРА до некоторой степени похожа на 
стратегию Око ЗА Око, но с одним важным отличием : если противник когда-ли­
бо выберет действие testify, то она, в сущности, превратится в страrегию ЯСТРЕБ: 
в дальнейшем всегда выбирается действие testify. Хотя в стратегии Око ЗА Око 
предусматривается некое прощение - в том смысле, что на действие refuse она 
предусматривает ответное действие refuse, в стратегии ВЕЧНАЯ КАРА пути назад 
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нет: за первое же выбранное противником действие testify он получит наказание 
(выбор действия testify), которое будет продолжаться вечно. (Вы можете описать, 
как ведет себя стратегия ЗУБ ЗА ЗУБ?) 

Следующая проблема в случае бесконечно повторяющихся игр - как измерить 
полезность бесконечной последовательности выплат. Здесь мы сосредоточимся на 
подходе с определением ► предела средств (/imit ofmeans), что, в сущности, озна­
чает взятие среднего значения полезности, полученной за бесконечную последова­
тельность ходов. В этом подходе при имеющейся бесконечной последовательно­
сти выигрышей ( И0, И1 , U2 , • • • ) определить полезность этой последовательности 
для соответствующего игрока можно как 

1 т lim - L U1 • 
T➔ oo T l = O 

Это значение не может гарантированно сходиться для произвольных последо­
вательностей полезности, но будет гарантированно сходиться для таких после­
довательностей полезности, которые генерируются при использовании страте­
гий конечных автоматов. Чтобы увидеть это, посмотрим, что будет происходить, 
если стратегии конечных автоматов будут играть друг против друга. В этом случае 
• рано или поздно, конечные автоматы вновь возвращаются в конфигурацию, в кото­
рой они уже находились ранее, и с этого момента они начинают просто повторять свое 
прежнее поведение. Точнее говоря, любая последовательность полезностей, генери­
руемая стратегиями конечных автоматов, будет состоять из конечной (возможно, 
пустой) не повторяющейся последовательности, за которой следует непустая ко­
нечная последовательность, повторяющаяся бесконечное количество раз. Чтобы 
вычислить среднюю полезность, полученную игроком от этой бесконечной после­
довательности, достаточно просто вычислить среднее для конечной повторяющей­
ся последовательности. 

Исходя из этого, будем полагать, что игроки в бесконечно повторяющейся игре 
просто выбирают некоторый конечный автомат, который будет играть в эту игру 
от их имени. На эти автоматы не налагается никаких ограничений: они могут быть 
настолько большими и сложными, насколько этого захотят игроки. Когда все игро­
ки выберут тот конечный автомат, который будет играть от их имени, появится 
возможность вычислить выплаты каждому игроку, используя подход с пределом 
средств, как было описано выше. Таким образом, бесконечно повторяющаяся игра 
сводится к нормальной форме игры, которая, тем не менее, предоставляет каждо­
му игроку бесконечно много возможных стратегий. 

Давайте посмотрим, что произойдет, если играть в бесконечно повторяющу­
юся дилемму заключенного, используя некоторые из стратегий, приведенных на 
рис. 1 8 .3 . Сначала предположим, что и Али, и Бо выбрали стратегию ГОЛУБЬ. 
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о 2 3 4 5 Полезность 
Али: ГОЛУБЬ refuse refuse refuse refuse refuse refuse -1 
Бо: ГОЛУБЬ refuse refuse refuse refuse refuse refuse -1 

Легко увидеть, что эта пара стратегий не формирует равновесие Нэша: любой 
из игроков сделал бы для себя лучше, изменив свой выбор на стрпегию ЯСТРЕБ. 
Итак, предположим, что Али переходит на стрпегию ЯСТРЕБ. 

о 2 3 4 5 Полезность 
Али: ЯСТРЕБ testify testify testify testify testify testify о 
Бо: ГОЛУБЬ refuse refuse refuse refuse refuse refuse - 10  

Этот вариант является худшим из возможных исходов для Бо, к тому же эта пара 
стратегий вновь не является равновесием Нэша. Бо может сделать себе лучше, 
если также выберет страrегию ЯСТРЕБ. 

о 2 3 4 5 
Али: ЯСТРЕБ testify testify testify testify testify testify 
Бо: ЯСТРЕБ testify testify testify testify testify testify 

Полезность 
-5 
-5 

Эта пара стратегий образует равновесие Нэша, но не очень интересное, посколь­
ку в той или иной мере отбрасывает ситуацию назад, когда мы начали обсуждение 
одноэтапного варианта этой игры и оба игрока приняли решение свидетельство­
вать друг против друга. Этот наблюдение иллюстрирует ключевое свойство беско­
нечно повторяющихся игр: ➔ равновесия Нэша для игры этапа будут поддерживать­
ся как состояния равновесия и в бесконечно повторяемой версии этой игры. 

Однако наша история еще не закончена. Предположим, что Бо переключился на 
страrегию ВЕЧНАЯ КАРА. 

о 2 3 4 5 
Али: ЯСТРЕБ testify testify testify testify testify testify 
Бо: ВЕЧНАЯ refuse testify testify testify testify testify 

КАРА 

Полезность 
-5 

-5 

В этом случае Бо не сделал себе хуже, чем при выборе стратегии ЯСТРЕБ: в пер­
вом раунде Али выбирает testify, тогда как Бо выбирает refuse, но выбор Али да­
лее переключает страrегию Бо на постоянный выбор testify, а потеря полезности 
на первом этапе в пределе исчезает. В конечном счете оба эти игрока получают 1)' 
же полезность, как если бы они оба следовали стратегии ЯСТРЕБ. Но здесь есть 
важный момент: страrегии ЯСТРЕБ и ВЕЧНАЯ КАРА не образуют равновесия Нэша, 
поскольку на этот раз у Али есть возможность сделать благоприятное для него 
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изменение - переход на стратегию ВЕЧНАЯ КАРА. Если оба игрока выбирают стра­
тегию ВЕЧНАЯ КАРА, то происходит следующее. 

о 2 3 4 5 Полезность 
Али: ВЕЧНАЯ refuse refuse refuse refuse refuse refuse -1 

КАРА 
Бо: ВЕЧНАЯ refuse refuse refuse refuse refuse refuse -1 

КАРА 

Результаты и выигрыши такие же, как если бы оба игрока выбрали стратегию ГО­
ЛУБЬ, но в отличие от этого случая, стратегия ВЕЧНАЯ КАРА в игре против страте­
гии ВЕЧНАЯ КАРА формирует равновесие Нэша: и Али, и Бо способны рациональ­
но достичь результата, который невозможен в одноходовой версии этой игры. 

Чтобы понять, что эти стратегии образуют равновесие Нэша, будем рассуждать 
методом от противного - предположим, что они его не образуют. В этом случае 
один игрок - без потери общности можно предположить, что это Али - име­
ет выгодное отклонение в форме стратегии конечного автомата, которая принесет 
ему более высокую выплаrу, чем стратегия ВЕЧНАЯ КАРА. Тогда в какой-то момент 
эта стратегия будет иметь возможность выбрать какое-то другое действие, отлич­
ное от действия в стратегии ВЕЧНАЯ КАРА, - в противном случае он получит 1У 
же полезность. Следовательно, в какой-то момент Али придется выбрать действие 
testify. Но тогда Бо, следуя стратегии ВЕЧНАЯ КАРА, переключится в режим нака­
зания, постоянно выбирая в ответ действие testify. С этого момента Али будет об­
речен всегда получать выплmу не более чем -5, т.е. хуже, чем - 1 ,  которые он по­
лучал, придерживаясь стратегии ВЕЧНАЯ КАРА. Следовательно, когда оба игрока 
выбирают стратегию ВЕЧНАЯ КАРА, в бесконечно повторяемой игре "Дилемма за­
ключенного" формируется равновесие Нэша, давая рационально устойчивый ре­
зультат, который невозможен в одноходовой версии этой игры. 

Это пример общего класса результатов, называемых ► народными теорема­
ми Нэша, характеризующих исходы, которые могут быть поддержаны равнове­
сиями Нэша в бесконечно повторяющихся играх . Пусть обеспеченная стоимость 
(security value) - это лучшая выплата, которую игрок может гарантированно по­
лучить. Тогда общую форму народных теорем Нэша можно сформулировать при­
мерно так: ♦ каждый результат, в котором каждый игрок получает по крайней мере 
свою обеспеченную стоимость, может быть подтвержден как равновесие Нэша в беско­
нечно повторяющейся игре. Стратегия ВЕЧНАЯ КАРА является ключом к народным 
теоремам: взаимная угроза наказания, если какой-либо из агентов откажется сы­
грать свою роль в желаемом общем результате, удерживает игроков от отклоне­
ния от принятой стратегии. Но это сработает как фактор сдерживания, только если 
другой игрок уверен, что вы уже приняли эrу стратегию или, по крайней мере, 
могли бы ее принять. 
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Кроме того, другие решения могут быть получены в результате модификации 
самих агентов, а не изменения правил их взаимодействия. Предположим, что аген­
ты представляют собой конечные автомагы с п состояниями и играют в игру с об­
щим количество ходов т > п. В результаге агенты в какой-то момент оказываются 
неспособными представить целый ряд оставшихся ходов и должны рассмагривагь 
их как неизвестные. Это означает, что они не могут выполнять логический вывод 
по индукции и в повторяющейся игре "Дилемма заключенного" вправе переходить 
к наиболее благоприятному равновесию (rejuse, refuse). В таком случае неведение 
идет на пользу - или, скорее, идет на пользу мнение противника о том, что вы на­
ходитесь в неведении. Ваш успех в таких повторяющихся играх в значительной 
степени зависит от представления о вас другого игрока как о хвастуне или проста­
ке, а не от ваших фактических характеристик. 

18.2.4. Последовательные игры: развернутая форма 

В общем случае игра состоит из последовательности ходов, которые не обяза­
тельно должны быть одинаковыми. Такие игры лучше всего представлять в виде 
дерева игры, которое теоретики игр называют ► развернутой формой (extensive 
form). Такое дерево игры включает в себя всю ту же информацию, которая рассма­
тривалась в разделе 5 . 1  : начальное состояние S0, функцию PLAYER(s ), определяю­
щую игрока, которому принадлежит право совершить ход, функцию ACTIONS(s), 
которая задает множество возможных действий, функцию REsuLТ(s, а), определяю­
щую переход в новое состояние, и частичную функцию UTILITY(s,p), которая опре­
делена только в терминальных состояниях и представляет выигрыш для каждого 
игрока. Включить в рассмотрение стохастические игры можно за счет введения 
необычного игрока Chance (случай), способного выполнять случайные действия. 
"Страгеrия" игрока Chance является частью определения игры и задается как рас­
пределение вероятностей для действий ( остальным игрокам предоставляется пра­
во выбирагь себе собственную страгеrию ). Для представления игр с недетермини­
рованными действиями, таких как бильярд, каждое такое действие разбивается на 
две части: действие игрока само по себе, имеющее детерминированный результат, 
а затем действие игрока Chance, которому предоставляется возможность отреаrи­
ровагь на выполняемое действие собственным непостоянным образом. 

На данный момент мы сделаем одно упрощающее предположение: будем пола­
гать, что игроки обладают ► полной информацией. Грубо говоря, полнота инфор­
мации означает, что когда игра требует от игрока принять решение, он точно знает, 
где именно он находятся в дереве игры: нет никакой неопределенности в отноше­
нии того, что произошло в данной игре ранее. Это, безусловно, ситуация, характер­
ная для таких игр, как шахмагы или го, но невозможная в таких играх, как покер 
или кригшпиль. В следующем разделе будет показано, как развернутая форма мо­
жет быть использована в подобных играх для извлечения неполной информации, 
но на данный момент мы будем считагь, что игрокам доступна полная информация. 
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Для игрока в развернутой форме игры с полной информацией стратегией явля­
ется функция, которая для каждого из его состояний принятия решения s предпи­
сывает, какое действие в ACTIONS(s) игрок должен выбрать для выполнения. Если 
каждый игрок уже выбрал стратегию, то результирующий профиль стратегии бу­
дет отмечать пути в дереве игры из начального состояния S0 в некоторое терми­
нальное состояние, а его функция UТILIТY будет определять полезности, которые 
получит каждый из игроков. 

Приняв эти установки, можно непосредственно применить представленный 
выше аппарат определения равновесий Нэша для анализа игр в развернутой фор­
ме. Чтобы вычислить равновесия Нэша, можно использовать прямое обобщение 
метода минимакс но го поиска, обсуждавшегося нами в главе 5. В литераrуре по 
играм в развернутой форме этот метод называют обратной индукцией - выше в 
этой главе обратная индукция уже неформально использовалась при анализе по­
вторяющейся ограниченное число раз игры "Дилемма заключенного". В методе 
обратной индукции используется динамическое программирование, работающее 
в обратном направлении, от терминальных состояний к исходному состоянию, по­
следовательно помечая каждое состояние профилем выплат (присвоение выплат 
игрокам), которые были бы ими получены, если бы игра была оптимально сыгра­
на, начиная с этого момента. 

Если говорить подробнее, для каждого нетерминального состояния s, когда все 
его дочерние узлы уже были помечены профилем выплат, узел s помечается про­
филем выплат того из его дочерних узлов, который максимизирует выплаrу игро­
ка, принимающего решение в состоянии s. (Если есть несколько одинаковых мак­
симизирующих профилей выплат, то выбор выполняется произвольно, если есть 
узлы жеребьевки, вычисляется ожидаемая полезность.) Алгоритм обратной индук­
ции гарантированно завершается, а кроме того, его время выполнения находится в 
полиномиальной зависимости от размера дерева игры. 

В процессе работы алгоритм отслеживает стратегии для каждого игрока. Как 
бьmо установлено, эти стратегии являются стратегиями равновесия Нэша, а про­
филь выплат, которым помечено начальное состояние, является профилем тех вы­
плат, которые будут получены при ведении игры в соответствии со стратегиями рав­
новесия Нэша. Таким образом, стратегии равновесия Нэша для игр в развернутой 
форме могут быть вычислены за полиномиальное время с использованием метода 
обратной индукции. А поскольку этот алгоритм гарантированно маркирует началь­
ное состояние профилем выплат, то можно сделать вывод, что каждая игра в развер­
нутой форме имеет по крайней мере одно равновесие Нэша в чистых стратегиях. 

Эrо привлекательный результат, но все же следует сделать несколько предосте­
режений. Деревья игры очень быстро становятся чрезвычайно большими, а это 
значит, что полиномиальность времени выполнения следует понимать именно в 
этом контексте. Но еще более проблематично то, что равновесие Нэша само по 
себе имеет некоторые ограничения, когда оно применяется к играм в разверну­
той форме. Рассмотрим игру, представленную на рис. 1 8.4. У игрока I есть два 
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возможных хода: above (выше) и below (ниже). Если он выберет ход below, то оба 
игрока получают выплаrу О (независимо от хода, выбранного игроком 2). Если он 
выберет ход above, то игроку 2, в свою очередь, будет предоставлена возможность 
выбора хода - ир (вверх) или down (вниз). Если он выберет ход down, то оба игро­
ка получат выплаrу О, а если он выберет ход ир, то оба игрока получают выплаrу 1. 

Рис. 18.4. Развернутая форма игры с контринrуитивным равновесием Нэша 

Алгоритм обратной индукции непосредственно говорит нам о том, что профиль 
стратегии (above, ир) является равновесием Нэша и приводит к тому, что оба игро­
ка получают выплаrу 1. Однако профиль стратегии (below, down) также является 
равновесием Нэша, но приводит обоих игроков к получению выплаты О. Игрок 2 
является угрозой для игрока 1, поскольку, получив право хода, может принять ре­
шение выбрать ход down, в результате чего выплата игроку 1 будет равна О, и в 
этом случае у игрока 1 нет лучшей альтернативы, чем выбрать ход below. Пробле­
ма заключается в том, что угроза со стороны игрока 2 (выбрать ход down) не явля­
ется ► реальной угрозой, поскольку, если игрок 2 на самом деле получит право 
хода, то он выберет ход ир. 

Уточнение равновесия Нэша, называемое ► идеальным равновесием Нэша 
в подыгре, устраняет эrу проблему. Чтобы сформулировать полное определение, 
необходимо ввести понятие ► подыгры. Каждое состояние принятия решения в 
дереве игры (включая исходное состояние) определяет подыгру, например игра, 
представленная на рис. 18.4, содержит две подыгры: у первой корневым узлом яв­
ляется узел принятия решения игроком 1, а у второй - узел принятия решения 
игроком 2. ♦ В игре G профиль стратегии формирует идеальное равновесие Нэша в 
подыгре в том случае, если равновесие Нэша есть в каждой подыгре из игры G. Приме­
нив это определение к игре на рис. 18.4, находим, что профиль стратегии (above, 
ир) является идеальной подыгрой, а профиль (below, down) - нет, поскольку вы­
бор хода down не является равновесием Нэша в подыгре с корнем в узле принятия 
решения игроком 2. 
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Хотя для определения идеального равновесия Нэша в подыrре нам потребо­
вались некоторые новые термины, нам не требуется никаких новых алгоритмов. 
Стратегии, рассчитанные с помощью метода обратной индукции, будут являться 
идеальными равновесиями Нэша в подыrре, а отсюда следует, что каждая игра в 
развернутой форме с полной информацией имеет идеальное равновесие Нэша в 
подыrре, которое может быть вычислено за полиномиальное время в зависимости 
от размера дерева игры. 

Иrрок Chance и одновременные ходы 

Чтобы представить в развернутой форме стохастическую игру, такую как нар­
ды, в нее добавляется игрок под именем Сlшпсе, выбор которого определяется рас­
пределением вероятностей. 

Для представления одновременных ходов, как в играх "Дилемма заключенно­
го" или в чет-нечет на двух пальцах, установим для игроков произвольный поря­
док, но при этом будем полагать, что действие игрока, который на этом этапе игры 
сделал ход ранее, является ненаблюдаемым для всех последующих игроков, дела­
ющих свой ход на этом этапе. Например, Али первым выбирает действие refuse 
или testify, а затем действие выбирает Бо, но при этом Бо не знает, какой выбор 
сделал Али на данном этапе (можно также принять тот факт, что ход Али будет 
раскрыт позже). Тем не менее предполагается, что игроки всегда помнят все соб­
ственные предыдущие действия; это предположение называют идеальной памя­
тью (perject reca/1). 

Сбор неполной информации 

Ключевой особенностью развернутой формы, отличающей ее от игровых де­
ревьев, приведенных в главе 5, является то, что она позволяет отражагь частич­
ную наблюдаемость. Теоретики игр используют термин ► неполная информация 
(imperfect information) для описания сиrуаций, когда игроки не имеют уверенности 
относительно фактического состояния игры. К сожалению, метод обрагной индук­
ции не применим к играми с неполной информацией, и, как правило, они значи­
тельно сложнее, чем игры с полной информацией. 

В разделе 5 .6  было показано, что игрок в частично наблюдаемой игре, такой 
как кригшпиль, может построить дерево игры в пространстве доверительных со­
стояний. Мы видели, что при наличии подобного дерева игрок в некоторых слу­
чаях может найти последовагельность ходов ( страгегию ), которая приводит к при­
нудительному магу, независимо от того, в каком фактическом состоянии он начал, 
и независимо от того, какую стратегию использует противник. Тем не менее ме­
тоды, обсуждавшиеся в главе 5, не могли указать игроку, что делать, когда нет га­
рантированного мага. Если лучшая страгеrия игрока зависит от страгеrии его со­
перника и наоборот, то минимаксный (или альфа-бета) алгоритм сам по себе не 
сможет найти решение. Однако развернутая форма позволит нам найти требуемое 
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решение, поскольку она представляет доверительные состояния (теоретики игр 
называют их ► информационными множествами (information sets)) сразу для 
всех игроков. В таком представлении можно найти равновесные решения, точно 
так же, как это делалось в случае игр в нормальной форме. 

В качестве простого примера последовательной игры поместим двух агентов 
в клеточный мир 4 х 3, представленный на рис. 17 . 1, и позволим им одновремен­
но совершать перемещения, пока один из них не достигнет конечного состояния 
и не получит вознаграждение, полагающееся в данном квадрате. Если предполо­
жить, что в случае, когда два агента пытаются перейти в один и тот же квадрат, 
никакого перемещения не происходит ( общая проблема для многих уличных пе­
рекрестков), то некоторые чистые стратегии могут попасть в тупик. Следова­
тельно, чтобы хорошо играть в этой игре, агентам нужна смешанная стратегия: 
случайный выбор между движением вперед и пребыванием на месте. Эrо имен­
но то, что выполняется для разрешения коллизий передаваемых сетевых пакетов 
в сетях Ethemet. 

Давайте рассмотрим очень простой вариант покера. В колоде всего четыре кар­
ты, два туза и два короля. Каждому из двух игроков сдается одна карта. Далее 
первый игрок может играть либо raise - повысить ставки в игре с 1 до 2, либо 
check - согласиться открыть карты. Если игрок 1 играет check, то игра оконче­
на. Если игрок 1 играет raise, то игрок 2 может играть либо са//, принимая повы­
шение стоимости игры до 2 очков, либо fold, сбрасывая свою карту и проигрывая 
1 очко. Если игра не заканчивается ходом/о/d, то выигрыш зависит от карт: он ра­
вен нулю для обоих игроков, если у них на руках карты одинакового старшинства; 
в противном случае игрок, имеющий короля, выплачивает установленную ставку 
игроку, у которого туз. 

Развернутая форма дерева этой игры показана на рис. 18.5. Здесь игрок О -
это игрок Chance, а игроки 1 и 2 представлены треугольниками. Каждое действие 
изображено в виде стрелки с однобуквенной меткой, соответствующей действи­
ям raise, check, call иfold, а для игрока Chance - это четыре возможных варианта 
раздачи (АК означает, что игрок 1 получает туза, а игрок 2 - короля). Терминаль­
ные состояния представлены прямоугольниками, помеченными соответствующи­
ми выплатами игроку 1 и игроку 2. Информационные множества (доверительные 
состояния) показаны в виде пунктирных прямоугольников с соответствующей 
меткой. Например, /1 1 - это информационное множество для случая, когда хо­
дит игрок 1, который уже знает, что у него туз (но не знает, какая карта у игрока 2). 
В случае информационного множества /2 1 ход делает игрок 2 и он знает, что у него 
туз и что игрок 1 поднял ставку до 2, но не знает, какая у этого игрока карта. (Из­
за ограничений, связанных с двухмерностью изображений на бумаге, это инфор­
мационное множество представлено на рисунке двумя пунктирными прямоуголь­
никами, а не одним.) 
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Рис. 1 8.5. Развернутая форма упрощенной версии покера с двумя игроками и только 
четырьмя картами. Ходы игроков обозначены как r (raise),f(Jold), с (са/[) и k (check) 

Один из способов решения игры в развернутой форме - преобразовать ее в игру в нормальной форме. Напомним, что нормальной формой игры является ма­трица, каждая строка которой маркируется чистой стратегией ДIJЯ игрока 1 , а каж­дый столбец - чистой стратегией ДIJЯ игрока 2. В развернутой форме игры чистая стратегия Д/JЯ игрока i соответствует действию в каждом информационном множе­стве, включающем этого игрока. Так, на рис. 1 8 .5 одной из чистых стратегий ДIJЯ игрока 1 является "raise в /1 , 1 (т.е. когда у меня туз) и check в /ц (т.е. когда у меня король)". В приведенной ниже матрице выплат эта стратегия называется rk. Ана­логичным образом стратегия с/ Д/JЯ игрока 2 означает "са//, когда у меня туз, иfold, когда у меня король". Поскольку это игра с нулевой суммой, в приведенной ниже матрице указан выигрыш только ДIJЯ игрока 1 , - у игрока 2 выплата всегда такая же, но противоположная по знаку. 
2 : сс 1 2 : с/ 1 2 :.ff 1 2 :/с 1 :  rr о -1 /6 1 7/6 

] :  kr - 1 /3 - 1 /6 5/6 2/3 1 :  rk 1 /3 о 1 /6 1 /2 1 :  kk о о о о 
Эrа игра настолько проста, что в ней есть два равновесия с чистой стратеги­ей, выделенные жирным шрифтом: с/- ДIJЯ игрока 2 и rk или kk - ДIJЯ игрока 1 .  
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Но в общем случае вполне возможно решагь игры в развернутой форме, преобра­
зовав их в нормальную форму, а затем отыскав решение ( обычно это смешанная 
стратегия) с использованием стандартных методов линейного программирования. 
Все это хорошо работает в теории. Но если у игрока есть / информационных набо­
ров по а действий в каждом из них, то этот игрок будет иметь d чистых стратегий. 
Другими словами, размер матрицы нормальной формы экспоненциально зависит 
от количества информационных наборов, поэтому на практике такой подход рабо­
тает только для крошечных деревьев игры - дюжины состояний или около того. 
Даже такая относительно простая игра как техасский холдем (классический покер) 
всего для двух игроков имеет около 1 0 1 8  состояний, что делает для нее этот подход 
абсолютно невыполнимым. 

Какие имеются альтернативы? В главе 5 было показано, что поиск альфа-бе­
та может успешно применяться в случае игр с полной информации, обладающи­
ми огромными деревьями игры, создавая это дерево шаг за шагом, отсекая неко­
торые ветви и эвристически оценивания нетерминальные узлы. Но этот подход не 
слишком хорошо работает для игр с неполной информацией - по двум причинам. 
Во-первых, в этом случае отсечение затруднительно, поскольку необходимо рас­
сматривать смешанные стратегии, сочетающие в себе несколько ветвей, а не чи­
стую стратегию, в которой всегда выбирается лучшая ветвь. Во-вторых, в данном 
случае очень усложняется эвристическая оценка нетерминальных узлов, - при­
ходится иметь дело с информационными множествами, а не с отдельными состо­
яниями. 

Коллер и соавт. ([ 1 263 ], 1 996) пришел на помощь с альтернативным представле­
нием обширных игр, называемым ► последовательной формой (sequenceform), 
которая линейно пропорциональна размеру дерева, а не экспоненциально. Вме­
сто стратегий в ней представляются пути по дереву, а количество этих путей рав­
но количеству терминальных узлов. К этому представлению также могут приме­
няться стандартные методы линейного программирования. Получившаяся система 
способна решать варианты покерных задач с 25  тысячами состояний за минуту 
или две. Это экспоненциальное ускорение относительно подхода с использовани­
ем нормальной формы, но, по-прежнему, еще очень далеко даже до решения зада­
чи стандартного покера с двумя игроками, имеющей 1 О 1 8 состояний. 

Если мы не можем обработать 1 0 1 8  состояний, то, вероятно, сможем упростить 
задачу, изменив форму игры на более простую. Например, если я держу в руке 
туз и рассматриваю возможность того, что следующая карта даст мне пару тузов, 
то меня не интересует масть этой следующей карты. В соответствии с правила­
ми покера любая масть будет в этом случае одинаково хороша. Это подсказыва­
ет, что можно образовать некую абстракцию игры, в которой игнорируются ма­
сти. Получившееся игровое дерево будет меньше в 4 !  = 24 раза. Предположим, что 
есть возможность решить эту упрощенную игру, тогда как полученное решение 
будет относиться к оригинальной игре? Если нет игрока, который рассматривает 
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вариант сбора флеша ( единственную комбинацию в игре, в которой масть имеет 
значение), то решение для абстракции также будет решением для исходной игры . 
Если же какой-то игрок рассматривает флеш как возможный вариант, то абстрак­
ция будет лишь приблизительным решением (но при этом можно вычислить гра­
ницы ошибки). 

Существует много возможностей для абстракции.  Например, в тот момент 
игры, когда у каждого из игроков по две карты, и у меня на руках пара дам, карты 
у других игроков можно разделить на три кагегории: лучше (только пара королей 
или пара тузов), равно (пара дам) и хуже (все остальное). Однако эта абстракция 
может оказаться слишком грубой. Лучшей абстракцией будет разделить худшее 
на, скажем, средние пары (от девяток до валетов), младшие пары и нет пары. Эrи 
примеры являются абстракциями состояний; но возможно абстрагировать и дей­
ствия . Например, вместо того, чтобы делать ставки в виде любого целого числа 
от 1 до 1 000, можно ограничиться ставками 1 0°, 1 0 1 , 1 02 и 1 03 • Или же можно во­
обще полностью исключить один из раундов ставок. Также допустимо абстраrи­
ровагься от узлов жеребьевки, рассматривая только подмножество возможных раз­
дач. Эrо эквивалентно методу развертывания, используемому в программах игры в 
го. Объединив все эти абстракции, можно сократить количество состояний в игре 
в покер с 1 0 1 8  до 1 07 - размера игрового дерева, для которого уже можно найти 
решение с помощью современных методов. 

Как уже говорилось в главе 5, программы игры в покер, такие как Libratus и 
DeepStack, смогли нанести поражение чемпиону среди игроков-людей в парной 
(два игрока) игре в техасский холдем . Совсем недавно программа Pluribus смогла 
победить чемпионов-людей в покере с шестью игроками в двух форматах: пять ко­
пий программы за столом с одним человеком и одна копия программы за столом с 
пятью людьми.  В этих случаях следует отметить огромный скачок в сложности 
игры. При одном противнике существует возможность сдачи ( 2=ff25 ) вариантов 
скрытых карт противнику. Но при пяти противниках из 50 выбирают 1 О � 1 О мил­
лиардов возможностей. Программа Pluribus сначала полностью разрабатывает ба­
зовую стратегию собственной игры, а затем модифицирует ее в процессе реальной 
игры, реагируя на конкретную ситуацию. В программе Pluribus используется ком­
бинация нескольких методов, в том числе поиск по дереву методом Монте-Карло, 
поиск с ограничением глубины и абстракция . 

Развернутая форма является универсальным представлением : ее можно ис­
пользовать в частично наблюдаемой, мультиагентной, стохастической, последо­
вательной среде, причем в режиме реального времени . Эrот перечень типов ох­
ватывает большинство самых сложных вариантов свойств проблемной среды, 
обсуждавшихся в разделе 2 .3 .2 .  Однако все же существуют два ограничения на ис­
пользование развернутой формы в частности и в теории игр - в целом . Во-пер­
вых, эта форма не очень хорошо справляется с непрерывными состояниями и 
действиями (хотя были разработаны некоторые расширения для непрерывного 
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случая, - например, теория ► конкуренции Курно использует теорию игр для 
решения задачи, в которой две компании устанавливают цены на свою продукцию 
из непрерывного диапазона. Во-вrорых, теория игр предполагает, что игра извест­
на. Оrдельные элементы игры могут быть определены как ненаблюдаемые для не­
которых игроков, но всегда должно быть известно, какие элементы являются не­
наблюдаемыми. Но в тех случаях, когда игроки изучают неизвестную струК'l)'ру 
игры с течением времени, данная модель оказывается непригодной. Давайте про­
анализируем каждый источник неопределенности и выясним, можно ли их пред­
ставить в теории игр. 

Действия. Нет простого способа представить игру, в которой игроки должны 
выяснять, какие действия им доступны. Рассмотрим игру между создателями ком­
пьютерных вирусов и экспертами по безопасности. Часть задачи состоит в ожида­
нии того, какие действия авrоры вирусов предпримут дальше. 

Стратегии.  Теория игр очень хороша для представления идеи, что стратегии 
других игроков изначально неизвестны, - при условии, что все агенты рацио­
нальны. Но теория ничего не говорит о том, что делать, если другие игроки не 
полностью рациональны. Понятие ► равновесия Байеса-Нэmа частично решает 
данную проблему: это равновесие относительно априорного распределения веро­
ятностей игрока по отношению к стратегиям других игроков. Иными словами, оно 
выражает убеждения игрока относительно вероятных стратегий других игроков. 

Жеребьевка. Если игра зависит от броска кубика, то это достаточно просто 
смоделировать узлом жеребьевки с равномерным распределением по результатам. 
Но что, если допустить возможность использования поддельных кубиков? Можно 
представить ситуацию другим узлом жеребьевки, выше по дереву игры, с двумя 
ветвями: "кубик честный" и "кубик нечестный", построив их таким образом, что 
соответствующие узлы в каждой из ветвей будут находиться в одном и том же ин­
формационном множестве (т.е. игроки не знают, каким является кубик, честным 
или поддельным). А как поступить, если допустить, что другой игрок это знает? 
Тогда можно добавить другой узел жеребьевки, с одной ветвью, представляющей 
случай, когда противник знает о поддельном кубике, и другой ветвью, где против­
ник этого не знает. 

Полезности . Что делать, если полезности оппонента нам неизвестны? И вновь, 
эту ситуацию можно смоделировать с помощью узла жеребьевки, такого, чтобы 
другой агент знал собственные полезности в каждой ветви, но нам они бьmи не­
известны. Но что делать, если мы не знаем собственных полезностей? Например, 
как я узнаю, будет ли рационально заказать салат от шеф-повара, если я не знаю, 
насколько он мне понравится? И это тоже можно смоделировать с помощью еще 
одного узла жеребьевки, определяющего ненаблюдаемое "внутреннее качество" 
салата. 

Таким образом, можно прийти к заключению, что теория игр хорошо подхо­
дит для большинства источников неопределенности, но за счет удвоения разме­
ра дерева игры всякий раз, когда в него добавляется еще один узел. К сожалению, 
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подобный подход быстро приводит к получению непреодолимо больших деревьев. Из-за этих и других проблем теория игр использовалась главным образом для ана­
л,па равновесных сред, а не для управления, агентами внутри среды. 
1 8.2.S. Неопределенные выплаты и игры содействия 

В главе 1 ,  раздел l .  l .5, отмечалась важность разработки систем искусственного интеллекта, которые смогут работать в условиях неопределенности относительно истинной цели человека. В главе 1 6, раздел 1 6.7. 1 ,  была предложена простая мо­дель представления неопределенности о собственных предпочтениях на примере мороженого с аромаrом дуриана. Простым приемом добавления в модель новой скрытой переменной для представления неизвестных предпочтений, вместе с со­ответствующей моделью восприятия (например, проверка вкуса небольшого ку­сочка мороженого), неопределенные предпочтения могут быть обработаны впол­не естественным образом. В главе 1 6  также рассмаrривалась проблема отключения: бьmо показано, что робот при наличии неопределенности в отношении предпочтений человека бу­дет подчиняться человеку и позволит себе отключиться . В этой задаче робот Роб­би не имеет полной определенности в отношении предпочтений Гарриет, чело­века, но мы моделируем решения Гарриет (отключить Робби от решения задачи или не отключаrь) как простое, детерминированное следствие из ее собственных предпочтений в отношении действия, предложенного Робби. Ниже эта идея бу­дет обобщена до полной игры с двумя игроками под названием игра содействия 
(assistance game), в которой Гарриет и Робби будут игроками. Предположим, что Гарриет наблюдает за своими предпочтениями 0 и действует в соответствии с ними, в то время как у Робби есть лишь априорная вероятность Р(0) относитель­но предпочтений Гарриет. Выплаrа определяется по 0 и одинакова для обоих игро­ков: как Гарриет, так и Робби стремятся к максимизации выплаrы Гарриет. Таким образом, игра содействия обеспечивает более формальную модель идеи доказуемо полезного ИИ, введенной в главе 1 .  В дополнение к подчиненному поведению, проявленному Робби в задаче от­ключения - которая представляет собой ограниченный вариант игры содей­ствия, - другие варианты поведения, возникающие как равновесие стратегий в обобщенной игре содействия, включают в себя действия со стороны Гарриет, ко­торые можно определить как обучение, награждение, командование, исправление, демонстрация или объяснение, а также действия со стороны Робби, которые мож­но определить как просьба о разрешении, обучение на основе демонстрации, вы­явление предпочтений и т.д. Ключевым пунктом здесь является то, что эти моде­ли поведения не должны подчиняться какому-либо сценарию: в процессе решения игры Гарриет и Робби вырабаrывают у себя способность передавать информацию о предпочтениях от Гарриет к Робби таким образом, чтобы Робби мог стать полез­нее для Гарриет. Не следует заранее оговаривать, что Гарриет "награждает" или 
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что Робби "следует инструкциям", хотя это может быть разумной интерпретацией 
того, как они будут вести себя в конечном счете. 

Для иллюстрации игр содействия мы воспользуемся ► игрой кавцел11рской 
скрепки. Эrо очень простая игра, в которой Гарриет-человек намеревается "сиг­
нализировать" роботу Робби некоторую информацию о своих предпочтениях. Роб­
би способен интерпретировать этоr сигнал, потому что он может решить эту игру 
и, следовательно, способен понять, что могло бы быть правдой в оrношении пред­
почтений Гарриет, чтобы она подала ему сигнал таким образом. 

Эrапы игры представлены на рис. 1 8.6, - она касается производства канцеляр­
ских скрепок и скоб. Предпочтения Гарриет выражены с помощью функции возна­
граждения, зависящей от количества изготовленных скрепок и скоб с определенным 
"обменным курсом" между ними. Параметр предпочтения Гарриет 0 определяет от­
носительную стоимость (в долларах) одной скрепки. Например, она может оценить 
скрепки по 0 = 0,45 долл. и это означает, что скобы будут стоить по 1 - 0 = 0,55 долл. 
Таким образом, если будет произведено р скрепок и s скоб, то вознаграждение Гар­
риет составит p0 + s(l  - 0)  долл. за все. Для Робби установлено априорное равномер­
ное распределение Р(0) = Uniform(0; О, 1 ). В процессе самой игры Гарриет делает ход 
первой и может сделать две скрепки, две скобы или по одной каждой. Заrем Робби 
может сделать 90 скрепок, 90 скобок или по 50 Шl)'К каждой. 

Рис. 1 8.6. Дерево игры "Канцелярская скрепка". Каждая ветвь помечена значени­
ями [р, s], обозначающими количество скрепок и скоб, которые будут изrотовле­
ны при выборе этой ветки. Гарриет - человек - может сделать или две скрепки, 
или две скобы, или по одной каждой. {Значения, выделенные светлым курсивом, яв­
ляются стоимостью игры для Гаррнет, если игра на этом закончится, при условии, 
что 0 = 0,45 .) Затем робот Робби делает выбор из трех возможных вариантов - из­
готовить 90 скрепок, 90 скоб или по 50 штук каждой 

Обратите внимание, что если бы Гарриет делала это только для себя, она бы 
просто сделала две скобы со стоимостью игры 1 ,  1 О долл. (Обраrите внимание на 
отметки, приведенные для узлов первого уровня дерева игры на рис. 1 8.6.) Но Роб­
би наблюдает за ее действиями и учится на ее выборе. Что именно он изучает? 
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Эrо зависит от того, как Гарриет делает свой выбор. А как Гарриет сделать свой 
выбор? Эrо зависит от того, как Робби собирается его интерпретировать. Можно 
разорвать этот порочный круг, если отыскать для игры равновесие Нэша. В данном 
случае оно является уникальным и может быть найдено посредством применения 
метода близорукого наилучшего ответа: выбрать любую стратегию Гарриет; вы­
брать лучшую стратегию для Робби, учитывая выбор стратегии Гарриет; выбрать 
лучшую стратегию для Гарриет, учитывая выбор стратегии Робби; и т.д. Процесс 
разворачивается следующим образом. 

1 .  Начать игру с выбора жадной стратегии для Гарриет: сделать две скрепки, 
если она предпочитает скрепки; сделать две скобы, если она предпочитает 
скобы, и сделать по одной каждой, если она безразлична к выбору. 

2 .  Теперь есть три возможности, которые Робби должен рассмотреть с учетом 
стратегии, которую выбрала Гарриет. 
а) Если Робби видит, что Гарриет сделала две скрепки, он делает вывод, 

что она предпочитает скрепки, поскольку в настоящее время он полага­
ет, что ценность скрепки равномерно распределяется между 0,5 и 1 ,0 со 
средним значением 0,75 .  В этом случае для него лучшим планом явля­
ется сделать 90 скрепок с ожидаемым вознаграждением для Гарриет в 
67,50 долл. 

б) Если Робби видит, что Гарриет сделала одну скрепку и одну скобу, он 
делает вывод, что она оценивает скрепки и скобы одинаково по 0,50, по­
этому лучший выбор - сделать по 50 шrук каждой. 

в) Если Робби видит, что Гарриет сделала две скобы, то, исходя из той же 
аргументации, что и в пункте а, он должен сделать 90 скоб. 

3 .  С учетом выбора стратегии со стороны Робби лучшая стратегия для Гарри­
ет на этом этапе несколько отличается от жадной стратегии на этапе 1 . Если 
Робби будет реагировать на изготовление ею одной единицы путем изготов­
ления 50 аналогичных единиц, то ей лучше делать по шrуке каждого изде­
лия не только тогда, когда она действительно равнодушна к выбору между 
двумя изделиями, но и если ее предпочтения где-то недалеко от такого рав­
нодушия. В действительности для нее оптимальной политикой в настоящий 
момент будет делать по одной шrуке каждого изделия, если предпочтитель­
ность скрепок для нее находится приблизительно между 0,446 и 0,554. 

4.  С учетом этой новой стратегии Гарриет стратегия Робби остается неиз­
менной. Например, если она решила сделать по одной шrуке каждого вида 
продукции, он делает вывод, что предпочтение в отношении скрепки явля­
ется равномерно распределенным между 0,446 и 0,554, со средним значени­
ем 0,50, так что лучшим выбором для него будет сделать по 50 шrук каждо­
го изделия. Поскольку стратегия Робби на этом этапе осталась той же, что и 
на этапе 2, лучшим ответом для Гарриет будет посrупить так же, как на эта­
пе 3 ,  а значит, равновесие уже найдено. 
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Благодаря своей стр1rrегии Гарриет, по сути, обучает Робби своим предпочтени­
ям, используя простой код - язык, если хотите, - который следует из анализа рав­
новесия . Также обрагите внимание, что Робби никогда точно не узнает, в чем же 
состоят предпочтения Гарриет, но он выучит достаточно, чтобы оптимально дей­
ствовагь от ее имени, т.е. он будет действовагь так же, как если бы он точно знал ее 
предпочтения. Он доказуемо выгоден дr1я Гарриет в соответствии со сделанными 
предположениями и при допущении, что Гарриет играет в эту игру правильно. 

Метод близорукого наилучшего ответа хорошо работает в этом примере и дру­
гих, ему подобных, но непригоден дr1я более сложных случаев. Можно доказагь, 
что при условии, когда нет ни одной связи, вызывающей проблемы координации, 
нахождение оптимального профиля страгегии дr1я игры содействия сводится к ре­
шению задачи POMDP, пространство состояний которой является основным про­
странством состояния базовой игры плюс параметры 0 предпочтений человека. 
Задачи POMDP в общем случае решать очень трудно (см.  раздел 1 7  .5), но что ка­
сается задач РОМDР, представляющих игры содействия, они всегда имеют допол­
нительную структуру, позволяющую применять более эффективные алгоритмы.  

Игры содействия можно обобщить на самые разные ситуации, чтобы учесть 
наличие в игре нескольких участников-людей, нескольких роботов, людей с несо­
вершенной рациональностью, людей, которые не знают своих предпочтений и т.д. 
Если дr1я пространства действий использовать развернутое или структурирован­
ное предоставление - вместо простых атомарных действий, как в игре "Канце­
лярская скрепка", - то возможности взаимодействия могут быть значительно рас­
ширены. Очень немногие из этих вариаций уже были изучены на текущий момент, 
но можно ожидать, что ключевое свойство игр содействия останется неизменным : 
более умный робот, лучший результаг дr1я человека. 

18.3. Теория кооперативных игр 
Напомним, что в кооперагивных играх используются сценарии принятия реше­

ний, в которых агенты могут заключать между собой обязывающие соглашения о 
сотрудничестве. В результате они могут получить дополнительную выгоду в срав­
нении с тем, что получили бы, действуя в одиночку. 

Мы начнем с введения модели дr1я класса кооперативных игр. Формально эти 
игры называются "кооперативными играми с переносимой полезностью в форме 
харакrеристических функций". Идея модели состоит в том, что, когда группа аген­
тов сотрудничает, эта группа как целое получает некоторую полезность, которая 
затем может быть разделена между членами группы. Наша модель не сообщает, 
какие действия предпримут агенты, и сама структура игры не определяет, как по­
лученное значение будет разделено (это будет обсуждагься позже). 

Формально мы будем использовать формулу G = (N, v), чтобы сказать, 
что кооперативная игра G определяется множеством игроков N = { 1 ,  . . .  , п} и 
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► характеристической функцией v, определяющей для каждого подмножества 
игроков С � N выигрыш, который может получить эта группа игроков, если они 
решат действовать вместе. 

Как правило, мы будем предполагать, что пустое множество игроков не дости­
гает никакого выигрыша (v( { }) = О) и что характеристическая функция неотрица­
тельна ( v( С ) � О для всех С). В некоторых играх может быть сделано дополнитель­
ное допущение о том, что, работая в одиночку, игроки ничего не достигают: 
v( { i} ) = О для всех i Е N. 

18.3.1. Коалиционные структуры и результаты 

В коалиционных играх подмножества игроков принято называть ► коалици­
ями и обозначать как С. В повседневной жизни под понятием "коалиция" обыч­
но подразумевается совокупность людей, имеющих общий мотив (например, "Ко­
алиция за прекращение насилия с использованием огнестрельного оружия"), но 
здесь мы будем называть коалицией любое подмножество игроков. Множество 
всех игроков N принято называть ► большой коалицией. 

В нашей модели каждый игрок должен сделать выбор и присоединиться толь­
ко к одной коалиции (которая может быть коалицией, состоящей только из одно­
го игрока). Следовательно, коалиции образуют некое разделение всего множества 
игроков. Мы будем называть подобное разделение ► коалиционной структурой. 
Формально коалиционная струКl)'ра множества игроков N - это множество коа­
лиций { С 1 , • • • , Ck} ,  такое, что 

С; :;с { }  
C; � N 
С; n С1 = { }  для всех i :;с j Е N 
C1 U · · ·  U Ck = N. 

Например, если имеется N = { 1 ,  2, 3 } ,  то существует семь возможных коалиций: 

{ 1 } , {2 } , { 3 } , { 1 , 2 } , { 2, 3 } , { 3 , 1 }  и { 1 , 2, 3 } 
и пять возможных коалиционных струКl)'р: 

{ { 1 } , { 2 } , { 3 } } , { { 1 } , { 2, 3 } } , { { 2 } , { 1 , 3 } } , { { 3 } , { 1 , 2 } } и { { 1 , 2, 3 } } .  
Мы будем использовать обозначение CS(N) для представления множества всех 

коалиционных струКl)'р для множества игроков N и обозначение CS(z) для пред­
ставления коалиции, к которой принадлежит игрок i. 

Результат, или исход (outcome), игры определяется выборами, которые делают 
игроки в отношении того, какие коалиции сформировать, и выбором того, как раз­
делить между собой выигрыш v(C), который получит каждая коалиция. Формаль­
но при заданной кооперативной игре, определенной как (N, v), результатом явля­
ется пара (CS, х), состоящая из коалиционной струКl)'рЫ и ► вектора выплат 



Глава 1 8. Принятие решений при наличии нескольких агентов 409 

(payoffvector) х = (х 1 , • • • , хп), где Х; - выигрыш, получаемый игроком i. Этот вектор 
должен удовлетворять следующему ограничению: каждая коалиция С распределя­
ет весь свой выигрыш v( С) между ее членами, т.е. 

Jcx; = v(C ) для всех С Е  CS. 

Например, при заданной игре ( { 1 ,  2, 3 } , v), где v({ 1 } ) = 4 и v( { 2, 3 } ) = 1 О, воз­
можным исходом является 

({ { 1 } ,  {2 , 3 }  } ,  (4 ,  5, 5)). 

То есть игрок 1 остается в одиночестве и получает выигрыш 4, тогда как игроки 
2 и 3 образуют команду и получают выигрыш 1 О, который они решили разделить 
поровну. 

Некоторые кооперативные игры имеют такую особенность, что когда две ко­
алиции сливаются воедино, они действуют не хуже, чем если бы они продолжа­
ли действовать по отдельности. Эrо свойство называется ► супераддитивностью. 
Формально игра является супераддитивной, если ее характеристическая функция 
удовлетворяет следующему условию: 

v(C U D) � v(C) + v(D) для всех С, D � N. 

Если игра супераддитивна, то большая коалиция получает выигрыш, который 
по крайней мере так же высок или выше, чем общий выигрыш, полученный любой 
другой коалиционной струюурой. Тем не менее, как мы скоро увидим, суперадди­
тивные игры не всегда заканчиваются большой коалицией и чаще всего по той же 
причине, по которой игроки не всегда приходят к оптимальному по Парето сово­
купному желаемому результа'I)' в игре "Дилемма заключенного". 

1 8.3.2. Стратегия в кооперативных играх 

Основным допущением в теории кооперативных игр является то, что игроки 
будут вырабатывать стратегические решения в отношении того, с кем они будут 
сотрудничать. Ин'I)'итивно понятно, что игроки не заходят сотрудничать с непро­
дуктивными игроками, - они, естественно, будут стараться найти игроков, в со­
вокупности дающих высокий коалиционный выигрыш. Но эти востребованные 
игроки будут делать собственные стратегические рассуждения. Прежде чем мы 
сможем описать эти рассуждения, необходимо дать некоторые дополнительные 
определения. 

Дnя кооперативной игры (N, v) распределением выигрышей или ► дележом 
(imputation) называют вектор выплат, удовлетворяющий следующим двум усло­
виям: 

I7= 1 x; = v(N) , 

x; � v( { i})  для всех i Е N. 
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Первое условие говорит о том, что дележ должен распределять общую стоимость 
большой коалиции; второе условие, известное как ► индивидуальная рациональ­
ность, говорит о том, что каждый игрок в коалиции должен получить выигрыш, ко­
торый по крайней мере не меньше, чем тог, который он получит, рабоrая в одиночку. 

При заданном дележе х = (х 1 , • • •  , хп) и коалиции С �  N мы определяем х(С) как 
сумму L;EC х;, т.е. как общую сумму, выплаченную коалиции С в дележе х. 

Далее определим ► ядро игры (N, v) как множество всех дележей х, удовлетво­
ряющих условию х( С) � v( С) для каждой возможной коалиции С с N. Следов�пель­
но, если дележ х не входит в ядро, то существует некоторая коалиция С с N, такая, 
что v( С) >  х( С). Игроки в коалиции С оrказались бы присоединиться к большой ко­
алиции, потому что им выгоднее находиться в коалиции С. 

Следовательно, ядро игры состоит из всех возможных векторов выплат, против 
которых ни одна коалиция не может возразить на том основании, что они могли 
бы добиться большего успеха, не вступая в большую коалицию. Таким образом, 
если ядро пустое, то большая коалиция просто не может сформироваться, потому 
что независимо or того, как большая коалиция распределит свои выплаты, кака­
я-то меньшая коалиция оrкажется к ней присоединиться. Основные вычислитель­
ные вопросы, касающиеся ядра, связаны с выяснением, является ли оно пустым и 
находится ли в ядре некоторое конкретное распределение выплат. 

Определение ядра естественным образом приводит к системе линейных нера­
венств, приведенных ниже. (Неизвестными являются переменные х 1 , • • • , Хп, а зна­
чения v(C) являются константами.) 

х; � v({ i})  для всех i � N 

L;eN х; = v(N) 

L;ec х; � v( С) для всех С С N 

Любое решение этих неравенств будет определять дележ в ядре. Эrи неравенства 
можно представить в виде задачи линейного программирования, воспользовавшись 
фиктивной целевой функцией (например, максимизировать сумму L;eN х;), 
что позволит выполнять расчет дележей с полиномиальными временными затрата­
ми по оrношению к количеству неравенств. Трудность состоит в том, что это при­
водит к экспоненциальному количеству неравенств (по одному для каждой из 2n 

возможных коалиций). Таким образом, данный подход дает алгоритм проверки не 
пустоrы ядра, который требует экспоненциальных затрат времени. Можно ли до­
биться большего, чем этот результат, зависит or изучаемой игры: для многих клас­
сов кооперативных игр проблема проверки не пустоты ядра является со-NР-пол­
ной. Соответствующий пример будет приведен ниже. 

Прежде чем продолжить обсуждение, давайте рассмоrрим пример суперадди­
тивной игры с пустым ядром. В игре имеются три игрока, N = { 1 ,  2, 3 } ,  и характе­
ристическая функция, определяемая следующим образом. 
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v(C)= {� 
если 1с1 � 2 
в противном случае 

Теперь рассмотрим некоторый дележ (х 1 , х2, х3) для этой игры. Поскольку 
v(N) = l ,  должен иметь место случай, когда по крайней мере один игрок i име­
ет xi > О, а два других получат общую выплату, которая меньше 1. Однако эти два 
игрока могут улучшить ситуацию, создав коалицию без игрока i и разделив выпла-
1)' l между собой. Но так как это утверждение верно для всех дележей, ядро игры 
должно быть пустым. 

Понятие ядра формализует идею стабw,ьности большой коалиции в том смыс­
ле, что ни одна коалиция не может нарушить ее с выгодой для себя. Однако ядро 
может содержать необоснованные дележи в том смысле, что один или несколько 
игроков могут почувствовать, что к ним отнеслись несправедливо. Предположим, 
что N= { l ,  2} и дана характеристическая функция v, определенная следующим об­
разом: 

v( { l } ) = v( { 2 } ) = 5 
v({ l ,  2 } ) = 20. 

Здесь сотрудничество даст игрокам прибавку l О по сравнению с вариантом, когда 
они работают по отдельности, поэтому инrуитивно понятно, что в этом сценарии 
сотрудничество будет иметь смысл. Также легко увидеть, что дележ (6, 14) входит 
в ядро этой игры: ни один из игроков не может отказаться от коалиции, чтобы по­
лучить для себя более высокую полезность. Однако с точки зрения игрока 1 та­
кой дележ может показаться необоснованным, потому что 9/1 О прибавки от созда­
ния коалиции досталось игроку 2. Следовательно, понятие ядра показывает, когда 
большая коалиция может быть сформирована, но ничего не говорит о том, как рас­
пределить выплаты между игроками. 

► Подход Шепли - это элегантное предложение, как разделить выигрыш v(N) 
среди игроков при условии, что большая коалиция N сформирована. Этот метод 
был сформулирован нобелевским лауреатом Ллойдом Шепли в начале 1950-х го­
дов. Подход Шепли предназначен для получения справедливой схемы распределе­
ния. 

Что значит справедливый в этом контексте? Было бы несправедливо распреде­
лять выигрыш v(N) в зависимости от цвета глаз игроков, их пола или цвета кожи. 
Сrуденты часто предполагают, что выигрыш v(N) должен всегда делиться поров­
ну, что может показаться справедливым, пока мы не примем во внимание, что это 
означает выдать одинаковое вознаграждение игрокам, которые вносят большой 
вклад, и игрокам, которые ничего не вносят. Идея Шепли состояла в предположе­
нии, что единственный справедливый способ разделить выигрыш v(N) - сделать 
это в зависимости от того, сколько каждый игрок внес в создание этого выигрыша. 

Сначала необходимо определить понятие ► предельного вклада (marginal 
contribution) игрока. Предельный вклад, который игрок i делает в коалиции С, -
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это тот выигрыш, который игрок i сможет добавить (или удалить), если присоеди­
нится к коалиции С. Формально предельный вклад, который игрок i делает в коа­
лиции С, обозначается как тс;(С) : 

тс;(С) = v(C U { i} ) - v(C). 

Теперь первой попыткой определения схемы распределения выигрыша в соот­
ветствии с предложением Шепли - о том, что игроки должны быть вознаграж­
дены в зависимости от их вклада - может быть выплата каждому игроку i вы­
игрыша, который он мог бы добавить в коалиции, включающей всех остальных 
игроков: 

Проблема здесь в том, что такой подход неявно подразумевает, что игрок i явля­
ется последним игроком, вступившим в коалицию. Поэтому, предложил Шепли, 
необходимо рассмотреть все возможные способы, которыми могла бы сформиро­
ваться большая коалиция, т.е. все возможные упорядочения игроков в N, и рассмо� 
треть выигрыш, который игрок i добавляет к предшествующим игрокам в упо­
рядочении. Затем игрок должен быть вознагражден тем, что ему выплачивается 
средний предельный вклад, который игрок i вносит во всех возможных упорядо­
чениях игроков, к множеству игроков, предшествующих игроку i в этом упорядо­
чении. 

Пусть Р обозначает все возможные перестановки (т.е. упорядочения) игро­
ков в N; тогда членов Р мы обозначим как р, р', . . .  и т.д. Принимая, что р Е 'Р и 
i Е N, обозначим как р; множество игроков, предшествующих игроку i в упоря­
доченности р. Тогда выигрышем по Шепли для игры G является дележ ф(G) = 
(ф 1 (G), . . .  , фп(G)), определяемый следующим образом: 

1 
<p; (G) = - L тс;( р; ). (18.1) п ! ре 'Р 

Все это должно убедить вас, что распределение выигрыша по Шепли следует 
считать разумным предложением. Но наиболее примечательным фактом являет­
ся то, что это уникальное решение для набора аксиом, характеризующих "справед­
ливую" схему распределения выплат. Однако прежде, чем привести определения 
этих аксиом, необходимо дагь еще несколько определений. 

Определим ► нейтрального игрока (dummy player) как игрока i, который ни­
когда не добавляет никакой выгоды коалиции, т.е. те;( С) =  О для всех С �  N - { i} .  
Будем говорить, что два игрока, i и }, являются ► симметричными игроками, 
если они всегда вносят одинаковый вклад в коалиции, т.е. тс;(С) = mcj(C) для всех 
С �  N - { i,j} .  И наконец, если G = (N, v) и G' = (N, v') - игры с одинаковым набо­
ром игроков, то игра G + G' - также игра с тем же набором игроков и характери­
стической функцией v", которая определяется как v"(C) = v(C) + v'(C). 
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Теперь, имея эти определения, можно дать определение аксиом справедливо­
сти, удовлетворяемых распределением выигрыша по Шелли.  

• Эффективность. LiEN ф;(G) = v(N). (Весь выигрыш должен быть распреде­
лен.) 

• Нейтральный игрок. Если игрок i в игре G является нейтральным, то 
ф;(G) = О. (Игрок, который никогда ничего не вносит, не должен ничего по­
лучать.) 

• Симметрия. Если игроки i и j  симметричны в игре G, то ф;(G) = фj(G).  
(Игроки, дающие одинаковый вклад, должны получать одинаковые выпла­
ты .) 

• Аддити вность. Выигрыш я вляется аддитивным относительно игр .  
Для всех игр G = (N, v) и G'  = (N, v' )  и для всех и гроков i Е N имеем 
ф;(G + G') = ф;(G) + ф;(G') . 

Аксиома аддитивности по общему признанию является довольно формальной. 
Однако, если принять ее как требование, можно установить следующее ключевое 
свойство: • распределение выигрыша по Шепли является единственным способом рас­
пределения коалиционного выигрыша таким образом, чтобы удовлетворить эти акси­
омы справедливости. 

1 8.3.3. Вычисления в кооперативных играх 

С теоретической точки зрения у нас теперь есть вполне удовлетворительное ре­
шение. Но с точки зрения выполнения расчетов необходимо найти компактный 
способ представления кооперативных игр и методы эффективного вычисления ос­
новных концепций решения, таких как ядро и распределение по Шелли. 

Очевидным представлением для характеристической функции является табли­
ца, содержащая значения v(C) для всех 2n коалиций. Однако это невозможно для 
достаточно больших значений п. Был разработан ряд подходов к компактному 
представлению кооперативных игр, которые можно разделить на два класса в зави­
симости от того, являются они полными или нет. Полная схема представления -
это схема, позволяющая представить любую кооперативную игру. Недостаток пол­
ных схем представления заключается в том, что всегда найдутся игры, которые 
нельзя будет представить компактно. Альтернативой является использование схе­
мы представления, которая гарантированно компактна, но не является полной. 

Сети предеnьных вкnадов 

Рассмотрим одну из таких схем представления, называемую ► сетями предель­
ного вклада (marginal contribution nets - МС-сети). Будем использовать слегка 
упрощенную версию для облегчения представления, - это упрощение делает ее 
неполной, тогда как исходная версия МС-сетей является полным представлением. 
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Идея сетей предельного вклада состоит в представлении характеристической 
функции игры (N, v) в виде множества правил выигрыша коалиции, представ­
ленных в форме (С;, х;), где С; � N - коалиция, а Х; - числовое значение. Что­
бы вычислить выигрыш коалиции С, достаrочно просто просуммировать все пра­
вила (С;, х;), такие, что С; � С. Следовательно, при известном множестве правил 
R = { (С1 , х1), • • •  , (Ck, xk) } соответствующая характеристическая функция имеет вид 

v(C) = L {x; I (С;, х;) Е R и С; � С}. 

Предположим, что имеется набор правил R, содержащий следующие три пра­
вила: 

{ ( { ] , 2 } , 5), ( { 2 } , 2), ( { 3 } , 4) } . 
Тогда, например, мы имеем следующее: 
• v( { 1 } ) = О ( поскольку правила не применяются), 
• v({ 3 } ) = 4  (третье правило), 
• v( { 1 ,  3 } )  = 4 (третье правило), 
• v({ 2, 3 } ) = 6  (второе и третье правила) и 
• v( { 1 ,  2, 3 } )  = 1 1  (первое, второе и третье правила). 

С помощью такого представления можно вычислить распределение выигры­
ша по Шепли за полиномиальное время. Основная идея заключается в том, что ка­
ждое правило можно понимать как самостоятельное определение игры, в которой 
игроки симметричны. С учетом аксиом аддитивности и симметрии Шепли можно 
записать, что, выигрыш по Шепли ф;(R) игрока i в игре, связанной с набором пра­
вил R, будет равен просто 

ф;(R) = L {1�1 
(C, x) e R  О 

если i Е С  
в противном случае. 

Представленная здесь версия сетей предельных вкладов является неполной схе­
мой представления: существуют такие игры, характеристическую функцию кото­
рых невозможно представить с использованием наборов правил в форме, описанной 
выше. Более общий тип сетей предельных вкладов допускает правила в виде (ф, х), 
где ф - формула логики высказываний по игрокам N: коалиция С удовлетворяет ус­
ловию ф, если она соответствует удовлетворяющему присваиванию для формулы ф. 

Такая схема является полным представлением, - в худшем случае нам потре­
буется правило для каждой возможной коалиции. Тем не менее с помощью этой 
схемы распределение выигрыша по Шепли также можно вычислить за полиноми­
альное время, однако это потребует включения деталей, более сложных, чем про­
стейшие правила, описанные выше, хотя основной принцип будет тот же. (По­
дробности приведены в разделе "Библиографические и исторические заметки" в 
конце этой главы.) 
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Коапиционные структуры дпя достижения максимапьноrо 
общеrо бпаrоnопучия 

Если предположить, что агенты имеют общую цель, то это приводит к совер­
шенно иному взгляду на кооперативные игры. Например, если рассматривать аген­
тов как работников одной компании, то стратегические соображения, связанные, 
скажем, с формированием коалиций, соответствующих ядру, утрачивают актуаль­
ность. Вместо этого может потребоваться организовать рабочую силу (агентов) в 
команды таким образом, чтобы максимизировать их общую производительность. 
При более общем подходе задача будет заключаться в том, чтобы найти такую ко­
алицию, которая максимизирует общее благополучие (social welfare) в системе, 
определяемое как сумма выигрышей отдельных коалиций. Если обозначить общее 
благополучие коалиционной струК1)'ры CS как sw(CS), то оно будет определяться 
следующей формулой: 

sw(CS) = L v(C). 
CE CS 

Тогда оптимальная для всех коалиционная струК1)'ра CS* относительно игры G 
максимизирует эту величину. Нахождение оптимальной для всех коалиционной 
струК1)'рЫ является вполне очевидной вычислительной задачей, которая изучалась 
вне сообщества мультиагентных систем: иногда ее называют ► задачей разбие­
ния множества. К сожалению, эта задача является NР-трудной, поскольку число 
возможных струК1)'р коалиции растет в геометрической прогрессии в зависимости 
от количества игроков. 

Поэтому нахождение оптимальной струК1)'ры коалиции посредством наивно­
го исчерпывающего поиска вообще невозможно. Пользующийся популярностью 
подход к формированию оптимальной струК1)'рЫ коалиции основан на идее по­
иска подпространства в ► графе коалиционной структуры. Объяснять эту идею 
удобнее всего на конкретном примере. 

Предположим, имеется игра с четырьмя агентами, N = { 1 ,  2, 3, 4 } . Для это­
го набора агентов существует пятнадцать возможных коалиционных струК1)'р. Их 
можно организовать в виде графа коалиционной струК1)'ры так, как показано на 
рис. 1 8 .7, где узлы на уровне f графа соответствуют всем струК1)'рам коалиции с 
точно f коалициями. Восходящее ребро в графе представляет разделение коалиции 
в нижнем узле на две отдельные коалиции в верхнем узле. 

Например, существует ребро от коалиционной структуры { { 1 } , { 2, 3, 4 } }  к ко­
алиционной струК1)'ре { { 1 } , { 2 } , { 3 ,  4 } } ,  потому что эта последняя коалиционная 
структура получается из первой путем деления коалиция { 2, 3, 4 }  на коалиции { 2 } 
и { 3, 4 } . 

Оптимальная коалиционная структура CS* находится где-то в пределах гра­
фа коалиционной струК1)'рЫ, поэтому, чтобы найти ее, как кажется, следовало 
бы оценить каждый узел в графе. Но давайте рассмотрим два нижних ряда узлов 
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графа - уровни I и 2. На этих двух уровнях появляется каждая возможная коали­ция (исключая пустую коалицию). (Но, безусловно, на этих двух уровнях приве­дены не все возможные коалиционные структуры.) Теперь давайте предположим, что поиск возможной коалиционной структуры ограничивается только двумя эти­ми уровнями, - выше по графу он не поднимется . Пусть CS' будет лучшей коа­лиционной структурой, которая будет найдена на этих двух уровнях, и пусть CS* будет оптимальной коалиционной структурой для графа в целом . Далее, пусть 
С* - коалиция с наибольшим выигрышем из всех возможных коалиций: 

С е arg max v(C). 
C ,;;, N  

Уровень 4  

Уровень 1 

Рис. 18.7. Граф коалиционной структуры для N = { 1 ,  2, 3, 4 } .  Уровень I включает 
коалиционную структуру, содержащую единственную коалицию; уровень 2 включа­
ет коалиционные структуры, содержащие по две коалиции, и т.д. 

Выигрыш лучшей коалиционной структуры, которую можно найти на первых двух уровнях графа, должен быть по крайней мере таким же, как выигрыш лучшей возможной коалиции: sw(CS') � v(C*). Так должно быть потому, что каждая воз­можная коалиция появляется по меньшей мере в одной коалиционной структуре на первых двух уровнях графа. Поэтому как худший случай предположим, что 
sw( CS') = v( С*). Сравним выигрыши sw(CS') и sw(CS*). Поскольку sw(CS') является максималь­но возможным выигрышем для любой структуры коалиции и в игре существует п агентов (на рис. 1 8 .7 n = 4), то максимально возможное значение sw(CS*) будет равно nv(C*) = п • sw(CS'). Другими словами, в наихудшем случае выигрыш наи­лучшей коалиционной структуры можно найти на первых двух уровнях графа как .l часть лучшей, где п - это число агентов. Следовательно, хотя поиск на первых п двух уровнях графа не гарантирует нахождение оптимальной коалиционной 
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струК'I)'ры, он гарантированно дает нам одну, которая будет не хуже .l части опти­п 
мальной. На практике это часто будет намного лучше, чем нахождение оптимума. 

1 8.4. Принятие коллективных решений 
Теперь от разработки агентов мы переходим к разработке механизма - зада­

че построения правильной игры, в которую будет играть ряд агентов. Формально 
механизм состоит из следующих элементов. 

1 .  Язык для описания множества допустимых стратегий, которые смогут ис­
пользовать агенты. 

2. Особый агент, называемый ► центром, собирающий сообщения о выборе 
стратегии от агентов в игре. (Например, аукционист является центром аук­
циона.) 

3. Правило определения результатов, известное всем агентам, которое центр 
использует для определения выплат каждому агенrу с учетом выбранной им 
стратегии. 

В этом разделе обсуждаются некоторые из наиболее важных механизмов. 

1 8.4. 1 . Распределение задач в контрактной сети 

Вероятно, старейшим и наиболее важным методом решения задач в мультиа­
гентной среде, изучавшимся в сообществе ИИ, является ► протокол контракт­
ных сетей . Это протокол высокого уровня, предназначенный для организации 
процесса совместного решения задач и управления им. Как следует из его назва­
ния, метод контрактной сети был вдохновлен тем, как компании используют кон­
тракты. 

Общий протокол контрактных сетей включает четыре основных этапа, как по­
казано на рис. 1 8.8. Процесс начинается с того, что агент устанавливает необходи­
мость совместных действий в отношении какой-либо проблемы. Такая необходи­
мость может возникнуть потому, что агент не имеет возможности решить стоящую 
перед ним задачу самостоятельно либо совместное ее решение может оказаться 
лучше (быстрее, эффективнее, точнее). 

Агент сообщает о возникшей проблеме другим агентам, отправив в сеть сооб­
щение с ► объявлением о задаче, а затем высrупает в качестве ► менеджера этой 
задачи на весь период ее решения. Сообщение с объявлением о задаче должно со­
держать достаточно информации, чтобы получатели могли судить о том, готовы ли 
они взяться за нее и могут ли они участвовать в торгах за это задание. Точная ин­
формация, включаемая в объявление о задаче, будет зависеть от проблемной об­
ласти: это может быть некоторый код, который требуется выполнить, или логиче­
ское определение той цели, которая должна быть достигнута. Объявление о задаче 
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таюке может включаrь другую информацию, которая может потребоваrься получа­
телям, например срок выполнения, требования к качеству исполнения и т.д. 

Выявление проблемы 

Решение о выборе t 

t 
t/•t 

� 
Объявление о задаче t 

t 
t�-t 

Подача заявок и торг t 

Рис. 18.8. Протокол распределения задач в контрактной сети 

Когда агент получает объявление о задаче, он должен оценить ее с точки зре­
ния его собственных возможностей и предпочтений. В частности, каждый агент 
должен определить, есть ли у него возможность выполнить поставленное задание, 
а также желает он этого или нет. На этом основании он заrем может подать ► за­
явку на выполнение поставленной задачи. Заявка, как правило, включает сведения 
о возможностях ее подателя, имеющих отношение к объявленной задаче, а также 
сроки и любые прочие условия, при которых эта задача будет выполнена. 

В общем случае в ответ на одно объявление о задаче менеджеру может посту­
пить сразу несколько заявок. Исходя из содержащейся в заявках информации, ме­
неджер выбирает наиболее подходящего для решения данной задачи агента (или 
агентов). Выигравшие торг агенты будут уведомлены через сообщения о выигры­
ше и станут подрядчиками этой задачи, взяв на себя ответственность за нее до тех 
пор, пока выполнение задачи не будет завершено. 
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Основные вычислительные задачи, необходимые для реализации протокола 
контракrных сетей, можно определить следующим образом. 

• Обработка объявления о задаче .  После получения объявления о задаче 
агент решает, хочет ли он под1rгь заявку на ее выполнение. 

• Обработка заявок. При получении нескольких заявок менеджер задачи дол­
жен принять решение, какому аген'IУ поручить ее выполнение, а з1rгем от­
править ему сообщение о выигрыше. 

• Выполнение принятых решений. Успешные участники rоргов (подрядчики) 
должны попыт1rгься выполнить поставленную задачу, чrо может означать 
создание новых подзадач, коrорые будут предложены в сети с помощью до­
полнительных объявлений о задачах. 

Несмотря на свою npoC10'JY (а возможно, из-за нее), контракrная сеть, вероят­
но, является наиболее широко применяемой и наиболее изученной струК"fУрОЙ для 
совместного решения задач. Она вполне естественным образом может применять­
ся во многих СИ'JУациях, например каждый раз, когда вы заказываете такси в ком­
пании UЬer. 

18.4.2. Распределение ограниченных ресурсов 
с помощью аукционов 

Одной из важнейших проблем в мультиагентных системах является распреде­
ление дефицитных ресурсов, но можно назвагь это и npocro "распределением ре­
сурсов", поскольку на пракrике самых полезных ресурсов в определенном смысле 
всегда недост1ПОчно. Наиболее важным подходом в этом случае является ► аукци­
он. Простейший вариант аукциона - когда имеется единственный ресурс и много 
возможных участников торrов или ► претендентов. Каждый претендент i имеет 
собственное значение полезности v; для данного ресурса. 

В некоrорых случаях каждый претендент имеет собственную оценку ценности 
ресурса. Например, нелепый рождественский свитер может быть очень привлека­
тельным для одного участника и совершенно бесполезным для другого. 

В других случаях, как, например, на аукционе по приобретению прав на бу­
рение в нефтеносном регионе, ресурс может иметь общепринятую оценку -
добыча нефти в регионе позволит получить определенную сумму денег Х, и все 
участники rоргов оценивают доллар одинаково, - но существует неопределен­
ность в отношении rого, каким фактически будет это значение Х на практике.  
Разные претенденты имеют различную информацию и, следоВ1Пельно, дают раз­
ные оценки истинной стоимости ресурса. В любом случае участники торгов в 
конечном счете приходят к собственным оценкам v;. Зная собственную оценку v;, 
каждый претендент по ходу аукциона получает шанс в соответствующий мо­
мент или несколько моментов сделать ► ставку, т.е .  предложить свою цену Ь;. 
Предложивший наивысшую ставку Ьтах выигрывает ресурс, но выплачиваемая 
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им цена не обязательно должна быть именно Ьтах, это зависит от используемо­
го типа аукциона. 

Самым известным типом аукциона является ► аукцион с рас'JУщей ставкой,3 
или ► английский аукцион, в котором центр начинает торг, объявляя минималь­
ную (или резервную) ставку bmin• Если какой-то из претендентов готов заплатить 
эту сумму, центр увеличивает ставку на некоторое приращение d, предлагая но­
вую цену Ьт;п + d, и торг продолжается в том же духе. Аукцион заканчивается, ког­
да больше никто не желает делать ставок, и последний претендент выигрывает ре­
сурс, заплатив определяемую его ставкой цену. 

Почему следует считаrь этот тип хорошим методом выбора подрядчика? Одной 
из целей аукциона является максимизация ожидаемого дохода для продавца. Дру­
гой целью является максимизация такого показателя, как глобальная полезность. 
Эrи цели в определенной степени совпадают, поскольку одним из аспектов мак­
симизации глобальной полезности является гарантия того, что аукцион выиграет 
тот агент, у которого собственная оценка ресурса наивысшая (а значит, он согласен 
заплаrить больше других). Говорят, что аукцион является ► эффективным, если 
ресурсы поступают к агенту, который ценит их больше всех других агентов. Аук­
цион с растущей ставкой является, как правило, и эффективным, и максимизирую­
щим доход, но если резервная ставка будет установлена слишком высокой, претен­
дент, который ценит ресурс в наибольшей степени, может так и не сделать ставки, 
а если резервная ставка будет установлена слишком низкой, то продавец может по­
лучить меньший доход. 

Вероятно, самыми важными аспектами, которые должен обеспечивать выбран­
ный тип аукциона, является воодушевление достаточного количества претенден­
тов войти в игру, и предотвращение возможности их вхождения в ► сrовор. Сго­
вор - это несправедливое или незаконное соглашение между двумя или более 
претендентами с целью манипулирования ценами .  Участники могут вступить в 
сговор, как заключая секретные закулисные сделки, так и без предварительной до­
говоренности в рамках правил для данного типа аукциона. Например, в 1 999 году 
в Германии было выставлено на продажу с аукциона десять блоков частот элек­
тромагнитных волн из диапазона, выделенного для сотовой телефонной связи. Все 
блоки были представлены на торги одновременно (т.е. ставки принимались одно­
временно на все десять блоков) с установленным правилом, что любая очередная 
ставка должна быть не менее чем на 1 0% выше предыдущей ставки на данный 
блок. В аукционе участвовали только два надежных, платежеспособных участни­
ка торгов, и первый из них, корпорация Mannesman, сделала ставку по 20 млн не­
мецких марок за блок на блоки 1-5 и по 1 8, 1 8  млн за блок на блоки 6--1 О. Почему 
1 8, 1 8  млн, в чем здесь смысл? Один из менеджеров второго надежного участни­
ка торгов, компании T-MoЬile, сказал, что они "интерпретировали первую заявку 

3 Слово "аукцион" происходит от латинского augeo, означающего "увеличивать, умно­
жать". 
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корпорации Mannesman как предложение". Обе стороны понимали, что повы­
шение ставки 1 8, 1 8  млн на l 0% составит 1 9,99 млн, поэтому ставку корпорации 
Mannesman можно было понимать как предложение: "Каждый из нас может по­
лучить половину всех блоков по цене 20 млн, так давайте не будем портить игру, 
поднимая цены". И действительно, компания T-Moblle сделала ставку по 20 млн 
марок на блоки частот 6--1 О, и на этом торги закончились. 

Правительство Германии получило гораздо меньше, чем ожидало, потому что 
два конкурента смогли использовать механизм торгов, чтобы прийти к неrnасно­
му соглашению о том, как им не конкурировать между собой. С точки зрения пра­
вительства, гораздо лучший результат мог бы быть получен за счет любого из сле­
дующих изменений в правилах аукциона: установить более высокую резервную 
ставку; провести аукцион с той же первичной стоимостью, но с закрьrгыми ставка­
ми, чтобы конкуренты не мог.ли общаться посредством своих ставок; наконец, най­
ти способ привлечь к торгам третьего участника. Также, возможно, само правило 
l 0% было ошибкой в схеме работы аукциона, поскольку оно существенно упро­
щало точную передачу сигналов от корпорации Mannesman к компании T-Mobile. 

В общем случае как функция полезности продавца, так и rnобальная функция 
полезности выигрывают от увеличения количества участников торгов, хотя гло­
бальная полезность может и пострадать, если принять во внимание потерю вре­
мени тех участников торгов, которые не имеют никаких шансов на победу. Один 
из способов привлечения к торгам большего числа участников - упростить для 
них сам механизм аукциона. В конце концов, если участие в аукционе требует от 
участников проведения слишком больших исследований или расчетов, они могут 
решить поискать свои деньги где-то еще. 

Поэтому желательно, чтобы участники торгов имели доминантную страте­
гию. Напомним, что "доминантная" означает, что данная стратегия успешно рабо­
тает против всех других стратегий, а это, в свою очередь, означает, что агент может 
принять ее без оглядки на все остальные стратегии. Агент с доминантной страте­
гией может просто делать свои ставки, не теряя времени на анализ возможных 
стратегий других агентов. Механизм, посредством которого агенты получаюг до­
минирующую стратегию, называется механизмом ► защиты от манипулирова­
ния (strategy-prooЛ. Если, как это обычно бывает, эта стратегия предполагает от­
крытие участниками торгов их истинных значений v;, то ее называют механизмом 
с ► прямым раскрытием (truth-revealing) информации или истинным, иногда 
также используется термин мотивационно совместимый (incentive compatihle). 
► Принцип раскрытия гласит, что любой механизм может быть преобразован 
в эквивалентный механизм с прямым раскрытием информации,  поэтому частью 
процесса разработки механизма является поиск этих эквивалентных механизмов. 

Как было установлено, аукцион с растущей ставкой имеет большинство этих 
желательных свойств. Участник с высшим значением v; получает ресурс за цену 
Ь0 + d, где Ь0 является самой высокой ставкой среди всех других агентов, а d- это 
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приращение от организатора аукциона.4 У участников торгов есть простая доми­нирующая стратегия: продолжай делать ставки до тех пор, пока текущая цена ре­сурса будет ниже твоей оценки v;. Механизм не является истинным в полном смысле слова, потому что победитель аукциона раскрывает только то, что его v; � Ь0 + d, т.е. у нас есть лишь нижняя граница v;, но не точное значение оценки. Недостатком (с точки зрения продавца) аукциона с растущей ставкой являет­ся то, что он может препятствовать конкуренции. Предположим, что в аукционе на диапазон частот сотовой связи участвует одна преуспевающая компания, ко­торая, несомненно, имеет возможность влиять на существующих клиентов и ин­фраструктуру таким образом, чтобы получить большую прибыль, чем кто-либо другой. Потенциальные конкуренты могут понять, что у них нет шансов на этом аукционе с восходящей ставкой, поскольку преуспевающая компания, находясь в более выгодном положении, всегда сможет предложить ставку выше. В результате конкуренты могут вообще не входить в торги, и преуспевающая компания в конеч­ном итоге выигрывает аукцион по резервной цене. Другим отрицательным свойством английского аукциона являются достаточно высокие расходы на коммуникацию. Либо аукцион должен проводиться в одном подходящем помещении, либо все его участники должны иметь высокоскоростные безопасные каналы связи. В любом случае им нужно будет потратить определен­ное время, чтобы пройти через несколько раундов торгов. Альтернативным механизмом, предъявляющим значительно меньше требова­ний в отношении коммуникаций, является ► аукцион с закрытыми предложе­ниями. Каждый участник делает одну ставку и сообщает об этом аукционисту, при этом другим участникам она остается неизвестной. При таком механизме уже не существует простой доминирующей стратегии. Если ваша оценка равна v; и вы считаете, что для всех прочих агентов максимальная ставка равна Ь0, то вам следу­ет предложить Ь0 + Е при небольшом Е, если эта сумма будет меньше вашей оцен­ки v;. Следовательно, размер вашей ставки зависит от вашей оценки ставок других агентов, что потребует от вас больше работы. Кроме того, обратите внимание, что агент с наивысшей оценкой v; не обязательно выиграет такой аукцион. Эго компен­сируется тем фактом, что аукцион подобного типа будет более конкурентным, сни­жающим преимущества преуспевающих участников торгов. Небольшое изменение в механизме аукциона с закрытыми ставками приводит к ► закрытому аукциону второй цены, известному также как ► аукцион Викри.5 В таких аукционах победителем является участник с самой высокой ставкой, но 
4 На самом деле существует небольшая вероятность того, что агент с самым высо­

ким v; не сможет получить ресурс, если Ь0 < v; < Ь0 + d. Эту вероятность можно сделать 
сколь угодно малой, уменьшая приращение d. 

5 Этот тип аукционов получил свое название в честь Уильяма Викри ( 1 9 1 4-1 996), ко­
торый получил за эту работу Нобелевскую премию 1 996 года по экономике и умер от 
сердечного приступа три дня спустя. 
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уплатить он должен "вторую цену", Ь0, т.е. ставку своего ближайшего конкурента. 
Эта простая модификация полностью устраняет все сложные размышления, не­
избежные в стандартных аукционах (или аукционах первой цены), поскольку до­
минирующей стратегией в этом случае будет просто ставка, равная v;, - этот ме­
ханизм раскрывает истинное состояние дел. Обратите внимание, что полезность 
агента i с точки зрения его ставки Ь; равна v;, а самым лучшим предложением со 
стороны других агентов, Ь0, будет 

если Ь; > Ь0, 

в противном случае. 

Чтобы понять, почему Ь; = v; является доминирующей стратегией, обрати­
те внимание, что если разность (v; - Ь0) положительна, то любая ставка, которая 
приводит к выигрышу в аукционе, является оптимальной, и, в частности, ставка, 
равная v;, также выиграет аукцион. С другой стороны, если разность (v; - b0) отри­
цательна, то оптимальной будет любая ставка, приводящая к проигрышу в аукци­
оне, и, в частности, ставка, равная v;, также не выиграет аукцион. Поэтому сделать 
ставку, равную v;, будет оптимальной стратегией для всех возможных значений Ь0, 

и в действительности v; является единственной ставкой, обладающей этим свой­
ством. Из-за своей простоты и минимальных требований к вычислениям со сторо­
ны как продавца, так и участников торгов, аукцион Викри широко используется в 
распределенных системах ИИ. 

Поисковые системы в Интернете каждый год проводят несколько триллионов 
аукционов с целью продажи мест для рекламных объявлений, выводимых вместе 
с результатами поиска, а сайты онлайн-аукционов обрабатывают товаров на сум­
му 1 00 млрд долл. в год, причем во всех этих случаях применяются те или иные 
варианты аукциона Викри. Обратите внимание, что ожидаемый доход продавца 
равен Ь0, что является тем же самым ожидаемым результатом, который в пределе 
будет получен от английского аукциона, когда приращение d стремится к нулю. В 
действительности это очень общий результат: ► теорема эквивалентности дохо­
дов утверждает, что, с небольшими оговорками, любой механизм аукциона, в ко­
тором участники имеют собственные значения v;, известные только им (но знают 
распределение вероятностей, на основании которого эти значения бьmи выбраны), 
будет приносить одинаковый ожидаемый доход. Этот принцип означает, что раз­
личные механизмы аукционов конкурируют между собой не в отношении генера­
ции доходов, а скорее в отношении других их качеств. 

Хотя аукцион второй цены является открывающим истинные значения v;, было 
установлено, что при выставлении на продажу п товаров и выборе для аукциона 
механизма с п + 1 ценой, он уже не будет обладать свойством раскрытия истинных 
значений v;. Многие поисковые системы Интернета в своих аукционах использу­
ют такой механизм, когда на продажу выставляется одновременно п слотов для 
размещения рекламных объявлений на странице результатов поиска. Претендент, 
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сделавший самую высокую ставку, выигрывает верхний слот, занявший второе ме­
сто, получает второй слот и т.д.  Каждый победитель платит цену в размере став­
ки следующего за ним участника и при этом понимает, что выплата будет сделана 
только в том случае, когда пользователь действительно щелкнет на данном ре­
кламном объявлении. Верхние слоты считаются более ценными, поскольку пред­
полагается, что они с большей вероятностью будут замечены и прочитаны поль­
зователем. 

Допустим, есть три участника торгов, Ь 1 , Ь2 и Ь3, и каждый из них имеет соб­
ственную оценку полезности щелчка мышью: v 1 = 200, v2 = 1 80 и v3 = 1 00. Пусть на 
торги выставлено п = 2 слота и известно, что на верхнем слоте пользователи щел­
кают в 5% случаев отображения, а на нижнем - в 2%. Если все участники торгов 
сделают ставки в соответствии  со своими истинными оценками, то участник Ь 1 

выиграет верхний слот и заплатит за него 1 80, при этом его ожидаемая отдача со­
ставит (200 - 1 80) х 0,05 = 1 .  Второй слот получит участник Ь2 . Однако участник Ь 1 
может заметить, что если он сделает ставку где-то в диапазоне 1 О 1 -1 79, то уступит 
верхний слот участнику Ь2, но выиграет второй слот с ожидаемой отдачей 
(200 - 1 00) х 0,02 = 2 .  Как видите, в этом случае участник Ь 1 удваивает ожидаемую 
отдачу, сделав ставку меньше своей истинной оценки ожидаемой полезности. 

В общем случае участники торгов на этом аукционе с п + 1 ценой должны по­
тратить много усилий на анализ предложений других участников, чтобы опреде­
лить свою лучшую стратегию, - в этом случае нет простой доминирующей стра­
тегии .  

Аггарвал и соавт. ( [  1 8],  2006) показали, что для подобной задачи с несколькими 
слотами существует уникальный механизм открывающего истину аукциона, в ко­
тором выигравший слот j платит цену за слот j только в размере платы те дополни­
тельные щелчки, которые доступны для слота} и недоступны для слота} + 1 .  Выи­
гравший аукцион платит цену за нижний слот для оставшихся щелчков. В нашем 
примере ставка участника Ь 1 будет истинной, т.е. 200, и он должен будет уплатить 
1 80 за дополнительные 0,05 - 0,02 = 0,3 щелчка на верхнем слоте, но заплатит по 
стоимости нижнего слота, 1 00, для остальных 0,02 щелчка. Таким образом, общая 
ожидаемая отдача для участника Ь 1 будет (200 - 1 80) х 0,03 + (200 - 1 00) х 0,02 = 2,6. 

Другой пример того, когда аукционы могут вступить в игру с ИИ, - в случае, 
когда несколько агентов должны решить, стоит ли им скооперироваться с целью 
выполнения совместного плана. Хунсбергер и Гросц ([ 1 097], 2000) показали, что 
подобная цель может быть эффективно достигнута с помощью аукциона, на кото­
ром агенты претендуют на роли в совместном плане. 

Общее бnаго 

Теперь давайте рассмотрим игру другого типа, в которой страны устанавли­
вают свою политику контроля загрязнения воздуха. У каждой страны есть вы­
бор : можно уменьшить загрязнение со стоимостью -1 О пунктов за реализацию 
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необходимых изменений или же можно сохранить прежнюю сИ1уацию с загрязне­
нием аrмосферы, что даст ей чисrую полезность -5 (в виде дополнительных ме­
дицинских расходов и т.д. ), а также добавит по - 1 пункту каждой другой стране 
(поскольку воздух свободно перемещается между странами). Очевидно, что до­
минирующей стратегией для каждой страны будет "продолжать загрязнение", но 
если имеется 1 00 стран и каждая будет следоваrь этой политике, то каждая страна 
получит общую полезность в размере - 1 04 пункта, тогда как, если бы каждая стра­
на снизила у себя загрязнение воздуха, все страны получили бы полезность - 1  О 
пунктов. Такая сиrуация называется ► трагедией общего достояния : если никто 
не обязан платить за использование общего ресурса, то он может использовать­
ся таким образом, что это приведет к снижению общей полезности для всех аген­
тов. Сиrуация похожа на игру "Дилемма заключенного": в игре есть другое реше­
ние, которое будет лучше для всех участников, но, похоже, рациональные агенты 
не смогут прийти к этому решению в рамках текущей игры. 

Один из подходов к решению проблемы трагедии общего достояния состоит 
в замене нынешнего механизма таким, в котором с каждого из агентов будет взи­
маться плаrа за использование общего ресурса. В более общем плане необходимо 
убедиться, что все ► внешние эффекты - т.е. такие воздействия на глобальную 
полезность, которые не распознаются в действиях отдельных агентов - были сде­
ланы явными. 

Правильная установка цен - самая сложная часть задачи. В пределе этот под­
ход сводится к созданию механизма, в котором каждый агент будет эффектив­
но привлечен к максимизации глобальной полезности, но сможет достигаrь этой 
цели путем принятия локальных решений.  Так, налог на выбросы углекислого газа 
можно рассматриваrь как пример механизма, стимулирующего использование об­
щих ресурсов таким образом, что при правильном его применении глобальная по­
лезность максимизируется . 

Как оказалось, существует такая конструкция механизма, известная как меха­
низм ► Викри-Кларка-Гровса, или ► VCG, которая обладает двумя необходи­
мыми свойствами.  Во-первых, это максимизация полезности, т.е .  этот механизм 
максимизирует глобальную полезность, представленную как сумма полезностей 
для всех сторон, E;v;. Во-вторых, этот механизм является раскрывающим истин­
ную значимость - доминирующей стратегией для всех агентов является рас­
крытие их истинной оценки значимости. У них нет необходимости в проведении 
сложных страrегических расчетов. 

Приведем пример использования задачи распределения каких-то общих ресур­
сов. Предположим, что городские власти пришли к заключению о необходимости 
установки нескольких бесплаrных беспроводных интернет-трансиверов. Однако 
количество имеющихся в наличии трансиверов меньше числа районов, которые 
хотели бы установить их у себя . Городские власти, безусловно, стремятся мак­
симизировать общегородскую полезность новых устройств, но если они просто 
спросят у администрации каждого района "Насколько ценно для вас получение 
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бесплатноrо трансивера (кстаги, мы отдадим их тем, кто больше всеrо их ценит)?", 
то у каждоrо района будет стимул дать как можно более высокую оценку. Меха­
низм VCG сводит Эl)' уловку на нет и стимулирует районные власти указ�пь их ис­
тинную оценку значимости. Эrот механизм работает следующим образом. 

1 .  Центр просит каждоrо агента сообщить ero оценку полезности по обсужда­
емому вопросу v;. 

2. Центр выделяет имеющиеся ресурсы множеству победителей W, отобранно­
му так, чтобы максимизировагь L;e w v;. 

3.  Для каждоrо победившеrо агента центр вычисляет, какой размер потерь, ко­
торые понесли проигравшие (каждый из которых получил О полезности, 
а мог бы получить Vj, если бы стал победителем), вызван их личным участи­
ем в игре. 

4. В завершение каждый выигравший агент платит центру налог, эквивалент­
ный этой потере. 

Например, предположим, что у rородских властей имеется в наличии 3 транси­
вера, на которые претендуют 5 rородских районов, определивших ценность полу­
чения устройства соответственно как 1 00, 50, 40, 20 и 1 О. Таким образом, в множе­
ство из трех победителей W войдут районы, указавшие значения ценности 1 00, 50 
и 40, а глобальная полезность от распределения устройств таким образом составит 
1 90. Для каждоrо победителя, в случае, если бы он не участвовал в игре, победите­
лем стал бы район, предложивший ценность 20. Следовагельно, каждый победи­
тель плагит rородским властям налог в размере 20. 

Все победители должны быть счастливы, потому что они уплатят налог, кото­
рый меньше их объявленноrо значения ценности, а все проигравшие также будут 
счастливы, поскольку объявленное ими значение ценности меньше, чем взимае­
мый налог. Вот почему механизм раскрывает истинные значения стоимости. В на­
шем примере ключевое значение равно 20: было бы иррационально делагь ставку 
выше 20, если ваше истинное значение оценки на самом деле было ниже 20, и на­
оборот. Поскольку ключевое значение может быть каким уrодно ( оно зависит от 
других участников, оценки которых вам неизвестны), то это означает, что в любой 
СИ'I)'ации будет иррационально делагь любые ставки, кроме той, которая со<УГвет­
ствует вашей истинной оценке значимости ресурса. 

Механизм VCG является очень общим и может применяться ко всем видам игр, 
а не только к аукционам, - будет достагочно лишь слегка обобщить описанный 
выше механизм. Например, в ► комбинаторном аукционе на торгах доСl)'пно не­
сколько разных лотов и каждый претендент имеет право разместить несколько ста­
вок, каждая на некоторое их подмножество. Например, в торгах на участки земли 
один претендент может хотеть либо участок Х, либо участок У, но не то и друrое 
одновременно; друrому могут быть интересны любые три соседних участка и т.д. 
Механизм VCG может использоваться для нахождения оптимального результата 
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и в этом случае, хотя и с 2N подмножествами из N лотов, за которые ведется борь­
ба, - вычисление оптимального результата в этом случае является NР-полной за­
дачей. С несколькими оговорками механизм VCG является уникальным: любой 
другой оптимальный механизм, по существу, будет ему эквивалентен. 

1 8.4.3. Голосование 

Следующим классом механизмов, которые мы рассмотрим, являются проце­
дуры голосования, подобные тем, которые используются при принятии полити­
ческих решений в демократических обществах. Направление изучения процедур 
голосования принадлежит к научной области, получившей название ► теории об­
щественного выбора. 

Основными установками здесь являются следующие. Как обычно, у нас есть 
множество N = { 1 ,  . . .  , п} агентов, которые в этом разделе будут участниками голо­
сования (voters). Эти участники хотят принимать решения относительно множе­
ства n = { w 1 , w2, • • •  } возможных результатов. При политических выборах каждый 
элемент множества n может обозначать отдельного кандидата, победившего на 
выборах. 

Каждый участник голосования будет иметь собственные предпочтения в отно­
шении множества n. Эти предпочтения, как правило, выражаются не в количе­
ственных значениях полезности, а скорее в виде качественных сравнений, поэтому 
здесь мы будем использовать запись w 't-; w', означающую, что исход w ранжиру­
ется агентом i выше исхода о/. Так, в случае выборов с тремя кандидатами агент i 
может иметь предпочтения w2 ';-; w3 ';-; w 1 • 

Основная задача теории социального выбора состоит в том, чтобы обьединить 
эти предпочтения с использованием ► функции общественного блага (social 
welfare) для вывода ► упорядоченности социального предпочтении (social 
preference order): рейтинга кандидатов от наиболее предпочтительного до наиме­
нее предпочтительного. В некоторых случаях нас может интересовать лишь ► со­
циальный результат (social outcome) - наиболее предпочтительный результат по 
группе в целом. Мы будем записывать ro -;-*  w' для обозначения того, что w ранжи­
руется выше w' в упорядоченности социального предпочтения. 

Более простая установка - это случай, когда нас не интересует получение 
полного рейтинга кандидатов и требуется лишь выбрать множество победителей. 
► Функции социального выбора (social choice junction) принимает в качестве 
входных данных порядок предпочтений для каждого участника голосования и вы­
дает в качестве выходных данных множество победителей. 

Демократические общества хотят получить социальный результат, отражаю­
щий предпочтения участников голосования, т.е. избирателей. К сожалению, это 
не всегда бывает просто. Рассмотрим ► парадокс Кондорсе, знаменитый пример, 
представленный в 1785 году маркизом де Кондорсе ( 1743-1794). Предположим, 
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у нас есть три результата, !1 = { Ша, wь, Wc } , и три участника голосования N = { 1 ,  2, 3 } , 
имеющие следующие предпочтения . 

roa >- 1 Wь >- 1 roc 
roc >-2 (J)a >-2 rоь 
rоь >-з (J)c >-з (J)a 

( 1 8 .2) 

Теперь предположим, что необходимо выбрать одного из этих трех кандидатов на 
основе приведенных предпочтений. Парадокс в данном случае состоит в том, что: 

• 2/3 избирателей предпочитают претендента w3 претенденту w 1 , 

• 2/3 избирателей предпочитают претендента w 1 претенденту w2 , 

• 2/3 избирателей предпочитают претендента w2 претенденту w3 ! 

В результате для каждого возможного победителя можно указать другого канди­
дата, которого бы предпочли по крайней мере 2/3 участников голосования . Огсю­
да вполне очевидно, что при демократии не следует надеяться сделать каждого 
участника голосования счастливым . Это свидетельствует о том, что существуют 
сценарии, в которых ♦ не зависимо от того, какой из результатов будет выбран, 
большинство участников голосования предпочло бы иной исход. Возникает естествен­
ный вопрос: существует ли какая-либо "хорошая" процедура социального выбора, 
которая действительно отражала бы предпочтения участников голосования? Что­
бы ответить на этот вопрос, сначала нужно уточнить, что имеется в виду, когда го­
ворится, что процедура ''хорошая". Ниже перечислены некоторые свойства, кото­
рыми должна была бы обладать хорошая функция общественного блага. 

• Условие Парето. Условие Парето просто говорит о том, что если каждый 
участник голосования ставит w; выше w1, то w; >- * w1. 

• Условие победителя Кондорсе. О результате говорят, что он является побе­
дителем Кондорсе, если большинство кандидатов предпочитают его в срав­
нении со всеми иными результатами.  Другими словами, победитель Кон­
дорсе - это кандидат, который победит любого другого кандидата в парных 
выборах. Условие победителя Кондорсе гласит, что если w; является победи­
телем Кондорсе, то W; должен быть первым в общем рейтинге .  

• Независимость нерелевантных ш�ьтернатив (Independence of Irrelevant 
Alternatives - ПА). Предположим, существует ряд кандидатов, включаю­
щих w; и w1, а предпочтения участников голосования таковы, что W; >- * w1. 
Теперь предположим, что один из участников голосования некоторым обра­
зом изменил свои предпочтения, но не в отношении взаимного рейтинга w; 
и w1 . Условие ПА гласит, что предпочтение w; >- *  w1 в этом случае не долж­
но измениться . 

• Нет диктатуры. Не должно быть так, чтобы функция общественного блага 
просто выводила в результат предпочтения одного избирателя и игнориро­
вала предпочтения всех остальных избирателей. 
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Эти четыре условия кажутся вполне разумными, но фундаментальная теорема 
теории социального выбора, называемая ► теоремой Эрроу (по имени ее автора, 
Кеннета Эрроу), утверждает, что все эти четыре условия выполнить невозможно 
(Д11я случаев, когда имеется по крайней мере три возможных результата). А это оз­
начает, что ДJIЯ любого механизма социального выбора, на котором мы могли бы 
остановиться, будут иметь место некоторые ситуации (возможно, необычные или 
шrrологические ), при которых неизбежно получение противоречивых результатов. 
Однако это вовсе не означает, что демократическое принятие решений является 
делом безнадежным в большинстве случаев. Мы еще не познакомились ни с од­
ной из фактически существующих процедур голосования, так что давайте сначала 
рассмотрим некоторые из них. 

• При наличии только двух кандидатов предпочтительным механизмом явля­
ется ► простое большинство голосов ( стандартный метод голосования в 
США и Великобритании). Каждого избирателя тем или иным образом спра­
шивают, какого из двух кандидатов он предпочитает, и тот, кто набрал наи­
большее количество голосов, является победителем. 

• При более чем двух возможных результатах общепринятой является систе­
ма ► множественного голосования. Каждому избирателю тем или иным 
образом преДJiаrают сделать свой выбор, и избранным считается тот канди­
дат (или кандидаты) (более чем один в случае равенства голосов), который 
получит наибольшее количество голосов, даже если никто из кандидатов не 
получит большинства. Несмотря на то что на практике этот вариант очень 
распространен, множественное голосование многократно подвергалось кри­
тике за непопулярность результатов. Ключевой проблемой здесь является то, 
что она принимает во внимание только кандидата с наивысшим рейтингом в 
предпочтениях каждого избирателя . 

• ► Метод Борца (назван по имени преДJiожившего его Жана-Шарля де Бор­
да, современника и противника маркиза Кондорсе) - это процедура голосо­
вания, учитывающая всю информацию об упорядоченности предпочтений 
избирателя . Предположим, имеется k кандидатов.  Тогда ДJIЯ каждого изби­
рателя i берется его упорядоченность предпочтений �;  и возглавляющему 
ее кандидаrу присваивается k баллов, следующему за ним кандидаrу - k- 1 
баллов и так далее, до последнего в упорядоченности кандидата, которому 
дается один балл. Все набранные кандидатами баллы суммируются, образуя 
социальный результат � * ,  в котором кандидаты упорядочены по набранно­
му ими суммарному количеству баллов, от большего к меньшему. На прак­
тике при использовании этой системы одной из проблем является то, что 
избирателям преД11аrается выразить свои предпочтения в отношении всех 
кандидатов, тогда как некоторых из них может интересовать только опреде­
ленное подмножество кандидатов. 
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• В системе ► голосования по одобрению избир�пель определяет некоторое 
подмножество из всех кандидатов, которых он одобряет. Победителем (или 
победителями) становится тот, кто одобрен большинством избирателей. Эrа 
система часто используется, когда задача состоит в том, чтобы выбрать сра­
зу нескольких победителей. 

• В системе ► мгновенного повторного голосования избиратели ранжируют 
всех кандидатов, и если некоторый кандидат получает большинство первых 
мест в этих списках, он объявляется победителем. Если такого нет, из числа 
избираемых исключается кандидат с наименьшим количеством первых мест 
в списках ранжирования избирателей. Эrот кандидат будет удален из всех 
списков предпочтений (в результате место того избирателя, который был на 
первом месте, теперь займет другой кандидат), и процесс повторится. В кон­
це концов какой-то из кандидатов получит большинство первых мест в спи­
сках ранжирования избир�пелей ( если не окажется кандидатов с равным ко­
личеством голосов) и будет считаться избранным. 

• При ► голосовании по правилу истинного большинства победителем 
становится кандидат, который побеждает каждого другого кандидата в пар­
ном сравнении. Избирателям предлагается предоставить полный рейтинг 
предпочтений по всем кандидатам. Говорят, что кандидат w выигрывает 
у кандидата w', если для большинства избирателей w >-- w', а не наоборот, 
w' >-- w. Эrа система имеет хорошее свойство: большинство всегда соглаша­
ется с выбором победителя, но в то же время она имеет и нехорошее свой­
ство: не каждые выборы могут состояться: например, в парадоксе Кондорсе 
ни один из кандидатов не получит большинства. 

Стратеrические манипуляции 

Помимо теоремы Эрроу, еще одним важным негативным результатом в области 
теории общественного выбора является ► теорема Гиббарда--Саттертуейта. Эrа 
теорема касается обстоятельств, при которых избиратель способен получить выго­
ду за счет искажения своих предпочтений. 

Вспомним, что функция социального выбора принимает в качестве входных 
данных порядок предпочтений для каждого участника голосования и выдает в ка­
честве выходных данных множество кандидатов-победителей. Безусловно, каж­
дый участник голосования имеет собственные истинные предпочтения, но в опре­
делении функции социального выбора ничего не говорится о том, что участники 
голосования обязаны правдиво сообщать о своих истинных предпочтениях, - они 
могут заявить о любых предпочтениях, которых пожелают. 

В некоторых случаях для участника голосования может иметь смысл исказить 
свои предпочтения. Например, при множественном голосовании избиратели, по­
лагающие, что у предпочитаемого ими кандидата нет никаких шансов на победу, 
могут проголосовать за свой второй выбор вместо первого. А это означает, что, 
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в сущности, множественное голосование представляет собой игру, в которой 
участники голосования должны думать стратегически (в отношении других изби­
рателей), и это позволит им максимизировать свою ожидаемую полезность. 

Тогда возникает интересный вопрос: можно ли разработать избирательный ме­
ханизм, который будет обладать иммунитетом к подобным манипуляциям, - ме­
ханизм, раскрывающий истинное состояние дел? Теорема Гиббарда-Сатrер,уейта 
утверждает, что это невозможно: ♦ любая функция социального выбора, удовлет­
воряющая условию Парето для проблемной области более чем с двумя результата­
ми, является либо манипулируемой, либо диктатурой. Это означает, что для любой 
"разумной" процедуры социального выбора могут иметь место некоторые обсто­
ятельства, при которых участник голосования в принципе может получить выго­
ду, искажая свои предпочтения. Однако эта теорема ничего не говорит о том, как 
такие манипуляции могут быть выполнены; и она не говорит о том, что подобные 
манипуляции вероятны на практике. 

1 8.4.4. Торг 

Торг или переговоры - это еще один механизм, который часто используется 
в повседневной жизни. Эта тема рассматривалась в теории игр, начиная с 1 950-х 
годов, а в недавнее время торг стал задачей для автоматизированных агентов. Пе­
реговоры применяются в тех ситуациях, когда агентам необходимо достичь согла­
шения по вопросу, представляющему общий интерес. Агенты делают друг дру­
гу предложения (также называемые заявками или сделками) в рамках конкретных 
протоколов, и либо принимают, либо отклоняют каждое поступившее предло­
жение. 

Торг по nротокояу чередующихся nредяожений 

Одним из распространенных протоколов ведения переговоров является ► мо­
дель торга с чередующимися предложениями. Для простоты вновь примем на­
личие только двух агентов. Торг проходит в виде последовательности раундов. 
Агент А I начинает торг в раунде О, делая некоторое предложение. Если агент А2 
принимает это предложение, торг завершается и оно реализуется. Если агент А2 
отклоняет предложение, то переговоры переходят к следующему раунду. На этот 
раз предложение делает агент А2, а агент А I решает, принять его или отклонить, 
и т.д. Если переговоры никогда не прекращаются (поскольку агенты отклоняют 
каждое поступающее предложение), то результат определяется как ► конфликт 
(conjlict deal). Удобное упрощающее допущение заключается в том, что оба агента 
предпочитают достичь результата - любого результата - за конечное время, не 
зацикливаясь на бесконечно длительном конфликте. 

Чтобы проиллюстрировать модель переговоров с чередующимися предложе­
ниями, воспользуемся сценарием дележа пирога. Основная идея состоит в том, 
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что имеется некоторый ресурс ("пирог") с ценностью I , который может быть раз­делен на две части, по одной для каждого агента. Таким образом, предложением в этом сценарии является пара значений (х, 1 -х), где х представляет часть пирога, которую получит агент А 1 , а I -х - оставшуюся часть пирога, которая достанет­ся агеН1)' А2 • Следоваrельно, пространством возможных сделок ( ► переговорным множеством) является 
{(х, 1 - х) : 0 �x � I } . 

Итак, как агенты должны вести переговоры в данной си,уации? Чтобы понять от­вет на этот вопрос, сначала рассмотрим несколько более простых случаев. Сначала предположим, что допускается только один раунд переговоров. Сле­доваrельно, агент А 1 делает предложение, а затем агент А2 может его либо принять (и сделка будет реализована), либо отклонить (и тогда будет реализован конфликт). Фактически это ►ультиматум (ultimatum game), поскольку в этой ситуации оче­видно, что агент А 1 - тот, кто ходит первым - обладает всей властью. Предпо­ложим, что агент А 1 предлагает отдать ему весь пирог, т.е. предлагает сделку ( l , О). Если агент А2 отклонит ее, то будет реализован конфликт. Поскольку по определе­нию агент А2 предпочел бы получить О, но не конфликт, ему будет выгоднее при­нять предложение. Безусловно, агент А I не может получить лучшего результата, чем забрать себе весь пирог. Следовательно, эти две стратегии - агент А I пред­лагает отдать ему весь пирог и агент А2 принимает это предложение - образуют равновесие Нэша. Следующим рассмотрим случай, когда разрешается ровно два раунда перегово­ров. Теперь власть перешла в другие руки : агент А2 может просто отклонить пер­вое предложение и тем самым превратить эту игру в игру с одним раундом, в ко­торой уже он, агент А2, делает первый ход, а следоваrельно, может получить весь пирог. В общем случае, если количество раундов является фиксированным чис­лом, то тот агент, который делает последний ход, получает весь пирог. А теперь перейдем к общему случаю, когда количество раундов не ограничено. Предположим, что агент А I использует следующую стратегию: 
Всегда предлагать ( 1 , О) и всегда отклонять любое встречное предложение. 
А что для агента А2 является лучшим ответом на это предложение? Если агент А2 будет постоянно его отклонять, то агенты будут вести переговоры веч­но, что по определению является худшим результатом для агента А2 (а также и для агента А 1 ). Следоваrельно, для агента А2 не может быть лучшего варианта, чем принять первое предложение, сделанное агентом А 1 • И вновь это будет равнове­сие по Нэшу. Но что если агент А I использует иную стратегию, например такую: 

Всегда предлагать (0,8, 0,2) и всегда отклонять любое встречное предложение. 
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Используя аналогичные аргументы, можно показать, что для этого предложе­
ния или ♦ для любой возможной в переговорном множестве сделки (х, 1 -х ), существу­
ет пара равновесных стратегий Нэша, заключающихся в том, что результатом будет 
соглашение по сделке, предложенной на первом этапе переговоров. 

Нетерпеливые агенты 

Проведенный выше анализ говорит о том, что если не накладывать ограниче­
ний на количество раундов, то количество равновесий Нэша будет бесконечным. 
Поэтому давайте добавим следующее допущение: 

Для любого результата х и этапов времени t 1 и t2, где t 1 < t2, оба агента 
предпочтут результат х в момент времени t 1 результату х в момент времени t2 • 

Другими словами, агенты являются нетерпеливыми . Стандартный подход к 
нетерпению состоит в использовании коэффициента обесценивания 1; (см. раз­
дел 1 7  . 1 . 1 )  для каждого агента (О ::;;  1; < 1 ). Предположим, что в какой-то момент пе­
реговоров агент i предлагает кусок пирога размером х. Ценность куска пирога раз­
мером х в момент времени t будет равна 1! х. Таким образом, на первом этапе 
переговоров (время О) ценность будет равна 1? х = х и в любой последующий мо­
мент времени ценность того же предложения будет уже меньше. Большее значение 
коэффициента 1; (ближе к 1 ) подразумевает больше терпения, а меньшее его зна­
чение означает меньше терпения . 

Прежде чем проанализировать общий случай, сначала рассмотрим торг при 
фиксированном количестве этапов времени, как это было выше. На первом ра­
унде анализ будет таким же, как тот, который был приведен выше: переговоры 
сводятся к ультиматуму. Однако на втором раунде ситуация меняется, посколь­
ку стоимость пирога уменьшается в соответствии с коэффициентом обесцени­
вания 1i· Допустим, что агент А2 отклонил начальное предложение агента А 1 и 
теперь он может получить весь пирог благодаря ультиматуму во втором раун­
де. Но ценность всего пирога будет уже меньше: для агента А2 она составит 
только 12 • Агент А 1 может учесть этот факт, сделав предложение ( 1 - 12, 12), и 
агент А2 вполне может его принять, поскольку на текущий момент времени А 2 не 
может получить лучший результат, чем 12 • (Если вас беспокоит, что произойдет 
при ничейном результате, то просто сделайте предложение равным ( 1 - (12 + Е), 
12 + Е) для небольшого значения Е .) 

Можно сделать вывод, что две стратегии - агент А I делает предложение 
( 1 - 12, 12) и агент А2 его принимает - находятся в равновесии Нэша. В соответ­
ствии с этим протоколом терпеливые игроки (те, у которых 12 больше) смогут по­
лучить более крупные куски пирога и в этом случае терпение действительно явля­
ется добродетелью. 

Теперь рассмотрим общий случай, когда нет ограничений на количество раун­
дов. Как и в случае торгов с единственным раундом, агент А I может подготовить 
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предложение, которое агент А2 должен будет принять, поскольку оно даст ему мак­
симально возможную сумму с учетом коэффициентов обесценивания. Как было 
установлено, в такой ситуации агент А I получит 

а агент А2 получит остаток. 

l - 12 
1 - ''012 ' 

Переrоворы в отношении распредеnения заданий 

В этом разделе рассматриваются переговоры в ► проблемных областях, пред­
полагающих выполнение заданий. В таких проблемных областях требуется вы­
полнить некоторое множество заданий, каждое из которых первоначально назна­
чается определенному множеству агентов. Эти агенты могут извлечь выгоду путем 
проведения переговоров о том, кто будет выполнять какое задание. Например, 
предположим, что одни задания выполняются на токарном станке, а для выпол­
нения других необходим фрезерный станок, и что любому агенту, работающему 
на станке, приходится нести значительные расходы, связанные с его настройкой. 
Тогда одному агенту будет иметь смысл предложить другому следующее: "Мне в 
любом случае придется выполнить настройку фрезерного станка, тогда, может, 
я выполню все твои задания, для которых необходим фрезерный станок, а ты вы­
полнишь все мои задания, для которых нужен токарный станок?" 

В отличие от сценария с торгом в данном случае переговоры начинаются при 
уже известном первоначальном распределении заданий, поэтому, если агенты не 
смогут договориться в отношении каких-либо предложений по перераспределе­
нию работ, то они просто будут выполнять задания Т;0 , которые были назначены 
им изначально. 

Чтобы упростить ситуацию, еще раз предположим, что имеется только два 
агента. Пусть Т - это множество всех заданий и пусть ( 7i0 , т2° ) - это начальное 
распределение заданий между двумя агентами в момент времени О. Каждое зада­
ние из множества Т может быть назначено только одному из агентов. Далее пред­
положим, что определена функция затрат с, которая для любого множества зада­
ний 1' дает положительное действительное число с(1'), определяющее те затраты, 
которые любой из агентов понесет при выполнении заданий множества 1'. (Будем 
полагать, что размер затрат зависит только от самого задания и не связан с выпол­
няющим его агентом.) Функция затрат является монотонной: увеличение количе­
ства заданий никогда не приводит к уменьшению затрат, а затраты при отсутствии 
заданий - т.е. когда агент ничего не делает - равны нулю: с( { }) = О. В качестве 
примера предположим, что затраты на настройку фрезерного станка равны 1 О, 
а выполнение на нем каждого задания требует затрат, равных 1 ,  поэтому затраты 
на выполнение на фрезерном станке двух заданий составят 1 2, а на выполнение 
множества из пяти заданий потребует затрат, равных 1 5. 
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Предложение вида (Т1 , Т2) означает, что агент i обязуется выполнить множе­
ство заданий Т; с заrратами с(Т;). Полезность U для агента i - это сумма, которую 
он получит в случае принятия им предложения, которая вычисляется как разность 
между заrратами на выполнение этого нового множества заданий и затратами на 
выполнение первоначально назначенного ему множества заданий: 

U;((T1 , Т2)) = с(Т;) - с( ТР ) . 

Предложение (Т1 , Т2) будет ► индивидуально рациональным, если U;((T1 , Т2)) 2:: 
2:: О для обоих агентов. Если сделка не является индивидуально рациональной, то 
по крайней мере один агент может добиться большего успеха, просто выполняя за­
дания, которые ему бьmи назначены изначально. 

Переговорное множество для проблемных областей, предполагающих выпол­
нение заданий (при условии рациональности агентов), представляет собой множе­
ство предложений, которые являются как индивидуально рациональными, так и 
оптимальными по Парето. В этой сиrуации нет смысла делать индивидуально не­
рациональное предложение, которое будет отклонено, как и делать некое предло­
жение, когда существует лучшее предложение, повышающее полезность одного 
агента и не ухудшающее полезностей всех остальных агентов. 

Монотонный nротокоn уступок 

Протокол переговоров, который будет рассмотрен применительно к проблем­
ным областям, предполагающим выполнение заданий, носит название ► монотон­
ный протокол уступок. Правила этого протокола следующие. 

• Переговоры проводятся в виде серии раундов. 
• В первом раунде оба агента одновременно предлагают сделку, D; = (Т, , Т2) из 

переговорного множества. (Это важное отличие от правила чередующихся 
предложений, использовавшегося выше.) 

• Договоренность будет достигнута, если два агента предлагают сделки D 1 

и D2 соответственно, такие, что либо U1 (D2) 2:: U1 (D 1 ), либо U2(D1) 2:: UiD2), 
т.е. если один из агентов установит, что сделка, предложенная другим, по 
крайней мере так же хороша или даже лучше, чем сделка, которую предло­
жил он. Если соглашение достигнуто, то правило определения договорной 
сделки будет следующим. Если предложение каждого агента соответствует 
или превосходит предложение другого агента, то одно из них выбирается 
случайным образом. Если только одно предложение превосходит предложе­
ние другого или совпадает с ним, то это соглашение и будет соглашением 
сделки. 

• Если соглашение не было достигнуто, то переговоры всrупают в новый 
раунд одновременных предложений. В раунде t + 1 каждый агент должен 
либо повторить свое предложение из предыдущего раунда, либо сделать 
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► уступку - внести предложение, которое для другого агента будет пред­почтительнее (т.е. будет иметь для него более высокую полезность). • Если ни один из агентов не делает уС1)'пок, переговоры завершаются и оба агента реализуюr конфликт, выполняя задания, которые были назначены им первоначально. 
Поскольку переговорное множество конечно, агенты не могут вести перегово­ры бесконечно: либо они достигнут соглашения, либо будет иметь место раунд, в котором ни один из них не сделает уС1)'пки. Однако этот протокол не гарантирует, что соглашение будет достигнуто быстро: поскольку количество возможных сде­лок определяется как 0(2 1 71), можно предположить, что переговоры будут продол­жаться в течение раундов, количество которых экспоненциально зависит от коли­чества назначенных заданий. 
Стратеrин Жозена 
До сих пор еще ничего не бьшо сказано о том, как участники переговоров мог­ли бы или должны вести себя при использовании монотонного протокола усrупок в проблемных областях, предполагающих выполнение заданий. В таких случаях одной из возможных стратегий является ► стратегия Жозена. Идея стратегии Жозена заключается в измерении готовности агента риско­

вать конфликтом. Инrуитивно понятно, что агент будет более склонен к риску конфликта, если разница в полезности между его текущим предложением и кон­фликтной сmуацией невелика. В этом случае агент мало что потеряет, если пере­говоры зайдут в rупик и возникнет конфликт, и поэтому готов пойти на риск кон­фликта в большей степени, чем пойти на усrупки. И наоборот, если разница в полезности между текущим предложением агента и конфликтной сиrуацией вы­сока, то агент может многое потерять в результате конфликта и, следов�пельно, бу­дет менее склонен к риску его возникновения, а значит, в большей степени готов делать уС1)'пки. Готовность агента i к риску возникновения конфликта в раунде t можно оце­нить следующим образом. 
riskf = 

Полезность агента i, утраченная за счет уС1)'пки и принятия предложения агента j Полезность агента i, утраченная за счет отказа от уС1)'nок и возникновения конфликта До тех пор пока не будет достигнуто соглашение, значение готовности агента 
riskf будет находиться в пределах от О до 1 .  Более высокие значения (ближе к 1 )  показываюr, что агент i мало что потеряет в случае конфликта и поэтому более охотно примет риск его возникновения. Стратегия Жозена утверждает, что первое предложение каждого агента должно представлять собой сделку из переговорного множества, максимизирующую его 
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собственную полезность (их может быть больше, чем одна). Далее, в раунде t пе­
реговоров агентом, который должен сделаrь уступку, будет тот аrент, у которого 
значение riskf меньше, т.е. аrент, который потеряет больше от возникновения кон­
фликта, когда ни один из агентов не сделает уступки. 

Следующий вопрос, на который нужно найти ответ, - "Сколько нужно усту­
пить?" Оrвет, предоставляемый стратегией Жозена, формулируется так: "Доста­
точно, чтобы изменить баланс риска конфликта для другого агента". Иначе гово­
ря, агент должен пойти на минимш,ьную уступку, которая заставит другого агента 
уступить в следующем раунде. 

В стратегии Жозена есть еще одно, последнее, уточнение. Предположим, что 
в какой-то момент оба агента имеют равный риск. Тогда, согласно стратегии, они 
оба должны уступить. Но, зная это, один из аrентов может потенциально "дезерти­
ровать", отказавшись от уступки и тем самым получив преимущество. Всякий раз, 
когда возникает ситуация одинакового риска, чтобы избежать возможности усту­
пок с обеих сторон, стратегия дополняется предложением аrентам "бросить моне­
ту", чтобы решить, кто из них должен будет уступить. 

При такой стратегии достигнутое соrnашение будет оптимальным по Парето и 
индивидуально рациональным. Однако, поскольку размер переговорного множе­
ства экспоненциально зависит от количества заданий, следование этой стратегии 
может потребовать 0(2 1 71 ) раз вычислять функцию затрат на каждом этапе перего­
воров. И в завершение укажем, что стратегия Жозена (дополненная правилом бро­
ска монеты) находится в равновесии Нэша. 

Резюме 
• Мультиагентное планирование необходимо, если в проблемной среде при­

сутствуют и другие агенты, с которыми можно сотрудничать или сопер­
ничать. Существует возможность построения совместных планов, но они 
должны быть дополнены некоторой формой координации, если два агента 
соглашаются на выполнение совместного плана. 

• Теория игр описывает рациональное поведение агентов в ситуациях, ког­
да несколько агентов взаимодействуют между собой. Теория игр определяет 
способы принятия мультиагекrных решений, а теория принятия решений -
способы принятия решений единственным агентом. 

• Концепции решений в теории игр предназначены для описания рациональ­
ных результатов игр - результатов, которые могут быть достигнуты, если 
каждый агент будет действовать рационально. 

• Теория некооперативных игр предполагает, что агенты должны прини­
мать свои решения независимо друг от друга. Равновесие Нэша является 
наиболее важной концепцией решения в теории некооперативных игр. Рав­
новесие Нэша - это профиль стратегии, в котором ни один из агентов не 
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имеет стимула отклониться от указанной ему стратегии. Разработаны мето­
ды для работы с повторяющимися и последовательными играми. 

• Теории кооперативных игр рассмагривает ситуации, в которых агенты мо­
гут принимагь обязывающие соглашения для формирования коалиций с це­
лью сотрудничества. Концепции решения в кооперагивной игре направлены 
на формальное определение, какие из коалиций будут стабильными (ядро) 
и как можно честно разделить выигрыш, полученный коалицией (подход 
Шепли). 

• Для некоторых важных классов задач мультиагентного принятия решений 
были разработаны специализированные методы: контрактная сеть для ор­
ганизации совместного выполнения заданий; аукционы для эффективного 
распределения ограниченных ресурсов; переговоры и торги для достижения 
соглашений по вопросам, представляющим общий интерес; процедуры го­
лосования для суммирования и обобщения предпочтений. 

Библиографические и исторические заметки 
Примечательно, что исследователи в области искусственного интеллекта даже 

не начинали сколько-нибудь серьезно рассматривагь вопросы, связанные с взаимо­
действием агентов между собой, вплоть до начала 1 980-х годов, а теория мультиа­
гентных систем все еще не определилась как отдельная дисциплина в области ИИ 
и десятилетие спустя. Тем не менее идеи, намекавшие на мультиагентные систе­
мы, выдвигались еще в 1 970-х годах. Например, в своей весьма влиятельной тео­
рии общества мыШJ1ения Марвин Мински ( [ 1 583] ,  1 986; [1584], 2007) выдвинул 
предположение, что сознание человека организовано в виде совокупности аген­
тов. У Дуга Лената были похожие идеи в рамках структуры, которую он назвал 
BEINGS (Ленат [ 1 383] ,  1 975). В 1970-х годах, опираясь на свою докторскую рабо­
ту по системе PLANNER, Карл Хьюитт предложил модель вычислений в виде взаи­
модействующих агентов, получившую название модель акторов, - она стала од­
ной из фундаментальных моделей в параллельных вычислениях (Хьюитт [ 1 О 1 7] ,  
1 977; Агха [ 1 9] ,  1 986). 

Предыстория области мультиагентных систем тщательно задокументирована в 
сборнике статей, озаглавленном Readings in Distributed Artificial Intelligence (Бонд 
и Гассер [245] ,  1 988). Эrот сборник предваряет подробное изложение ключевых 
исследовагельских задач в мультиагентных системах, которое остается чрезвы­
чайно актуальным и сегодня, спустя более тридцати лет после его публикации. 
Для ранних исследований в области мультиагентных систем характерна тенденция 
предполагать, что все агенты в системе действуют в общих интересах при един­
ственном разработчике. В настоящее время этот подход рассматривается как осо­
бый случай более общей мультиагентной среды - этот частный случай известен 
как ► кооперативное распределенное решение задач. Ключевой системой того 
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времени была Distributed Vehicle Monitoring Testbed (DVMT), разработанная под 
руководством Виктора Лессера в Университете штата Массачусетс (Лессер и Кор­
килл [ 1 390], 1 988). Система DVMT моделировала сценарий, в котором комплеIСГ 
агентов с географически разнесенными акустическими даrчиками совместно зани­
мался отслеживанием движения транспортных средств. 

Современная эра исследований в области мультиаrентных систем началась в 
конце 1 980-х годов, когда окончательно утвердилось представление, что агенты 
с разными предпочтениями являются нормой как в ИИ, так и в обществе; с этой 
точки зрения теория игр начала воспринимаrься как основная методология изуче­
ния таких агентов. 

Мультиаrентное планирование приобрело широкую популярность лишь в по­
следние годы, хотя в действительности оно имеет довольно долгую историю. Ко­
нолиrе ( [ 1 279], 1 982) формализовал мультиаrентное планирование средствами ло­
гики первого порядка, тогда как Педналт ([ 1 762], 1 986) дал ее описание в стиле 
STRIPS. Понятие совместного намерения, очень важное, если агенты должны вы­
полнять совместный план, появилось в работе по аIСГам коммуникации (Коэн и 
Перро [460], 1 979; Коэн и Левек [458], 1 990; Коэн и др. [459], 1 990). Бутилье и 
Брафман ( [266], 200 1 )  показали, как адаптировать планирование с частичным упо­
рядочением к многоаIСГорной обстановке. Брафман и Домшлак ( [287], 2008) раз­
работали алгоритм многоакторного планирования, сложность которого возрастает 
лишь линейно в зависимости от количества акторов - при условии, что степень 
связывания (частично измеряется шириной дерева графа взаимодействий между 
агентами) является ограниченной. 

Мультиаrентное планирование труднее всего осуществлять в тех случаях, когда 
имеются противоборствующие агенты. Как сказал Жан-Поль Сартр ([ 1 979], 1 960), 
"В футбольном матче все осложняется присутствием другой команды". Генерал 
Дуайт Д. Эйзенхауэр говорил : "При подготовке к битве я всегда обнаруживал, что 
планы бесполезны, но планирование необходимо"; это означает, что важно иметь 
условный план или стратегию, а не ожидаrь, что успех может быть достигнут за 
счет выполнения безусловного плана. 

Тема распределенного и мультиаrентноrо обучения с подкреплением 
(reinforcement leaming - RL) не рассматривается в этой главе, но в настоящее вре­
мя представляет большой интерес. В области распределенного обучения с под­
креплением целью является разработка методов, с помощью которых несколько 
координирующих свои действия агентов учатся оптимизировать общую функ­
цию полезности . Например, можно ли разработать методы, посредством кото­
рых отдельные субаrенты навигации и обхода препятствий для роботов смогут со­
вместно создать комбинированную систему управления,  которая будет глобально 
оптимальной? Некоторые основные результаrы в этом направлении уже бьmи по­
лучены (Гестрин и др. [932], 2002; Рассел и Зимдарс [ 1 949] , 2003). Основная идея 
заключается в том, что каждый субаrент обучает собственную Q-функцию ( своего 
рода функцию полезности; см. раздел 22.3 .3 )  на основании собственного потока 
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вознаграждений. Например, компонент навигации робота может получать награ­
ды за продвижение к цели, а компонент обхода препятствий, в свою очередь, будет 
получать отрицательные награды за каждое столкновение. Каждое глобальное ре­
шение максимизирует сумму Q-функций, и весь процесс сходится к глобально оп­
тимальным решениям.  

Корни теории игр можно проследить в предложениях, сделанных в XVII веке 
Кристианом Гюйгенсом и Готфридом Лейбницем в отношении научного и матема­
тического изучения конкурентных и кооперативных взаимодействий между людь­
ми. На протяжении XIX века несколько ведущих экономистов создали простые 
математические примеры для анализа определенных вариантов конкурентных си­
туаций. 

Первые формальные результаты в теории игр были достигнуты Цермелом 
([2426] , 1 9 1 3 ), который за год до этого предложил свою форму минимаксного по­
иска для игр, хотя и некорректную. Эмиль Борель ([252], 1 92 1 )  ввел понятие сме­
шанной стратегии. Джон фон Нейман ( [22 8 1  ], 1 928) доказал, что каждая игра с 
нулевой суммой для двух игроков имеет максиминное равновесие в смешанных 
стратегиях и четко определенную стоимость . Сотрудничество фон Неймана с 
экономистом Оскаром Моргенштерном привело к публикации в 1 944 году книги 
Theory o/Games and Economic Behavior, определяющей книги по теории игр. Ее 
публикация из-за нехватки бумаги в военное время откладывалась до тех пор, пока 
член семьи Рокфеллеров лично не субсидировал ее издание. 

В 1 950  году в возрасте 2 1  года Джон Нэш опубликовал свои идеи в отношении 
равновесий в общих играх (с ненулевой суммой). Данное им определение равно­
весного решения, хотя и предвосхищенное в работе Кур но ([ 48 1 ], 1 83 8), впослед­
ствии стало известно как равновесие Нэша. В 1 994 году, после длительной задерж­
ки, вызванной шизофренией, которой он страдал начиная с 1 959 года, Нэш был 
награжден Нобелевской премией по экономике (наряду с Рейнхартом Зельтеном 
и Джоном Харшаньи). Равновесие Байеса-Нэша было описано Харшаньи ([97 1 ] , 
1 967) и дополнительно обсуждалось Кадане и Ларки ([ 1 1 64], 1 982). Некоторые во­
просы использования теории игр для управления агентами были освещены Бин­
мором ([2 1 9] , 1 982). Ауманн и Бранденбургер ( [9 1 ] ,  1 995) показали, как можно до­
стичь различных равновесий в зависимости от знаний, которые имеет каждый из 
игроков. 

Игра "Дилемма заключенного" была изобретена в качестве упражнения в 
классе Альбертом В. Такером в 1 950 году (на примере Мерилла Флуда и Мелвина 
Дрешера) и тщательно изучена Аксельродом ([92], 1 985)  и Поундстоном ([ 1 8 1 7] ,  
1 993 ) .  Повторяющиеся игры бьmи предложены Люсом и Райффой ( [ 1 463 ], 1 957), 
а Абреу и Рубинштейн в работе [9] ( 1 988) обсуждают использование конечных ав­
томатов для повторяющихся игр, точнее - машин Мура. Учебник Майлата и Са­
муэльсона ([ 1 4  77], 2006) концентрируется на повторяющихся играх. 

Игры с неполной информацией в развернутой форме бьmи предложены Куном 
([ 1 3 1 9] ,  1 953) .  Последовательная форма для игр с неполной информацией была 
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изобретена Романовским ([ 1 908], 1 962) и независимо Коллером и соавт. ([ 1 263],  
1 996). В статье Коллера и Пфеффера [ 1 264] ( 1 997) предоставлено более читабель­
ное введение в эrу область и описана система представления и решения последо­
вательных игр. 

Использование абстракции для уменьшения дерева игры до размеров, которые 
позволяют найти решение методами Коллера, бьшо предложено Биллингсом и со­
авт. ([2 1 4  ], 2003 ). Впоследствии усовершенствованные методы нахождения рав­
новесного решения позволили решать абстракции с 1 О 1 2 состояниями (Гилпин и 
др. [860], 2008; Зинкевич и др. [2448], 2008). Боулинг и соавт. в работе [273] (2008) 
показали, как можно использовать выборку по важности для получения лучшей 
оценки выигрыша для стратегии. Во и соавт. в [2302] (2009) установил, что под­
ход с использованием абстракции является уязвимым в отношении накопления си­
стематических ошибок в равновесных решениях: для одних игр он работает, а для 
других - нет. Браун и Сендхольм в [32 1 ]  (20 1 9) показали, что по крайней мере в 
случае игры в Техасский холдем с несколькими игроками эти уязвимости могут 
быть преодолены при наличии достаточной вычислительной мощности. Они ис­
пользовали 64-ядерный сервер, работавший в течение 8 дней, для расчета базовой 
стратегии в их программе Pluribus. С помощью этой стратегии программа Pluribus 
смогла победить в ,урнире с чемпионами среди игроков-людей. 

Теория игр и марковский процесс принятия решений (МОР) объединяются 
в теории марковских игр, иначе называемых стохастическими играми (Литтман 
[ 1 41 9], 1 994; Ху и Веллман [ 1 082], 1 998). Независимо от Беллмана, Шепли в ра­
боте [2042] ( 1 953) фактически описал алгоритм итерации по значениям, но его ре­
зультаты не были широко признаны, возможно потому, что они были представ­
лены в контексте марковских игр. Эволюционная теория игр (Смит [2095] ,  1 982; 
Вейбулл [2303], 1 995) рассматривает дрейф стратегии во времени: если стратегия 
вашего оппонента меняется, то как вам следует на это реагировать? 

К учебникам по теории игр с подходом с экономической точки зрения можно от­
нести книги Майерсона ([ 1 653], 1 99 1 ), Фуденберга и Тироля ([796], 1 991), Осборна 
([ 1 7 1 7], 2004) и Осборна и Рубинштейна ([ 1 7 1 8], 1 994). Как учебники по теории игр 
с подходом с точки зрения ИИ можно рекомендовать книги Нисана и соавт. ([ 1 693], 
2007) и Лейтона-Брауна и Шохама ([ 1 399], 2008). Полезный обзор по теме мультиа­
гентного принятия решений представлен в статье Сендхольма [ 1 972] ( 1 999). 

Мультиагентное обучение с подкреплением отличается от распределенного об­
учения с подкреплением присутствием агентов, которые не могут координировать 
свои действия (за исключением явных актов коммуникаций) и которые не могут 
совместно использовать одну и ,у же функцию полезности. Следовательно, муль­
тиагентное обучение с подкреплением имеет дело с последовательными задача­
ми теории игр или марковскими играми, как это определенно в главе 1 7. Ослож­
нения вызывает тот факт, что, пока агент обучается тому, как победить стратегию 
своего противника, противник изменяет свою стратегию, чтобы победить агента. 
Таким образом, данная среда является нестационарной (см. раздел 1 3 .4.2). 
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Литтман в [ 1 4 1 9] ( 1 994) отметил эту трудность при представлении первых ал­горитмов обучения с подкреплением для марковских игр с нулевой суммой. Ху и Веллман в [ 1 083] (2003) предложили алгоритм Q-обучения для игр с общей сум­мой, который сходится, когда равновесие по Нэшу является уникальным. В случае, когда существует множество равновесий, определить понятие сходимости оказы­вается не так просто (Шахам и др. [2055], 2004). Игры содействия были впервые введены под названием кооперативное об­ратное обучение с подкреплением Хэдфилдом-Менеллом и соавт. в работе [942] (20 1 7). Малик и соавт. ([ 1 480], 20 1 8) представил эффективный решатель POMDP, разработанный специально для игр содействия. Эги игры связаны с классом ►игр "начальник-агент" в экономике, в которых начальник (например, работодатель) и агент (например, работник) должны найти взаимовыгодное соглашение несмо­тря на наличие совершенно разных предпочтений. Основные различия между этими классами игр состоят в том, что, во-первых, робот не имеет никаких соб­ственных предпочтений, и во-вторых, робот не имеет уверенности в отношении предпочтений человека, которые необходимо оптимизировать. Кооперативные игры впервые были изучены фон Нейманом и Морrенштер­ном ([2282], 1 944). Понятие ядра было предложено Дональдом Гиллисом ([858], 1 959), а понятие подхода Шепли было введено Ллойдом Шепли в работе [204 1 ]  ( 1 953) .  Хорошее введение в математику кооперативных игр можно найти в ста­тье Пелеrа и Зюдхолтера ( [ 1 767], 2002). Простые игры в целом подробно обсуж­даются Тейлором и Цвикером в [2 1 85] ( 1 999). Как введение в вычислительные аспекты теории кооперативных игр можно рекомендовать работу Халкиадакиса и соавт. [3 85] (20 1 1 ). Начиная с работы Дэн га и Пападимитриу [ 606] ( 1 994 ), в последние три деся­тилетия было разработано много схем компактного представления кооперативных игр. Самой влиятельной из этих схем является модель сетей предельного вклада, предложенная Йонгом и Шохэмом в [ 1 1 1 2] (2005). Подход к формированию коа­лиции, который описывался в этой главе, был разработан Сендхольмом и соавт. ([ 1 973], 1 999). Обзор состояния дел в этой области предоставлен Рахваном и со­авт. ([ 1 845], 20 1 5). Протокол контрактных сетей был предложен Рейдом Смитом в докторской диссертации, которую он защищал в Стэнфордском университете в конце 1 970-х годов (Смит [2098], 1 980). Эгот протокол, кажется, представляется настолько есте­ственным, что регулярно изобретается заново и до наших дней. Его экономиче­ские основы были изучены Сендхольмом ([ 1 974], 1 993). Аукционы и разработка механизмов являются одной из ведущих тем в области компьютерных наук и искусственного интеллекта уже в течение нескольких деся­тилетий ( см. работы Нисана ([ 1 692], 2007) - в качестве господствующей точки зрения в компьютерных науках; Кришны ([ 1 3 1  О], 2002) - в качестве введения в теорию аукционов; Крамтона и соавт ([ 492], 2006) - в качестве сборника важней­ших статей по вычислительным аспектам аукционов). 
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В 2007 году Нобелевская премия по экономике была вручена Гурвицу, Маскину 
и Майерсону "за достижения в закладывании основ теории разработки механиз­
мов" (Гурвич [ 1102], 1 973). Трагедия общего достояния - мотивирующая пробле­
ма в этой области - впервые анализировалась Уильямом Ллойдом ( [143 7], 1833), 
но получила свое имя и привлекла общественное внимание благодаря спrrье Гар­
ретrа Хардина ([965], 1968). Рональд Коуз представил теорему о том, что если ре­
сурсы находятся в частной собственности и если транзакционные издержки до­
статочно низкие, то ресурсы могут управляться эффективно (Коуз [454], 1960). 
Однако он также указал, что на практике транзакционные издержки высоки, по­
этому данная теорема неприменима, и необходимо иска:гь другие решения, поми­
мо приватизации и рынка. В книге Governing the Commons Элинор Остром ( [  1720], 
1 990) описал решение этой задачи, основанное на передаче управления контролем 
над ресурсами в руки местных специалистов, имеющих наилучшие знания о те­
кущей сmуации. И Коуз, и Остром получили Нобелевскую премию по экономике 
за свои работы. 

Определение принципа раскрытия принадлежит Майерсону ( [  1652], 1986), 
а теорема об эквивалентности доходов была независимо разработана Майерсоном 
([ 1651 ], 198 1 1981) и Райли и Самуэльсоном ( [  1881 ], 1981 ). Два экономиста, Мил­
гром ( [ 1 574], 1997) и Клемперер ( [1241], 2002), в своих работах описывают целый 
спектр многомиллиардных аукционов, в которых они принимали участие. 

Проектирование механизмов используется в мультиагентном планировании 
(Хунсбергер и Грош [ 1097], 2000; Стоун и соавт. [2139], 2009) и составлении гра­
фиков (Рассенти и др. [1 857], 1982). Вариан в работе [2264] (1995) дает краткий 
обзор связей с литературой по компьютерным наукам, а Розеншейн и Злоткин 
( [1915],  1 994) представляют подборку книжного размера материалов о прило­
жениях распределенного ИИ. Близкие работы о распределенном ИИ вышли под 
разными названиями, включая "Коллективный разум" (Тумер и Волперт [2231], 
2000; Сегаран [2020], 2007) и "Рыночный контроль" (Клеарвотер [ 451 ] ,  1996). 
С 2001 года проводится ежегодный конкурс торговых агентов ( Trading Agents 
Competition - ТАС), на котором агенты пытаются получить максимальную при­
быль на серии аукционов (Веллман и др. [2320], 200 l ;  Арунахалам и Садех [81 ] ,  
2005). 

Литература о социальном выборе огромна и охватывает все от философских 
рассуждений о природе демократии и до узкоспециализированного анализа кон­
кретных процедур голосования. Работа Кэмпбелла и Келли [360] (2002) представ­
ляет собой хорошую отправную точку в этой литературе. Справочник Handbook of 
Computational Social Choice содержит ряд статей, посвященных темам и методам 
исследований в этой области (Брандт и др. [290], 2016). Теорема Эрроу перечис­
ляет желаемые свойства системы голосования и доказывает, что достичь их всех 
одновременно невозможно (Эрроу [78], 1951 ). Дасгупта и Маскин в [529] (2008) 
показали, что голосование по правилу истинного большинства (не множествен­
ное голосование и не голосование по упорядоченности предпочтений) является 



444 Часть IV. Неопределенные знания и рассуждения в условиях неопределенности 

наиболее надежной системой голосования. Вычислительная сложность манипули­
рования выборами впервые была изучена Бартольди и соавт. ([ 1 3 7] ,  1 989). 

Авторы с трудом справились с работой по переговорам в мультиагентном пла­
нировании. Дурфи и Лессер в работе [664] ( 1 989) обсуждают, как задания могут 
быть распределены между агентами путем переговоров.  Краус и соавт. ( [ 1 305] ,  
1 99 1 )  описывают систему имитации игры "Дипломатия" - настольной игры, тре­
бующей ведения переговоров, формирования коалиции и нечестности . Стоун в 
[2 1 36] (2000) показывает, как агенты могут сотрудничать в команде в конкурент­
ной, динамичной, частично наблюдаемой среде игры роботов в футбол . В более 
поздней статье (2 1 36] (2003 ) Стоун анализирует две конкурентные мультиагент­
ные среды - соревнования RoboCup по игре роботов в футбол и Т АС, а также 
соревнования торговых агентов, построенные на аукционах - и приходит к за­
ключению, что вычислительная неподатливость нашего текущего, теоретически 
обоснованного подхода привела к тому, что многие мультиагентные системы при­
ходится разрабатывать специальными методами. Сарит Краус разработал целый 
ряд агентов, которые могут вести переговоры с людьми и другими агентами (Кра­
ус [ 1 304], 200 1 ). Монотонный протокол уступок для автоматизированного ведения 
переговоров был предложен Джеффри С .  Розеншейном и его студентами (Розен­
шейн и Злоткин [ 1 9 1 5] ,  1 994). Протокол чередующихся предложений был разрабо­
тан Рубинштейном ( [  1 928], 1 982 ). 

Учебники по мультиагентным системам включают книги Вейса ( [2305], 2000), 
Юнга ( [24 1 0] ,  2004), Влассиса ( [2279], 2008), Шохама и Лейтон-Брауна ( [2054], 
2009), а также Уолдриджа ( [2377] ,  2009). Основной конференцией по мульти­
агентным системам является lnternational Conference оп Autonomous Agents and 
MultiAgent Systems (ААМАS); также издается журнал с тем же названием . Ассоциа­
ция вычислительной техники (АСМ) регулярно проводит конференции Conference 
оп Electronic Commerce (ЕС), а также публикует множество соответствующих ста­
тей, в частности в области алгоритмов аукционов. Главным журналом по теории 
игр является Games and Economic Behavior. 
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Упражнения 
18. 1 .  Покажите, что любое равновесие доминантной стратегии представляет собой 

равновесие Нэша, но обратное утверждение неверно. 
18.2. В детской игре "Камень-бумага-ножницы" каждый игрок одновременно рас­

крывает свой выбор - камень, бумагу или ножницы. Бумага обертывает ка­
мень, камень тупит ножницы, а ножницы режут бумагу. В расширенной версии 
этой игры ("Камень-бумага-ножницы-огонь-вода") приняты дополнительные 
условия :  огонь побеждает камень, бумагу и ножницы; камень, бумага и ножни­
цы побеждают воду; вода побеждает огонь. Запишите матрицу вознаграждений 
и найдите решение со смешанной стратегией для этой игры. 

18.3. Найдите решение для игры в чет-нечет на трех пальцах. 
18.4. В игре "Дилемма заключенного" рассмотрите случай, когда после каждого раунда 

Али и Бо с вероятностью Х встретятся вновь. Предположим, что оба игрока выби­
рают страгегию ВЕЧНАЯ КАРА (когда каждый выбирает действие refuse, пока дру­
гой игрок не выберет действие testify, в ответ на что выбирается также действие 
testify). Предположим, что до этого момента ни один из игроков еще не выбирал 
действия testify. Какова ожидаемая будущая общая выпшrга за выбор действия tes­
tify в ответ на действие refuse, когда Х = 0,2? Что изменится, если Х = 0,05? Для ка­
кого значения Х ожидаемая будущая общая выплата будет одной и той же, незави­
симо от выбора этим игроком действия testify или refuse в текущем раунде? 

18.5. Приведенная ниже матрица вознаграждений,  впервые проанализированная 
Бернштейном в [ 1 920] ( 1 996), показывает, какую игру ведут между собой поли­
тики ( сокращенно - Pol) и руководство Федеральной резервной системы ( со­
кращенно - Fed). 

Fеd : сузить Fed : ничего не делать Fed : расширить 
Pol : сузить F= 1, P =  1 F= 9, P = 4  F= 6, P = 6  
Pol : ничего не делать F= 8, P = 2  F = S, P = S  F = 4, P = 9  
Pol : сузить F = 3, Р= 3 F = 2, P = 1  F= 1 , P = 8  

Конгрессмены могут расширять или сужать налоговую стратегию, а руководи­
тели Федеральной резервной системы могут расширять или сужать бюджетную 
стратегию {и, безусловно, каждая сторона может выбрать вариант ничего не из­
менять.) Кроме того, каждая из этих сторон имеет определенные предпочтения 
в отношении того, кто и что должен делать, поскольку ни те, ни другие не хотят 
вызвать недовольство населения . Показанные выше вознаграждения представ­
ляют собой ранги упорядочения от 9 до 1 ,  т.е. от первого варианта до последне­
го. Найдите равновесие Нэша для этой игры в рамках чистых стратегий .  Явля­
ется ли это решение оптимальным согласно критерию Парето? 

18.6. Голландский аукцион похож на английский аукцион, но вместо того, что­
бы начинать торги с низкой цены и увеличивать ставки, на голландском аук­
ционе торг начинается с высокой цены и аукционер постепенно снижает цену, 
пока какой-то участник торгов не захочет ее принять. (Если цена принимается 
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одновременно несколькими участниками, один из них произвольным образом 
выбирается в качестве победителя.) Говоря формально, аукционер начинает с 
цены р и последовательно снижает ее с шагом d до тех пор, пока хотя бы один 
из участников торгов не примет цену. Предполагая, что все участники торгов 
действуют рационально, верно ли утверждение, что при сколь угодно малом 
шаге d голландский аукцион всегда приводит к тому, что участник торгов с наи­
большим значением собственной ценности лота получает этот лот? Если это 
так, математически покажите, почему. Если нет, то объясните, как может слу­
читься, что участник с наивысшей собственной оценкой лота его не получит. 

18.7. Представьте механизм аукциона, который ничем не отличается от аукциона с 
возрастающей ставкой за исключением того, что в конце победитель, предло­
живший ставку Ьтах, платит только Ьтах 12, а не Ьтах· Если предположить, что 
все агенты рациональны, каков ожидаемый доход аукциониста по этому меха­
низму по сравнению со стандартным аукционом с возрастающей ценой? 

18.8. Команды в Национальной хоккейной лиге исторически получали 2 очка за по­
беду в игре и О очков - за поражение. Если игра заканчивалась вничью, назна­
чался дополнительный период, и если он также не заканчивался победой одной 
из команд, то игра считалась сыгранной вничью и каждая команда получала по 
1 очку. Но должностные лица лиги чувствовали, что команды слишком консер­
вативно играют в дополнительном периоде (чтобы избежать проигрыша), и игра 
бьmа бы интереснее, если бы дополнительный период чаще заканчивался побе­
дой. Поэтому в 1 999 году должностные лица провели эксперимент со следую­
щей схемой механизма: правила были изменены, и теперь команде, которая про­
игрывала в дополнительном периоде, давалось 1 очко, а не О, - остальные пра­
вила оставались без изменений:  2 очка за победу и I очко за ничью. 

а) Был ли хоккей игрой с нулевой суммой до изменения правил? А после их из­
менения? 

б) Предположим, что в определенный момент времени t в игре хозяева поля име­
ют вероятность р победить в основное время, вероятность О, 78 -р - проиграть 
и вероятность 0,22 - свести игру к ничьей и получить дополнительный пери­
од, где у них будет вероятность q победить, вероятность О, 9 - q - проиграть и 
вероятность О, 1 - закончить игру вничью. Приведите уравнения для определе­
ния ожидаемого результата игры для хозяев поля и для команды противника. 

в) Представим, что для этих двух команд будет допустимо юридически и этично 
заключить договор, в котором они согласны свести игру к ничьей в основное 
время, а затем, в дополнительном периоде, обе команды в полную силу будут 
стараться выиграть. При каких условиях, с точки зрения значений р и q, для 
обеих команд будет разумно заключить такое соглашение? 

г) В отчете за 2005 год сообщалось о том, что с момента изменения правила про­
цент игр с победой в дополнительном периоде увеличился на 1 8,2%, но при 
этом процент игр с дополнительным периодом также вырос на 3,6%. Что мож­
но предположить о возможности сговора или консервативной игре после из­
менения правил? 



П РИЛОЖЕН И Е  А 
Математические основы 

А.1. Анализ сложности и нотация О() 
Специалистам в области компьютерных наук часто приходится решать за­

дачу сравнения алгоритмов для определения того, насколько быстро они дей­
ствуют или сколько памяти для них требуется. Для решения этой задачи пред­
усмотрены два подхода. Первым из них является применение эталонных тестов 
( ► bencbmarking) - прогон реализующих алгоритмы программ на компьюте­
ре и измерение их быстродействия в секундах и потребления памяти в байтах . 
Безусловно, в конечном итоге нас действительно интересуют именно такие прак­
тические характеристики, но эталонное тестирование может оказаться неудов­
летворительным просто потому, что оно слишком специфично: в нем измеряет­
ся производительность конкретной программы, написанной на конкретном языке, 
выполняемой на конкретном компьютере с конкретным компилятором и с конкрет­
ными входными данными. К тому же на основании единственного результата, по­
лученного с помощью эталонного тестирования, очень трудно предсказать, на­
сколько успешно этот алгоритм будет действовать в случае использования другого 
компилятора, компьютера или набора данных. Второй подход предполагает мате­
матический ► анализ алгоритмов, не зависящий от их конкретной реализации и 
входных данных. Именно этот подход будет обсуждаться ниже. 

А. 1 . 1 . Асимптотический анализ 

Подход, основанный на математическом анализе алгоритмов и не зависящий от 
их конкретной реализации и входных данных, мы рассмотрим на примере приве­
денной ниже программы, вычисляющей сумму последовательности чисел. 

function SuммлтюN(последовательность) returns число 
суМ\fа +- 0  
for i = 1 to LЕNGтн(последовательность) do 

C)lМ\fa +- суМ\fа + последовательность[i] 
return суМ\fа 

Первый этап анализа состоит в том, что создается определенное абстракт­
ное представление входных данных, позволяющее найти какой-то параметр или 
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параметры, характеризующие объем входных данных. В рассматриваемом при­мере объем входных данных можно охарактеризовать с помощью такого параме­тра, как длина последоваrельности, которую мы обозначим как п. На втором этапе необходимо определить абстрактное представление реализации и найти какой-то критерий, отражающий продолжительность выполнения алгоритма, но не привя­занный к конкретному компилятору или компьютеру. Применительно к программе SuммлтюN этим критерием может служить количество строк выполняемого кода; кроме того, данный критерий может быть более детализированным и измеряющим количество сложений, присваиваний, обращений к элементам массивов, а также ветвлений, выполняемых в этом алгоритме. В любом случае будет получена ха­рактеристика общего количества шагов, выполняемых алгоритмом, как функция от объема входных данных. Обозначим эrу характеристику как Т(п ). Если за осно­ву берется количество строк кода, то в данном примере Т(п) = 2n + 2. Если бы все программы были такими же простыми, как SuммлтюN, то область анализа алгоритмов не заслуживала бы названия научной. Но исследования в этой области существенно усложняются из-за наличия двух проблем. Первая пробле­ма заключается в том, что редко удается найти параметр, подобный Т(п), кото­рый бы полностью характеризовал количество шагов, выполняемых при прогоне алгоритма. Вместо этого чаще всего можно лишь вычислить данный показатель для наихудшего случая Tworst(n) или для среднего случая Tavg(n) . Причем, для вы­числения среднего показателя необходимо, чтобы аналитик принял какие-то обо­снованные предположения в отношении распределения, характеризующего набор входных данных. Вторая проблема состоит в том, что алгоритмы обычно не поддаются точно­му анализу. В этом случае приходится прибегать к аппроксимации. В нашем слу­чае, например, можно было бы сказать, что быстродействие алгоритма SuммлтюN характеризуется величиной O(n), имея в виду, что быстродействие этого алгорит­ма измеряется величиной, пропорциональной п, - возможно, за исключением не­скольких небольших значений п. Более формально это определение можно пред­ставить с помощью следующей формулы. 
Т(п) есть 0(/(п)), если Т(п) � kf(n) для некоторого k, для всех п > п0 Перейдя к использованию нотации О( ), мы получаем возможность восполь­зоваться так называемым ► асимптотическим анализом. В рамках этого подхо­да можно, например, безоговорочно утверждать, что если п асимптотически при­ближается к бесконечности, то алгоритм, характеризующийся показателем О(п), проявляет себя лучше по сравнению с алгоритмом О(п2), тогда как единственное число, полученное с помощью эталонного тестирования, не может служить обо­снованием подобного утверждения . Нотация О( ) позволяет создать абстрактное представление, в котором не учи­тываются постоянные коэффициенты, благодаря чему она становится более про­стой в использовании, но менее точной, чем нотация Т( ). Например, в конечном 
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итоге алгоритм О(п2 ) всегда будет считаться худшим по сравнению с алгорит­
мом О(п), но если бы эти два алгоритма характеризовались значениями Т(п2 + 1 )  и 
T( I 00n + 1 000), то фактически алгоритм О(п2 ) был бы лучше при п <  1 1 0 .  

Несмотря на этот недостаток, асимптотический анализ представляет собой наи­
более широко используемый инструмент анализа алгоритмов. Этот метод можно 
считать достаточно точным, поскольку в процессе анализа создается абстрактное 
представление и для точного количества операций (поскольку игнорируется по­
стоянный коэффициент k), и для точного содержимого входных данных (посколь­
ку рассматривается исключительно их объем п); благодаря чему анализ становится 
вполне осуществимым с использованием математических методов.  Система обо­
значений О( ) представляет собой хороший компромисс между точностью и про­
стотой анализа. 

А.1.2. Изначально сложные и недетерминированные 
полиномиальные задачи 

Анализ алгоритмов и нотация О( ) позволяют рассуждать об эффективности 
конкретного алгоритма. Однако эти методы не позволяют определить, может ли 
существовать лучший алгоритм для рассматриваемой задачи.  В области ► ана­
лиза сложности исследуются задачи, а не алгоритмы.  Первая широкая градация 
в этой области проводится между задачами, которые могут быть решены за вре­
мя, измеряемое полиномиальным соотношением, и задачами, которые не могут 
быть решены за время, измеряемое полиномиальным соотношением, независимо 
от того, какой алгоритм для этого используется . Класс полиномиальных задач -

k т.е .  задач, которые могут быть решены за время О(п ) для некоторого k), - обозна-
чается как ► Р. Эти задачи иногда называют "простыми", поскольку данный класс 
содержит задачи, имеющие такую продолжительность выполнения, как O(log п) 
и О(п). Но он содержит и задачи с затратами времени О(п 1 000 ), поэтому определе­
ние "простая" не следует понимать слишком буквально. 

Другим важным классом является ► NP (Nondeterministic Polynomial) - класс 
недетерминированных полиномиальных задач. Задача относится к этому классу, 
если существует алгоритм, позволяющий выдвинуть гипотезу о возможном ре­
шении, а затем проверить правильность этой гипотезы с помощью полиномиаль­
ных затрат времени. Идея такого подхода состоит в том, что если бы можно было 
воспользоваться сколь угодно большим количеством процессоров, чтобы прове­
рить одновременно все гипотезы, или оказаться крайне удачливым и всегда с пер­
вого раза находить правильную гипотезу, то NР-трудные задачи стали бы Р-труд­
ными задачами.  Одним из самых важных нерешенных вопросов в компьютерных 
науках является то, будет ли класс NP эквивалентным классу Р, если нельзя вос­
пользоваться бесконечным количеством процессоров или способностью нахо­
дить правильную гипотезу с первого раза. Большинство специалистов в области 
компьютерных наук согласны с тем, что Р :;z: NP, иными словами, что NР-задачи 
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являются изначально трудными и для них не существует алгоритмов с полиноми­альными затратами времени. Но это утверждение так и не было доказано. Ученые, пытающиеся найти ответ на вопрос о том, эквивалентны ли клас­сы Р и NP, выделили подкласс класса NP, называемый ► NР-полнымн задачами. В этой формулировке слово "полный" означает "являющийся наиболее ярким представителем" и поэтому указывает на самые трудные задачи из класса NP. Было доказано, что либо все NР-полные задачи принадлежат к классу Р, либо ни одна из них к нему не относится . Таким образом, данный класс представля­ет определенный теоретический интерес, но он важен также с точки зрения прак­тики, поскольку известно, что многие серьезные задачи являются NР-полными. В качестве примера можно указать задачу установления выполнимости : если дано высказывание логики высказываний, то есть ли такой вариант присваивания истинностных значений символам высказывания, при котором оно становится ис­тинным? Если не произойдет чудо и не совпадут друг с другом классы Р и NP, то нельзя будет найти алгоритм, который позволяет решить все задачи установления выполнимости за полиномиальное время . Но исследователей в области искус­ственного интеллекта в большей степени интересует то, существуют ли алгорит­мы, действующие достаточно эффективно при решении типичных задач, выбран­ных с помощью заранее заданного распределения; как было показано в главе 7, существуют алгоритмы наподобие W ALкSAT, которые действуют вполне успеш­но при решении многих задач. Класс ► NР-сложных задач состоит из тех задач, которые сводятся (за поли­номиальное время) ко всем проблемам в NP, поэтому, если вы решили любую NР-сложную задачу, вы сможете решить все проблемы в NP. Все NР-полные за­дачи являются NР-сложными, но есть некоторые NР-сложные проблемы, которые даже сложнее, чем NР-полные. Класс ► co-NP является комплементарным (дополнительным) по отношению к классу NP в том смысле, что для каждой задачи принятия решения из класса NP существует соответствующая задача в классе co-NP, на которую может быть дан положительный или отрицательный ответ, противоположный ответу на зада­чу класса NP. Известно, что класс Р является подмножеством и NP, и co-NP, кро­ме того, считается, что к классу co-NP относятся некоторые задачи, не входящие в класс Р. Такие задачи называются ► со-NР-полнымн и являются самыми трудны­ми задачами в классе co-NP. Класс #Р (произносится как "шарп Р" или "диез Р") представляет собой мно­жество задач подсчета количества вариантов, соответствующих задачам принятия решения из класса NP. Задачи принятия решения имеют однозначный (положи­тельный или отрицательный) ответ. Примером задачи такого типа является сле­дующая : "Существует ли решение для данной формулы 3-SAT?" Задачи подсчета количества вариантов имеют целочисленный ответ, например: "Сколько решений существует для данной формулы 3-SAT?" В некоторых случаях задача подсчета количества вариантов намного труднее по сравнению с соответствующей задачей 
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принятия решения. Например, принятие решения о том, имеет ли двухдольный 
граф идеальное сочетание пар, может быть выполнено за время О( VE) (где V -
количество вершин; Е - количество ребер графа), тогда как задача подсчета того, 
какое количество идеальных сочетаний пар имеется в этом двухдольном графе, 
является #Р-полной. Это означает, что она не менее трудна, чем любая задача из 
класса #Р, и поэтому по меньшей мере столь же трудна, как и любая задача NP. 

Другим классом является класс задач PSPACE. К нему относятся задачи, для 
которых требуется объем пространства, определяемый полиномиальной зависи­
мостью, даже при их прогоне на недетерминированной машине. Считается, что 
РSРАСЕ-трудные задачи решаются хуже NР-полных задач, но не исключено, что в 
ходе дальнейших исследований может быть установлено, что класс NP эквивален­
тен классу PSPACE и класс Р эквивалентен классу NP. 

А.2. Векторы, матрицы и линейная алгебра 
В маrематике ► векrор определяется как элемент векторного пространства, но 

мы будем использовать более конкретное определение: вектор - это упорядочен­
ная последовательность значений. Например, в двухмерном пространстве могут 
быть определены такие векторы, как х = (3, 4 )  и у = ( О, 2 ) . В этом приложении со­
блюдаются обычные соглашения об обозначении векторов с помощью полужир­
ных символов, хотя некоторые авторы отмечают имена векторов с помощью стре­
лок ( х ) или знаков надчеркивания ( у ). Элементы вектора обозначаются с 
помощью подстрочных индексов: z = (z 1 , z2, • • •  , Zn ) • К сожалению, в этой книге син­
тезированы работы из многих областей исследований, где упорядоченные после­
довательности элементов могут называться по-разному ("векторы", "списки" или 
"кортежи"), в соответствии с чем для них используются и разные нотации: ( 1 ,  2 ) ,  
[ 1 , 2] или ( 1 , 2). 

Двумя фундаментальными операциями над векторами являются векторное сло­
жение и скалярное умножение. Векторное сложение х + у - это поэлементная сум­
ма: х + у = (3 + О, 4 + 2 )  = (3, 6 ), а скалярное умножение - это операция умножения 
каждого элемента вектора на некоторую констаmу: 5х = (5 х 3, 5 х 4 )  = ( 1 5, 20 ) .  

Длина вектора обозначается как I х I и вычисляется путем извлечения квадрат-

ного корня из суммы квадратов его элементов: 1 х 1 = ✓(32 + 42
) = 5 .  Точечное про­

изведение (называемое также скалярным произведением) двух векторов, х • у, 
представляет собой сумму произведений их соответствующих элементов; иными 
словами, х • у = I;XJli, или в данном конкретном случае: х • у = 3 х О +  4 х 2 = 8. 

Векторы часто интерпретируются как направленные отрезки прямых (подоб­
ные стрелкам) в п-мерном евклидовом пространстве. В таком случае операция 
сложения векторов эквивалентна совмещению конца одного вектора с началом 
другого, а точечное произведение х · у эквивалентно выражению I х 1 • 1 у 1 • cos 0, 
где 0 - угол между векторами х и у. 
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► Матрица представляет собой прямоугольный массив значений, упорядочен­ных по строкам и столбцам. Ниже показана матрица А размером 3 х 4. 
А1 ,2 А 1_3 А2 ,2 А2 ,3 
А3,2 А3,3 

Первый подстрочный индекс в обозначении A;J определяет строку, а второй -столбец. В языках программирования A;J часто записывается как А [ i ,  j ] или A [ i ]  [ j  ] .  Сумма двух матриц определяется пуrем сложения соответствующих элементов, поэтому (А + В);.; = A;J + В;.;• (Если матрицы А и В имеют разные размеры, то их сумма не определена.) Можно также определить операцию умножения матрицы на скаляр: (сА);.; = сА;.;• Операция умножения матриц (получения произведения двух матриц) является более сложной. Произведение АВ определено, только если ма­трица А имеет размеры а х  Ь, а матрица В имеет размер Ь х с (т.е. вторая матрица имеет количество строк, совпадающее с количеством столбцов первой матрицы). РезульТ1rГОм этой операции является матрица с размерами ах с. Если магрицы име­ют допустимые размеры, то результат их умножения является следующим: 
(АВ) . L 

= ""' А . .  в . k '  l,11. � l,J J ,  

J Умножение матриц не является коммутативным даже для квадратных ма­триц: АВ � ВА в любом случае. Однако эта операция является ассоциативной: (АВ)С = А(ВС). Обратите внимание, что точечное произведение векторов может быть выражено в терминах транспонирования и умножения матриц: х • у =  х т у. 
► Единично матрица I имеет элементы 1;.;, равные 1 ,  если i = j, и равные О в противном случае. Она обладает таким свойством, что AI = А для всех магриц А. 

► Траиспоиировавие - это специфическая для магриц операция (записывается как АТ), заключающаяся в превращении строк матрицы в столбцы и обратно, или, более формально, Ат;.; = Aj.i· Если матрица А квадратная, то ее ► обратная матри­ца А" 1 определяется как такая магрица, для которой А" 1 А = 1. Для ► вырожденной матрицы обратной матрицы не существует, а для невырожденной матрицы обрат­ная матрица может бьrrь вычислена за время О(п3). Матрицы используются для решения систем линейных уравнений за время О(п3>, которое необходимо для инвертирования матрицы, составленной из коэф­фициентов уравнений. Рассмотрим следующую систему уравнений, для которой требуется найти решение в терминах переменных х, у и z. 

+2х + y - z  = 8 
-3х - у +  2z = - l l 
-2х + y + 2z = - 3  
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Эту систему уравнений можно представить в виде матричного уравнения 
Ах = Ь, где: 

[ 
2 1 -1

] А = -3 - 1  2 , 

-2 1 2 

Чтобы решить уравнение Ах = Ь, достаточно умножить обе его стороны на 
обратную матрицу А- 1 , в результате чего получим А- 1 Ах = А- 1 ь, что можно 
упростить до х = А-1 Ь. Проинвертировав матрицу А и умножив результат на век­
тор Ь, получим искомый ответ : 

Еще несколько замечаний по поводу используемых в книге обозначений. 

1. Мы используем запись log (х) для представления наrуральных логарифмов 
loge (х). 

2. Мы используем запись argmaxxf(x) для ссылок на значение х, при котором 
значение функ.ции/(х) является максимальным. 

А.3. Распределения вероятностей 
Вероятность - это мера, заданная на множестве событий, которая удовлетво­

ряет трем приведенным ниже аксиомам. 

1 .  Мера каждого события находится в пределах от О до 1 .  Это утверждение за­
писывается как О � Р(Х = Х;) � 1 ,  ще Х- случайная переменная, представля­
ющая событие, а Х; - возможные значения Х. Обычно принято обозначать 
случайные переменные прописными буквами, а их значения - соответству­
ющими строчными. 

2. Мера всего множества равна 1, а это означает, что :r�=• Р(Х = х; ) = 1. 
3. Вероятность обьединения взаимоисключающих событий равна сумме веро­

ятностей отдельных событий, т.е. Р(Х = х 1 V Х = х2) = Р(Х = х 1 ) + Р(Х =  х2), 
гдесобытия х 1 и х2 являются взаимоисключающими. 

Вероятностная модель состоит из пространства выборок взаимоисключаю­
щих возможных результатов вместе с вероятностной мерой для каждого результа­
та. Например, в модели погоды на завтра результатами могут быть sшiny ( солнеч­
но), cloudy (облачно), rainy (дождь) и snowy (снег). Подмножество этих результатов 
представляет собой событие. Например, событие выпадения осадков - это под­
множество {rainy, snowy} . 
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Мы будем использовать запись Р(Х) для обозначения вектора значений 
(Р(Х = х 1 ), • • •  , Р(Х = хп)) .  Мы также используем запись Р(х;) в качестве сокращения 
ДЛЯ Р(Х = Х;) и L Р(х) в качестве сокращения для r;:,, Р(Х = Х; ). 

Условная вероятность P(BIA) определяется как Р(В n А) /Р(А). Переменные А 
и В являются условно независимыми, если P(BIA) = Р(В) (или, равным образом, 
если P(A IB) = Р(А)). 

Непрерывные переменные имеют бесконечное количество значений, и если 
распределение вероятностей этих значений не характеризуется наличием пиковых 
значений в отдельных точках, то вероятность любого отдельно взятого значения 
равна О. Поэтому имеет смысл говорить о значении вероятности в пределах неко­
торого диапазона. Это реализуется с помощью ► функции плотности вероятно­
сти, которая имеет немного иной смысл по сравнению с дискретной функцией ве­
роятности. Поскольку вероятность Р(Х = х) - т.е. вероятность, которую Х имеет 
при точном значении х - равна нулю, мы будем использовать другую меру: от­
ношение вероятности того, что Х попадает в интервал вокруг х, к ширине этого 
интервала, измеряемой в пределе приближения ширины интервала к нулю. Итак, 
функция плотности вероятности Р(Х = х) определяется как 

Р(х) = lim P(x � Х � x + dx) I dx. 
d<➔O 

Функция плотности вероятности должна быть неотрицательной при всех х и 
соответствовать следующему требованию: 

J: P(x)dx = 1 .  

Мы также можем определить ► кумулятивное распределение F J...x), которое 
является вероятностью того, что случайная величина будет меньше х. Кумулятив­
ная функция распределения определяется следующим образом: 

Fx (х) = Р(Х � х) = J: P(u)du. 

Следует отметить, что функция плотности вероятности измеряется в опре­
деленных единицах, а дискретная функция вероятности является безразмерной. 
Например, если переменная Х измеряется в секундах, то плотность вероятности 
измеряется в герцах (Гц, т.е. 1 /с). Если Х - точка в трехмерном пространстве, из­
меряемом в метрах, то плотность вероятности будет измеряться в 1 /м3. 

Одним из наиболее важных распределений вероятностей является ► распреде­
ление Гаусса, известное также под названием ► нормальное распределение. Для 
этого распределения мы используем обозначение N(x; µ,, cr2) - как функции от х 
со средним значением µ, и среднеквадраrичным отклонением cr (и, следовательно, 
с дисперсией cr2). Нормальное распределение определяется следующей формулой: 

N(x; µ; cr2 ) = � e-<x-µ>2 t<202 > , 
сrv 2тт. 



А.3. Распределения вероятностей 455 

где х - непрерывная переменная, изменяющаяся в пределах от -оо до +ао . Если 
среднее µ = О и дисперсия cr2 = 1 ,  то имеет место частный случай нормального рас­
пределения, называемый ► стандартным нормальным распределением. Если 
распределение задано на векторе х в пространстве с d измерениями, то оно пред­
ставляет собой ► многомерное гауссово распределение: 

N . - 1 -½{(1-µ)Т Г l (х-µ)) 
(х, µ, �) - 1 е 

\f(2пУ 1 � 1 

где µ - вектор средних, а � - ► матрица ковариации этого распределения ( см. 
ниже). Кумулятивное распределение для одномерного нормального распределения 
определяется как 

х 1 
F(x) =  J N(z;µ, cr2 )dz = -(1 + erfC-� )), 

-00 2 ""2 

где erf(x) - так называемая ► функция ошибок, не имеющая представления в 
замкнутой форме. 

В ► центральной предельной теореме утверждается, что среднее п случай­
ных переменных приближается к нормальному распределению по мере того, как п 
стремится к бесконечности. Такому свойству подчиняется почти любая коллекция 
случайных переменных, при том условии, что значение дисперсии любого конеч­
ного подмножества переменных не доминирует над значениями дисперсии других 
конечных подмножеств. 

► Математическое ожидание случайной величины, М(Х), представляет собой 
среднее значение, взвешенное по вероятности каждого значения. Для дискретной 
переменной это 

х 
Для непрерывной переменной суммирование следует заменить интегралом и ис­
пользовать функцию плотности вероятности, Р(х): 

00 

М(Х) = f xP(x)dx. 

Для любой функции/ мы также имеем 
00 

M(f(X)) = f f(x)P(x) dx . 
...а, 

И наконец, при необходимости математическое ожидание можно определить через 
распределение случайной величины: 

Mx-Qtx ) (g(X)) = f g(x)Q(x)dx. 
-00 
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Помимо математического ожидания, другие важные статистические характери­
стики распределения включают ► дисперсию D[X], которая является математиче­
ским ожиданием квадрата отклонения случайной величины от ее математическо­
го ожидания: 

D[X] = М((Х - М(Х))2) 

и среднеквадратическое или ► стандартное отклонение а, которое является ква­
дратным корнем из дисперсии (по этой причине математическое ожидание в ста­
тистике часто обозначают как cr2). 

► Среднее квадратическое s для набора значений (чаще всего это выборка 
значений случайной величины) представляет собой квадратный корень из средне­
го арифметического квадратов значений в наборе: 

2 2 
Х1 + ...  + Хп 

п 
► Ковариация двух случайных величин определяется как математическое 

ожидание произведения разностей их значений и соответствующих средних зна­
чений: 

cov(X, У) = М((Х - µХ)(У - µУ)). 

► Ковариационная матрица, часто обозначаемая как S, является матрицей, 
составленной из попарных ковариаций между элементами вектора случайных ве­
личин. Принимая, что вектор представлен как Х = (Х1 , • • •  Хп)т, элементами ковари­
ационной матрицы будут: 

S;,1 = cov(X;, �) = М((Х; - µ;)(� - µ)). 

► Выборка - это часть общей совокупности возможных элементов случайной 
величины, полученная в результате некоторого эксперимента. Мы не знаем, како­
во будет распределение вероятности для любой конкретной выборки, но в пределе 
достаточно большой набор данных выборок будет приближаться к той же функции 
распределения плотности вероятности, которая свойственна общей совокупности 
элементов этой случайной величины. ► Равномерное распределение характери­
зуется тем, что каждый элемент в общей совокупности в равной степени (равно­
мерно) вероятен. Поэтому, если мы говорим, что "случайная величина имеет рав­
номерное распределение в диапазоне целых чисел от О до 99", то это означает, что 
при выборке с одинаковой вероятностью может быть получено любое целое чис­
ло из этого диапазона. 
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П РИЛОЖЕН И Е  Б 
Сведения о языках 

и алгоритмах, 

используемых в книге 

Б.1. Определение языков с помощью 
формы Бэкуса-Наура 

В этой книге дается определение нескольким языкам, в том числе языку логики 
высказываний (раздел 7 .4), языку логики первого порядка (раздел 8.2) и подмно­
жеству английского языка (раздел 23 .4). Формальный язык определяется как мно­
жество строк, в котором каждая строка представляет собой последовательность 
символов. Все языки, которые были необходимы нам в этой книге, состоят из бес­
конечного множества строк, поэтому нужен простой способ, позволяющий оха­
рактеризовать это множество. Для достижения данной цели удобнее всего вос­
пользоваться грамматикой. Конкретный тип грамматики, который мы выбрали, 
носит название ► контекстно свободная грамматика, поскольку каждое выра­
жение в этом случае будет иметь одну и ту же форму в любом контексте. В каче­
стве способа оформления грамматик мы приняли формальную систему под на­
званием ► форма Бжуса-Наура или БНФ (Backus-Naur form - BNF). В любой 
БНФ-грамматике присутствуют четыре компонента. 

• Множество ► терминальных символов. Это символы или слова, из кото­
рых состоят строки языка. В качестве таких символов могут использоваться 
буквы (А, В, С, . . .  ), слова (а, aardvark, abacus, . . .  ) или любые символы, яв­
ляющиеся допустимыми для области определения. 

• Множество ► нетерминальных символов, которые обозначают компо­
ненты предложений языка. Например, нетерминальный символ NounPhrase 
(именное словосочетание) в английском языке обозначает бесконечное мно­
жество строк, включая такие, как уои или the blg s/obbery dog. 

• ► Начальный символ, который представляет собой нетерминальный 
символ, обозначающий законченный набор из строк языка. В граммати­
ке английского языка таковым является символ Sentence; в грамматике 
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арифметических выражений для этой цели может быть определен символ 
Expr, а в грамматике языка программирования это может быть Program. 

• Множество ► правил подстановки в форме LHS ➔ RНS, где LHS - нетер­
минальный символ, а RНS - последовательность, в коrорую входят нуль и 
больше символов. Эrо могут быть как терминальные, так и нетерминальные 
символы, а также символ Е, коrорый мы будем использовать для обозначе­
ния пустой строки. 

Правило подстановки вида 

Sentence ➔ NounPhrase VerbPhrase 
означает, что при наличии двух строк, обозначенных как NounPhrase (именное 
словосочетание) и VerbPhrase (глагольное словосочетание), их можно соединить 
друг с другом и классифицировать результат как Sentence. Определение этого пра­
вила также можно записать в сокращенном виде: если есть два правила (S➔A) и 
(S ➔ В), то можно записать (S ➔ А I В). Чтобы проиллюстрировать эrу концепцию, 
ниже приведена БНФ-грамматика для простых арифметических выражений. 

Expr ➔ Expr Operator Expr 1 (Expr) 1 Number 
Number ➔ Digit I Number Digit 
Digit ➔ O l l l 2 1 3 1 4 l 5 l 6 l 7 1 8 l 9 
Operator ➔ + 1 - l + l x 

Более подробные сведения о языках и грамматиках приведены в главе 23. Сле­
дует отметить, что в других книгах в системе обозначений БНФ могут использо­
ваться немного другие правила, например нетерминальные символы могут обозна­
чаться (Digit ), а не Digit, терминальные символы - 'word', а не word, а в правилах 
может использоваться символ : := вместо ➔ . 

Б.2. Описание алгоритмов с помощью псевдокода 
В этой книге все упоминаемые алгоритмы представлены на ► псевдокоде. Ос­

новные конструкции этого псевдокода должны быть понятны пользователям таких 
языков, как Java, С++ и в особенности Python. В некоторых местах для описания 
вычислений в псевдокоде используются математические формулы или текст на 
естественном языке, поскольку в противном случае пришлось бы применять бо­
лее громоздкие конструкции. Также следует отметить, что в алгоритмах использу­
ются приведенные ниже соглашения. 

• Сохраняемые переменные. Ключевое слово persistent (сохраняемая) 
используется как указание на то, что переменной присваивается началь­
ное значение при первом вызове содержащей ее функции, после чего это 
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значение (или значение, присвоенное переменной с помощью выполнен­
ных в дальнейшем операторов присваивания) сохраняется при всех по­
следующих вызовах функции. Таким образом, сохраняемые переменные 
подобны глобальным переменным в том, что они сохраняют свое зна­
чение после каждого вызова содержащей их функции, но при этом до­
ступны только в данной функции. В программах агентов, приведенных в 
данной книге, сохраняемые переменные используются в качестве "памя­
ти". В объектно-ориентированных языках, таких как С++, Java, Python и 
Smal ltalk, программы с сохраняемыми переменными могут быть реализо­
ваны в виде объектов. В функциональных языках они могут быть реализо­
ваны с помощью функционш,ьных замыканий в той среде, в которой опре­
делены требуемые переменные. 

• Функции как значения. В нашем псевдокоде имена функций и процедур 
начинаются с прописных букв, а имена переменных состоят из строчных 
букв и выделяются курсивом. Поэтому в большинстве случаев вызов функ­
ции выглядит наподобие FN(x). Однако также допускается, чтобы значе­
нием переменной была функция, например если значением переменной f 
является функция вычисления квадратного корня, то выражение 1(9) воз­
вращает 3 .  

• Значимость отступов. Наличие отступов при записи псевдокода имеет 
большое значение - по аналогии с языками Python и CoffeeScript, но в от­
личие от языков Java, С++ и Go (в которых используются скобки) или язы­
ков Lua и Ruby (в которых используется оператор end), в нашем псевдокоде 
они определяют область действия цикла или условного выражения. 

• Деструктурнзацня наборов данных. Нотация "х, у � пара" означает, что 
правая часть выражения после вычисления должна представлять собой 
двухэлементную коллекцию, первый элемент которой присваивается пере­
менной х, а второй - у. Та же самая идея может быть представлена записью 
"for х, у in пара do". Эта нотация также может использоваться для обмена 
значениями между двумя переменными: "х, у � у, х". 

• Значения по умолчанию для параметров . Нотация "function F(x, у = О) 
returns число" означает, что в этой функции у является дополнительным 
аргументом со значением по умолчанию, равным О. Иначе говоря, вызовы 
функции F(З, О) и F(З) являются эквивалентными. 

• Ключевое слово yield . Функция, содержащая ключевое слово yield, пред­
ставляет собой ► генератор, генерирующий последовательность значе­
ний, - по одному каждый раз, когда встречается выражение, содержащее 
это ключевое слово. После генерации очередного значения функция про­
должает свое выполнение со следующего оператора. В языках Python, Ruby, 
С# и JavaScript (ECMAScript) присутствует подобная функциональная воз­
можность. 
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• Циклы. В псевдокоде допускается четыре типа циклов. 
"for х in с do" - выпол няется цикл с управляющей переменной х, 
возможные значения которой указаны как последовательность элементов 
в коллекции с. 
"for i = 1 to п do" - выполняется ЦИКЛ с управляющей переменной i, 
значения которой представляют собой последовательность целых чисел 
от 1 до п включительно. 
"while условие do" - в этом цикле выполнение условия проверяется 
перед началом очередной его итерации, и если условие ложно, цикл 
завершается . 
"repeat . . .  until условие" - этот цикл безусловно выполняется первый 
раз, а затем проверяется условие. Если оно истинно, цикл завершается, 
иначе он выполняется вновь (и в конце опять проверяется условие). 

• Списки. Нотация [х, у, z] определяет список из трех элементов. Оператор 
"+" может употребляться для выполнения конкатенации списков : [ 1 ,  2] + 
[3 , 4] = [ \ ,  2, 3 ,  4] .  Список может использоваться и как стек: функция РоР 
удаляет и возвращает последний элемент списка, а функция ТоР возвращает 
его последний элемент. 

• Множества. Нотация {х, у, z} определяет множество (набор) из трех эле­
ментов. Запись {х: р(х) } определяет множество из всех элементов х, для ко­
торых р(х) истинно. 

• Индексация в массивах начинается с 1 .  Первый элемент массива всегда 
имеет индекс 1 ,  как это принято в обычной математической записи (и в язы­
ках R и Jul ia), а не О (как это принято в языках Python, Java и С). 

Б.3. Дополнительный материал в Интернете 
Для этой книги имеется собственный веб-сайт, содержащий дополнительные 

магериалы и инструкции по отправке предложений, а также предоставляющий по­
сетителям возможность присоединиться к дискуссионным группам . 

• airna . cs . ber keley . edu 

Все приведенные в этой книге алгоритмы и несколько дополнительных упраж­
нений по программированию были реализованы на языках Python и Java (а некото­
рые и на других языках). Код этих реализаций находится в интернет-хранилище и 
доступен на веб-сайте, который в настоящее время размещается по адресу 

• g i thub . corn/ airnacode 
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Нечеткий контроль 1 28 
Нечеткое множество 1 28 
Нормализованная полезность 254 
Нормализованный максимум 326 
Нормальное распределение 454 
Нормативная теория 262 
Нотация "О" большое 447 

о 
Область определения значений 20 
Обновление Беллмана 323 
Обоснование 2 1 4  
Обратная 

индукция 390 
матрица 452 

Обусловливающий случай 60 
Обучение 1 4  7 
Общая цель 368 
Общее 

благо 424 
благополучие 4 1 5  

Общепринятая оценка 4 1 9  
Общественное благо 383 

утилитарное 383 
эгалитарное 383 

Объявление о задаче 4 1 7  
Обязательность 250 

Ограничение параллельности 
действия 374 

Однорукий бандит 338 
время останова 338 

Односвязная байесовская сеть 88 
Ожидаемая 

денежная ценность 257 
полезность 248, 259 

лотереи 252 
максимальная 248 
проl(Jlятие оmимизатора 26 1 

стоимость информации 280 
Оператор # 2 1 7  
Описательная теория 262 
Оптимальная стратегия 3 1  О 
Основная случайная переменная 2 1 9  
Отвращение к неоднозначности 263 
Охота за сокровищем 282 
Оценка 

несмещенная 259 
рекурсивная 1 47 
согласованная 95 
состояния 1 46 
стратегии 329 

п 

Парадокс 
Алле 262, 295 
Эллсберrа 263, 295 

Параметр байесовской сети 58  
Партнер 368 
Переговорное множество 432 
Переговоры 434 

стратегия Жозена 436 
уступка 436 

Перезапущенная MDP 340 
Переменная 

дискретизация 72 
запроса 80 
свидетельства 80 
скрытая 76 

Переменная # 2 1 9  
Переход марковский 309 
План 

доминируемый 352 



параллельное выполнение 372 
результаты 1 5  
совместный 3 73 
с чередующимся выполнением 37 1 

Планирование 
децентрализованное 368 
для многих исполнителей 368 
задача 

координации 369 
мноrосубьектное 37 1 
мноrоэффекторное 368 
мультиаrентное 367 

партнеры 368 
общая цель 368 

Плотность вероятности 454 
Повторяющаяся игра 3 80, 3 89 
Подrраф предшествования 68 
Подсчет взвешенных моделей 90 
Подход Шепли 4 1 1  
Подыrра 397 
Поиск наиболее вероятной 

последовательности 1 55 
Показатель производительности 249 
Полезность 45, 403 

адаmивная 297 
взаимная независимость 272 
денег 256 
мноrоатрибутная 265 
мультипликативная функция 272 
нормализованная 254 
ожидаемая 248, 259, 274 
состояния 3 1 6  
теория 249 
функция 248 

Полидерево 88, 1 54 
Полиномиальные задачи 449 
Полная информация 395 
Помеха 229 
Порядковая 

статистика 260 
функция полезности 253 

Последовательная 
выборка по значимости 1 85 
форма 40 1 

Потенциал 3 1 9 

Предметный указатель 471 

Правдоподобие 1 00 
свидетельств 1 50 

Правило 
Байеса 33, 45 

диагностическое направление 33 
комбинирование свидетельств 35 
причинное направление 33 

обусловливания 28 
подстановки 459 
умножения вероятностей 1 9, 4 1  

Правильная стратегия 3 1 4 
Предел средств 392 
Предельный вклад 4 1 1 
Предложение 

индивидуально рациональное 435 
Предположение 

о доброжелательности агента 367 
Предпочтения 1 5  

независимость 270 
неизвестные 286 

собственные 286 
человека 287 

рациональные 250 
ограничения 250 

структура 270 
Предсказание 1 46, 1 49 
Представление развернутое 20, 320 
Претендент 4 1 9  
Принимающий решения 293 
Принцип 

безразличия 48 
включений-исключений 24 
максимальной ожидаемой полезности 1 5  
недостаточной причины 48 
раскрытия 42 1 
MEU 248 

Принятие стратегических решений 369 
Причинно-следственная сеть 1 1 3 

возмущения 1 1 6 
критерий косвенного влияния 1 1 8  
представление действий 1 1 5 
случайная составляющая 1 16 
структурное уравнение 1 1 4 
формула корректировки 1 1 8 
dо-исчисление 1 1 6 
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Пробит-распределение 75 
Проблема 

ассоциации данных 227 
квалификации 1 2  
координации 3 8 1  
неопределенности идентичности 227 
отключения 404 
эталонного класса 47 

Проблемная область с выполнением 
заданий 434 

Программа генерирующая 235 
Программирование динамическое 309 
Проектирование 

агента 369 
механизма 369 

Проклятие 
оптимизатора 26 1 ,  295 
победителя 295 

Простое большинство голосов 429 
Пространство элементарных событий 1 7  
Протокол 

контрактных сетей 4 1 7  
заявка 4 1 8  
менеджер 4 1 7  

усrупок монотонный 435 
Профиль стратегии 378 
Процесс 

принятия решений марковский 309 
стационарный 1 43 

Прямой-обратный алгоритм 1 53 
Псевдокод 459 

списки 46 1 
циклы 46 1 

р 
Равновесие 

доминирующих стратегий 380 
максиминное 388 
Нэша 38 1 

идеальное в подыгре 397 
Равномерное распределение 456 
Развернутая форма 395 
Развернутое представление 20 
Развертывание 1 83, 2 1 4  
Разворот свидетельств 196 

Разделение 408 
Разочарование после принятия 

решения 295 
Разработка механизма 4 1 7  
Разреженная система 64 
Рандомизированное контролируемое 

испытание 1 1 9 
Рао-Блэквеллизация 1 92, 23 1 
Распределение 

адаптивное вспомогательное 239 
Бернулли 20 
вероятностей 2 1  

совместное 22, 24 
Гаусса 454 
гауссово 1 67 
дискретное логнормальное 2 1 8  
каноническое 69 
категориальное 2 1  
кумулятивное 454 
многомерное гауссово 455 
нормальное 454 

стандартное 455 
по порядку величины 2 1 8  
Пуассона 2 1 8  
равномерное 456 
стационарное 1 05 
условное 69 

Рациональные предпочтения 
ограничения 250 
полезность 252 

Реальная угроза 397 
Рейтинг 2 1 3  
Рекурсивная оценка 1 47 
Реляционная 

вероятностная модель 208 
неопределенность 2 1 2  

Ресурс 
общепринятая оценка 4 1 9  
собственная оценка 4 19  

Риск 258 

с 
Сбой обнаружения 229 
Сведение задачи 89 
Свидетельство 1 8  



Свойство марковости 1 45 
Сглаживание 1 46, 1 5 1 ,  1 65 

с постоянным запаздыванием 1 54 
Сговор 420 
Семантика 

базы данных 207 
байесовской сети 6 1  
реляционной вероятностной модели 2 1 1  

Сетевая томография 1 22 
Сеть 

байесовская 58 
детерминированная вершина 69 
качественная вероятностная 269 
предельного вклада 4 1 3  
принятия решений 272 

вычисления 275 
узлы 273 

DBN 1 76 
приближенный вероятностный 

ВЫВОД 1 85 
развертывание 1 83 
создание 1 77 

Сжатие 325 
Сивиллы 2 1 6  
Сиrнаrура типа 209 
Символ 458 
Симметричные игроки 4 1 2  
Синтаксис байесовской сети 6 1  
Синхронизация 372 
Система 

мультиаrентная 367 
Скорость смешивания 1 08 
Скрытая марковская модель 1 58 
Скрытые переменные 76 
Слабая связанность 373 
Сложность точного вероятностного 

вывода 88 
Случайная 

переменная 20 
индексированная 242 

составляющая 1 1 6 
Случайное блуждание 1 69 
Смешанная страгеrия 378 
Собственная оценка 4 1 9  
Событие 1 8, 80 

Предметный указатель 473 

Совместное 
действие 373 
распределение вероятностей 23, 45 

полное 24 
Совместный план 3 73 
Согласованная оценка 95 
Соглашение 3 76 
Сожаление 343 
Сообщение 

обратное 1 5 1  
прямое 1 48 

Состояние, полезность 3 1 5  
Социальный 

закон 376 
результат 427 

Среднее 
вознаграждение 3 1 4  
квадраrическое 456 

Ставка 4 1 9  
резервная 420 

Стандартное 
нормальное распределение 455 
отклонение 456 

Старетеrия око за око 390 
Статистика 

порядковая 260 
связывание записей 243 

Статистическая стоимость жизни 255 
Стационарная страгеrия 3 1 2  
Стационарное 

предпочтение 3 1 3  
распределение 1 05, 1 50 

Стационарный процесс 1 43 
Степень уверенности 1 3  
Стимул 370 
Стоимость 

альтернативная 345 
информации 276, 280 

ожидаемая 280 
свойства 280 

полной информации 278 
Стохастическое доминирование 267 
Стратегия 309, 378, 403 

в кооперативных играх 409 
доминантная 42 1 
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доминирующая 345, 379 
Жозена 436 
лучший ответ 380 
нестационарная 3 1 2 
оптимальная 3 1  О 
правильная 3 14  
профиль 378 
смешанная 378 
убыточность 327 
чистая 378 

Страховая премия 259 
Строгое доминирование 266 
Структура предпочтений 269 
Структурное 

представление 20 
уравнение 1 1 4 

Субъект 37 1  
Супераддитивность 409 
Суперпроцесс задачи о бандитах 344 

т 
Таблица условной вероятности 60 
Теорема 

Байеса 33 
Гиббарда-Саттертуейта 430 
народная Нэша 394 
представления 270 
формирования 3 1 8  
центральная предельная 455 
эквивалентности доходов 423 
Эрроу 429 

Теория 
вероятностей 1 3  

событие 1 8  
элементарные события 1 7  
эпистемологический вклад 1 4  

возможностей 128 
игр 369 
конкуренции Курно 403 
многоатрибутной полезности 265 
нормативная 262 
общественного выбора 427 
описательная 262 
полезности 1 5  
принятия решений 1 5, 45, 285 
стоимости информации 276 

Терминальный символ 458 
Тест эталонный 447 
Тестирование последовательности по 

наименьшей стоимости 282 
Топологический порядок 63 
Торг 42 1 , 43 1  

переговорное множество 432 
с чередующимися предложениями 43 1 
ультиматум 432 

Точечное произведение 84 
Точный вероятностный вывод, 

сложность 88 
Трагедия общего ДОСТОЯНИЯ 425 
Транзитивность 250 
Транспонирование 452 
Трасса выполнения 235 
Турбодекодирование 1 26 

у 
Убыточность стратегии 327 
Узел 

жеребьевки 273 
полезности 274 
принятия решений 274 

Узловая точка 382 
Ультимаrум 432 
Упорядоченность социального 

предпочтения 427 
Упорядочение переменных 87 
Уравнение Беллмана 3 1 7  
Условная независимость 36, 43, 45 

разделение переменных 37 
Условное распределение 69 

гауссово 74 
линейное гауссово 73 
непараметрическое представление 72 

Условный план 282 
Усовершенствование стратегии 329 
Усrупка 436 
Утилитарное общественное благо 383 

ф 

Фактор 84 
операции 85 
точечное произведение 84 



уверенности 1 27 
Фильтр 

затухающего МСМС 1 97 
Калмана 1 69 

переключательный 1 75 
расширенный 1 75 
цикл обновления 1 7 1  

предполагаемой плотности 1 97 
частиц Рао-Блэквелла 1 93 ,  1 97 

Фильтрация 1 46, 1 47, 1 65 
Калмана 1 67 
частиц 1 86 

Форма Бэкуса-Наура 458 
Формула 

включений-исключений 24 
корректировки 1 1 8  

Функция 
действие-полезность 274 
значения действия 3 1 7  
источника 2 1 8  
общественного блага 427 
ошибок 455 
плотности вероятности 454 
полезности 248, 252, 254 

мультипликативная 272 
распределения вероятностей 2 1  
сжатия 326 
социального выбора 427 
характеристическая 408 
ценности 253 

аддитивная 27 1 

х 
Характеристическая функция 408 

ц 
Центр 4 1 7  
Центральная предельная теорема 455 
Цепное правило 63 
Цепь Маркова 1 02, 1 23 

анализ l 04 

Предметный укаэатель 475 

скорость смешивания 108 
стационарное распределение 105 
ядро перехода 104 

Цикл 461 
Циклическое распространение оценок 

уверенности 1 26 

ч 
Чередующееся выполнение 37 1 
Чистая стратегия 378 

э 
Эволюционная психология 264 
Эвристика UCB 342 
Эгалитарное общественное благо 383 
Эквивалент определенности 258 
Экономия усилий 1 3  
Экспит-распределение 75 
Элементарное событие 1 7  
Эпистемологический вклад 1 4  
Эргодическое ядро перехода 1 05 
Эталонный 

класс 47 
тест 447 

Эффект 
привязки 264 
уверенности 262 
фрейминrа 263 

Эффективность по Парето 383 

я 
Ядро 

игры 4 10  
детализированное равновесие 1 06 
перехода 1 04 
эргодическое 105 

Язык вероятностного 
программирования 206 



ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ 
СОВРЕМЕННЫЙ ПОДХОД 
4-Е ИЗДАНИЕ. 
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Стюарт Рассел 
nитер Норвиr 

www. d i a l e kt i ka . c om 

ISBN 978-5-907365-25-4 

В этом обновленном и пере­
смотренном издании читатель 
найдет самое полное и актуальное 
введение в теорию и практику 
искусственного интеллекта. В книге 
изложены идеи, которые были 
сформулированы в исследованиях, 
проводившихся в этой области в 
течение последних пятидесяти лет, 
а также представлены современные 
достижения и новейшие технологии 
и концепции в таких областях, 
как машинное обучение, много­
агентные системы, робототехника, 
обработка естественного языка, 
вероятностное программирование, 
а также конфиденциальность, 
беспристрастность и безопасность 
ИИ.  Написанная без излишнего 
академизма (но достаточно строго) 
книга будет полезна широкому 
кругу читателей: студентам, аспи­
рантам и преподавателям высших 
учебных заведений, инженерам, 
разработчикам ПО и т.д. 
В связи с исключительно большим 
объемом этого энциклопедического 
издания его русскоязычный вариант 
представлен в виде трехтомника. 
В первом томе излагаются основы 
основ ИИ - общая характеристика 
этой области как науки об интел­
лектуальных агентах, действующих 
в различных средах и решающих 
различные задачи на основании 
знаний, результатов восприятия, 
рассуждений и планирования. 

в продаже 
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В этой книге исследуются 
различные сценарии применения 
искусственного интеллекта. 
Вначале рассматриваются общие 
концепции искусственного 
интеллекта, после чего 
обсуждаются более сложные 
темы, такие как предельно 
случайные леса, скрытые 
марковские модели, генетические 
алгоритмы, сверточные 
нейронные сети и др. Вы 
узнаете о том, как принимать 
обоснованные решения 
при выборе необходимых 
алгоритмов, а также о том, как 
реализовывать эти алгоритмы 
на языке Python для достижения 
наилучших результатов. 
Основные темы книги: 
■ различные методы 

классификации и 
регрессии данных; 

■ создание интеллектуальных 
рекомендательных систем; 

■ логическое программирование 
и способы его применения; 

■ построение 
автоматизированных систем 
распознавания речи; 

■ основы эвристического 
поиска и генетического 
программирования; 

■ разработка игр 
с использованием 
искусственного интеллекта; 

■ обучение с подкреплением; 
■ алгоритмы глубокого 

обучения и создание 
приложений на их основе. 

в продаже 
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Данная книга посвящена одной 
из наиболее перспективных 
и привлекательных областей 
развития научного знания -
методологии искусственного 
интеллекта (ИИ). В ней детально 
описываются как теоретические 
основы искусственного 
интеллекта, так и примеры 
построения конкретных 
прикладных систем. Книга 
дает полное представление 
о современном состоянии 
развития этой области науки. 
Подробно рассматриваются 
вопросы представления знаний 
при решении задач ИИ, логика 
решения этих задач, алгоритмы 
поиска, продукционные системы 
и машинное обучение. Эти 
вопросы остаются центральными 
в области искусственного 
интеллекта. В книге также 
представлены результаты 
новейших исследований, 
связанных с вопросами 
понимания естественного языка., 
обучения с подкреплением, 
рассуждения в условиях 
неопределенности, эмерджентных 
вычислений, автоматического 
доказательства теорем и решения 
задач ИИ на основе моделей. 
Большое внимание уделяется 
описанию реальных прикладных 
систем, построенных на 
принципах ИИ, и современных 
областей приложения 
этой области знаний. 

в продаже 
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глубокого обучения на 
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развертывания готовых 
решений. Прочитав книгу, вы 
сможете быстро приступить 
к работе с библиотекой 
TensorFlow и заняться 
оптимизацией архитектур 
глубокого обучения. 
Весь программный код 
доступен в виде блокнотов 
iPython и сценариев, 
позволяющих с легкостью 
воспроизводить примеры и 
экспериментировать с ними. 
Благодаря этой книге вы: 
• овладеете полным стеком 

технологий глубокого 
обучения с использованием 
TensorFlow и получите 
необходимую для этого 
математическую подготовку; 

• научитесь развертывать 
сложные приложения 
глубокого обучения в 
производственной среде 
с помощью TensorFlow; 

• сможете проводить 
исследования в области 
глубокого обучения и 
выполнять самостоятельные 
эксперименты в TensorFlow. 
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Благодаря серии выдающихся 
достижений глубокое обучение 
значительно усилило всю 
область машинного обучения.  
В наше время даже про­
грамм исты ,  почти ничего не 
знающие об этой технологии, 
могут использовать простые 
и эффективные инструменты 
для реализации программ ,  
которые способны обучаться 
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За счет применения конкрет­
ных  примеров, минимума 
теории и фреймворков Python 
производственного уровня 
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